Properties

Label 7.10.a.b
Level $7$
Weight $10$
Character orbit 7.a
Self dual yes
Analytic conductor $3.605$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7,10,Mod(1,7)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.60525085315\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 426x + 2016 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + 7) q^{2} + ( - \beta_{2} - \beta_1 + 28) q^{3} + ( - 8 \beta_{2} + 7 \beta_1 + 519) q^{4} + (43 \beta_{2} - 13 \beta_1 + 518) q^{5} + (36 \beta_{2} - 6 \beta_1 + 1638) q^{6} + 2401 q^{7}+ \cdots + ( - 7689150 \beta_{2} + \cdots - 633659724) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 21 q^{2} + 84 q^{3} + 1557 q^{4} + 1554 q^{5} + 4914 q^{6} + 7203 q^{7} + 14055 q^{8} - 26001 q^{9} - 97860 q^{10} - 3444 q^{11} - 106386 q^{12} - 19782 q^{13} + 50421 q^{14} + 200304 q^{15} + 482961 q^{16}+ \cdots - 1900979172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 426x + 2016 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{2} + 25\nu + 276 ) / 6 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} + 11\nu - 288 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 2 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 25\beta_{2} - 11\beta _1 + 1706 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
18.2745
−22.2358
4.96128
−34.1627 −79.6469 655.088 1423.70 2720.95 2401.00 −4888.28 −13339.4 −48637.4
1.2 13.3607 163.415 −333.491 1922.19 2183.34 2401.00 −11296.4 7021.32 25681.8
1.3 41.8019 0.232339 1235.40 −1791.89 9.71222 2401.00 30239.6 −19682.9 −74904.4
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7.10.a.b 3
3.b odd 2 1 63.10.a.e 3
4.b odd 2 1 112.10.a.h 3
5.b even 2 1 175.10.a.d 3
5.c odd 4 2 175.10.b.d 6
7.b odd 2 1 49.10.a.c 3
7.c even 3 2 49.10.c.d 6
7.d odd 6 2 49.10.c.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.10.a.b 3 1.a even 1 1 trivial
49.10.a.c 3 7.b odd 2 1
49.10.c.d 6 7.c even 3 2
49.10.c.e 6 7.d odd 6 2
63.10.a.e 3 3.b odd 2 1
112.10.a.h 3 4.b odd 2 1
175.10.a.d 3 5.b even 2 1
175.10.b.d 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 21T_{2}^{2} - 1326T_{2} + 19080 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(7))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 21 T^{2} + \cdots + 19080 \) Copy content Toggle raw display
$3$ \( T^{3} - 84 T^{2} + \cdots + 3024 \) Copy content Toggle raw display
$5$ \( T^{3} + \cdots + 4903718400 \) Copy content Toggle raw display
$7$ \( (T - 2401)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + \cdots + 108859759460352 \) Copy content Toggle raw display
$13$ \( T^{3} + \cdots - 41548412541440 \) Copy content Toggle raw display
$17$ \( T^{3} + \cdots - 21\!\cdots\!32 \) Copy content Toggle raw display
$19$ \( T^{3} + \cdots - 43\!\cdots\!60 \) Copy content Toggle raw display
$23$ \( T^{3} + \cdots + 97\!\cdots\!36 \) Copy content Toggle raw display
$29$ \( T^{3} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{3} + \cdots - 74\!\cdots\!84 \) Copy content Toggle raw display
$37$ \( T^{3} + \cdots - 34\!\cdots\!28 \) Copy content Toggle raw display
$41$ \( T^{3} + \cdots - 19\!\cdots\!12 \) Copy content Toggle raw display
$43$ \( T^{3} + \cdots + 68\!\cdots\!80 \) Copy content Toggle raw display
$47$ \( T^{3} + \cdots - 43\!\cdots\!16 \) Copy content Toggle raw display
$53$ \( T^{3} + \cdots + 23\!\cdots\!28 \) Copy content Toggle raw display
$59$ \( T^{3} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{3} + \cdots + 51\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{3} + \cdots - 20\!\cdots\!64 \) Copy content Toggle raw display
$71$ \( T^{3} + \cdots + 16\!\cdots\!80 \) Copy content Toggle raw display
$73$ \( T^{3} + \cdots + 19\!\cdots\!48 \) Copy content Toggle raw display
$79$ \( T^{3} + \cdots - 11\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots + 18\!\cdots\!48 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 19\!\cdots\!40 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 49\!\cdots\!16 \) Copy content Toggle raw display
show more
show less