Properties

Label 6897.2.a.y
Level $6897$
Weight $2$
Character orbit 6897.a
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,6,7,-2,3,12,6,6,3,0,7,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.65858461.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 5x^{4} + 12x^{3} + 6x^{2} - 11x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{2} + q^{3} + (\beta_{5} + \beta_{4} + 1) q^{4} + \beta_{3} q^{5} + ( - \beta_1 + 1) q^{6} + (\beta_{4} + 2) q^{7} + ( - \beta_{3} - \beta_{2} - 2 \beta_1 + 2) q^{8} + q^{9} + (\beta_{5} + 2 \beta_{3} + 2 \beta_1) q^{10}+ \cdots + ( - 5 \beta_{5} - 6 \beta_{3} + \cdots + 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} + 6 q^{3} + 7 q^{4} - 2 q^{5} + 3 q^{6} + 12 q^{7} + 6 q^{8} + 6 q^{9} + 3 q^{10} + 7 q^{12} + 7 q^{13} + 7 q^{14} - 2 q^{15} + 17 q^{16} - 5 q^{17} + 3 q^{18} + 6 q^{19} - 14 q^{20} + 12 q^{21}+ \cdots + 13 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} - 5x^{4} + 12x^{3} + 6x^{2} - 11x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - 3\nu^{3} - 3\nu^{2} + 6\nu + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + 4\nu^{3} - 9\nu + 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\nu^{5} + 3\nu^{4} + 4\nu^{3} - 8\nu^{2} - 5\nu + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 3\nu^{4} - 4\nu^{3} + 9\nu^{2} + 3\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} + 2\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{5} + 3\beta_{4} + \beta_{3} + \beta_{2} + 9\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{5} + 12\beta_{4} + 3\beta_{3} + 4\beta_{2} + 27\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 40\beta_{5} + 39\beta_{4} + 13\beta_{3} + 16\beta_{2} + 96\beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.34821
1.62587
0.876638
0.0969935
−1.36513
−1.58258
−2.34821 1.00000 3.51410 −1.66891 −2.34821 3.95376 −3.55543 1.00000 3.91895
1.2 −0.625866 1.00000 −1.60829 −0.429053 −0.625866 1.51680 2.25831 1.00000 0.268530
1.3 0.123362 1.00000 −1.98478 −1.78556 0.123362 −2.58236 −0.491571 1.00000 −0.220271
1.4 0.903006 1.00000 −1.18458 3.13062 0.903006 3.44368 −2.87570 1.00000 2.82697
1.5 2.36513 1.00000 3.59384 2.63713 2.36513 0.900686 3.76964 1.00000 6.23715
1.6 2.58258 1.00000 4.66971 −3.88423 2.58258 4.76743 6.89475 1.00000 −10.0313
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(11\) \( -1 \)
\(19\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6897.2.a.y yes 6
11.b odd 2 1 6897.2.a.t 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6897.2.a.t 6 11.b odd 2 1
6897.2.a.y yes 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6897))\):

\( T_{2}^{6} - 3T_{2}^{5} - 5T_{2}^{4} + 18T_{2}^{3} - 3T_{2}^{2} - 8T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{6} + 2T_{5}^{5} - 17T_{5}^{4} - 30T_{5}^{3} + 59T_{5}^{2} + 125T_{5} + 41 \) Copy content Toggle raw display
\( T_{7}^{6} - 12T_{7}^{5} + 42T_{7}^{4} + 6T_{7}^{3} - 292T_{7}^{2} + 489T_{7} - 229 \) Copy content Toggle raw display
\( T_{13}^{6} - 7T_{13}^{5} - 45T_{13}^{4} + 358T_{13}^{3} - 27T_{13}^{2} - 1664T_{13} - 1237 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 3 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 2 T^{5} + \cdots + 41 \) Copy content Toggle raw display
$7$ \( T^{6} - 12 T^{5} + \cdots - 229 \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} - 7 T^{5} + \cdots - 1237 \) Copy content Toggle raw display
$17$ \( T^{6} + 5 T^{5} + \cdots + 55 \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 11 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{6} - 7 T^{5} + \cdots - 715 \) Copy content Toggle raw display
$31$ \( T^{6} + 2 T^{5} + \cdots - 379 \) Copy content Toggle raw display
$37$ \( T^{6} - 4 T^{5} + \cdots + 17917 \) Copy content Toggle raw display
$41$ \( T^{6} + 22 T^{5} + \cdots - 10327 \) Copy content Toggle raw display
$43$ \( T^{6} - 6 T^{5} + \cdots + 7447 \) Copy content Toggle raw display
$47$ \( T^{6} + 21 T^{5} + \cdots + 817 \) Copy content Toggle raw display
$53$ \( T^{6} - 5 T^{5} + \cdots - 828043 \) Copy content Toggle raw display
$59$ \( T^{6} - 6 T^{5} + \cdots - 11405 \) Copy content Toggle raw display
$61$ \( T^{6} - 17 T^{5} + \cdots + 6571 \) Copy content Toggle raw display
$67$ \( T^{6} - 12 T^{5} + \cdots + 719 \) Copy content Toggle raw display
$71$ \( T^{6} - 2 T^{5} + \cdots + 298471 \) Copy content Toggle raw display
$73$ \( T^{6} - 16 T^{5} + \cdots + 829 \) Copy content Toggle raw display
$79$ \( T^{6} - 36 T^{5} + \cdots - 59491 \) Copy content Toggle raw display
$83$ \( T^{6} - 11 T^{5} + \cdots + 7421 \) Copy content Toggle raw display
$89$ \( T^{6} + 3 T^{5} + \cdots - 523639 \) Copy content Toggle raw display
$97$ \( T^{6} - 8 T^{5} + \cdots - 1324219 \) Copy content Toggle raw display
show more
show less