Properties

Label 2-6897-1.1-c1-0-39
Degree $2$
Conductor $6897$
Sign $1$
Analytic cond. $55.0728$
Root an. cond. $7.42110$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.123·2-s + 3-s − 1.98·4-s − 1.78·5-s + 0.123·6-s − 2.58·7-s − 0.491·8-s + 9-s − 0.220·10-s − 1.98·12-s + 5.17·13-s − 0.318·14-s − 1.78·15-s + 3.90·16-s − 3.40·17-s + 0.123·18-s + 19-s + 3.54·20-s − 2.58·21-s − 4.24·23-s − 0.491·24-s − 1.81·25-s + 0.637·26-s + 27-s + 5.12·28-s − 3.81·29-s − 0.220·30-s + ⋯
L(s)  = 1  + 0.0872·2-s + 0.577·3-s − 0.992·4-s − 0.798·5-s + 0.0503·6-s − 0.976·7-s − 0.173·8-s + 0.333·9-s − 0.0696·10-s − 0.572·12-s + 1.43·13-s − 0.0851·14-s − 0.461·15-s + 0.977·16-s − 0.824·17-s + 0.0290·18-s + 0.229·19-s + 0.792·20-s − 0.563·21-s − 0.885·23-s − 0.100·24-s − 0.362·25-s + 0.125·26-s + 0.192·27-s + 0.968·28-s − 0.709·29-s − 0.0402·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6897\)    =    \(3 \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(55.0728\)
Root analytic conductor: \(7.42110\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6897,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.014381398\)
\(L(\frac12)\) \(\approx\) \(1.014381398\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 0.123T + 2T^{2} \)
5 \( 1 + 1.78T + 5T^{2} \)
7 \( 1 + 2.58T + 7T^{2} \)
13 \( 1 - 5.17T + 13T^{2} \)
17 \( 1 + 3.40T + 17T^{2} \)
23 \( 1 + 4.24T + 23T^{2} \)
29 \( 1 + 3.81T + 29T^{2} \)
31 \( 1 - 6.05T + 31T^{2} \)
37 \( 1 + 1.61T + 37T^{2} \)
41 \( 1 + 3.98T + 41T^{2} \)
43 \( 1 + 3.92T + 43T^{2} \)
47 \( 1 + 3.87T + 47T^{2} \)
53 \( 1 + 12.0T + 53T^{2} \)
59 \( 1 - 10.3T + 59T^{2} \)
61 \( 1 - 3.01T + 61T^{2} \)
67 \( 1 - 4.22T + 67T^{2} \)
71 \( 1 + 12.1T + 71T^{2} \)
73 \( 1 - 1.72T + 73T^{2} \)
79 \( 1 - 5.32T + 79T^{2} \)
83 \( 1 + 10.7T + 83T^{2} \)
89 \( 1 - 3.60T + 89T^{2} \)
97 \( 1 - 17.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.203207738536016504259501175634, −7.41261123547871563743847230954, −6.46510567234141230761435791234, −5.99300617150448977761360628269, −4.91728401914507986960010080787, −4.14950550435049131311425547281, −3.60120842283819384136291294290, −3.13794660727291709011822543227, −1.78243043826287142247766089679, −0.49255142401501213920579512427, 0.49255142401501213920579512427, 1.78243043826287142247766089679, 3.13794660727291709011822543227, 3.60120842283819384136291294290, 4.14950550435049131311425547281, 4.91728401914507986960010080787, 5.99300617150448977761360628269, 6.46510567234141230761435791234, 7.41261123547871563743847230954, 8.203207738536016504259501175634

Graph of the $Z$-function along the critical line