Properties

Label 7.10.a.a
Level $7$
Weight $10$
Character orbit 7.a
Self dual yes
Analytic conductor $3.605$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7,10,Mod(1,7)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 7.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.60525085315\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{193}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{193}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 3) q^{2} + (11 \beta - 43) q^{3} + (6 \beta - 310) q^{4} + ( - 95 \beta - 1119) q^{5} + (10 \beta - 1994) q^{6} - 2401 q^{7} + (804 \beta + 1308) q^{8} + ( - 946 \beta + 5519) q^{9} + (1404 \beta + 21692) q^{10}+ \cdots + ( - 35060662 \beta + 704708930) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{2} - 86 q^{3} - 620 q^{4} - 2238 q^{5} - 3988 q^{6} - 4802 q^{7} + 2616 q^{8} + 11038 q^{9} + 43384 q^{10} + 35316 q^{11} + 52136 q^{12} - 26530 q^{13} + 14406 q^{14} - 307136 q^{15} - 752 q^{16}+ \cdots + 1409417860 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.44622
−6.44622
−16.8924 109.817 −226.645 −2438.78 −1855.08 −2401.00 12477.5 −7623.25 41197.0
1.2 10.8924 −195.817 −393.355 200.782 −2132.92 −2401.00 −9861.52 18661.3 2187.01
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7.10.a.a 2
3.b odd 2 1 63.10.a.d 2
4.b odd 2 1 112.10.a.e 2
5.b even 2 1 175.10.a.b 2
5.c odd 4 2 175.10.b.b 4
7.b odd 2 1 49.10.a.b 2
7.c even 3 2 49.10.c.c 4
7.d odd 6 2 49.10.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7.10.a.a 2 1.a even 1 1 trivial
49.10.a.b 2 7.b odd 2 1
49.10.c.b 4 7.d odd 6 2
49.10.c.c 4 7.c even 3 2
63.10.a.d 2 3.b odd 2 1
112.10.a.e 2 4.b odd 2 1
175.10.a.b 2 5.b even 2 1
175.10.b.b 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 6T_{2} - 184 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(7))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 6T - 184 \) Copy content Toggle raw display
$3$ \( T^{2} + 86T - 21504 \) Copy content Toggle raw display
$5$ \( T^{2} + 2238 T - 489664 \) Copy content Toggle raw display
$7$ \( (T + 2401)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots - 1823214304 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots - 22750162568 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 36657492732 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots + 213416091952 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 128613482496 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots + 23287739754332 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 3507668488800 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 224285819284476 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots - 51779041048756 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots - 207953886197312 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 14\!\cdots\!68 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 34\!\cdots\!96 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots - 459497424927744 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 17\!\cdots\!24 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 51\!\cdots\!16 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 33\!\cdots\!36 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 60\!\cdots\!28 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 70118242258304 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 40\!\cdots\!84 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 10\!\cdots\!72 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 66\!\cdots\!24 \) Copy content Toggle raw display
show more
show less