Properties

Label 7.10.a
Level $7$
Weight $10$
Character orbit 7.a
Rep. character $\chi_{7}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $2$
Sturm bound $6$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(6\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(7))\).

Total New Old
Modular forms 7 5 2
Cusp forms 5 5 0
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)Dim
\(+\)\(2\)
\(-\)\(3\)

Trace form

\( 5 q + 15 q^{2} - 2 q^{3} + 937 q^{4} - 684 q^{5} + 926 q^{6} + 2401 q^{7} + 16671 q^{8} - 14963 q^{9} - 54476 q^{10} + 31872 q^{11} - 54250 q^{12} - 46312 q^{13} + 64827 q^{14} - 106832 q^{15} + 482209 q^{16}+ \cdots - 491561312 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(7))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7
7.10.a.a 7.a 1.a $2$ $3.605$ \(\Q(\sqrt{193}) \) None 7.10.a.a \(-6\) \(-86\) \(-2238\) \(-4802\) $+$ $\mathrm{SU}(2)$ \(q+(-3-\beta )q^{2}+(-43+11\beta )q^{3}+(-310+\cdots)q^{4}+\cdots\)
7.10.a.b 7.a 1.a $3$ $3.605$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 7.10.a.b \(21\) \(84\) \(1554\) \(7203\) $-$ $\mathrm{SU}(2)$ \(q+(7-\beta _{2})q^{2}+(28-\beta _{1}-\beta _{2})q^{3}+(519+\cdots)q^{4}+\cdots\)