Defining parameters
Level: | \( N \) | \(=\) | \( 7 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 7.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(6\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(7))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7 | 5 | 2 |
Cusp forms | 5 | 5 | 0 |
Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | Dim |
---|---|
\(+\) | \(2\) |
\(-\) | \(3\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 7 | |||||||
7.10.a.a | $2$ | $3.605$ | \(\Q(\sqrt{193}) \) | None | \(-6\) | \(-86\) | \(-2238\) | \(-4802\) | $+$ | \(q+(-3-\beta )q^{2}+(-43+11\beta )q^{3}+(-310+\cdots)q^{4}+\cdots\) | |
7.10.a.b | $3$ | $3.605$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(21\) | \(84\) | \(1554\) | \(7203\) | $-$ | \(q+(7-\beta _{2})q^{2}+(28-\beta _{1}-\beta _{2})q^{3}+(519+\cdots)q^{4}+\cdots\) |