Defining parameters
| Level: | \( N \) | \(=\) | \( 6897 = 3 \cdot 11^{2} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 6897.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 43 \) | ||
| Sturm bound: | \(1760\) | ||
| Trace bound: | \(13\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(6897))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 904 | 326 | 578 |
| Cusp forms | 857 | 326 | 531 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(11\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(108\) | \(41\) | \(67\) | \(103\) | \(41\) | \(62\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(114\) | \(37\) | \(77\) | \(108\) | \(37\) | \(71\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(117\) | \(40\) | \(77\) | \(111\) | \(40\) | \(71\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(113\) | \(45\) | \(68\) | \(107\) | \(45\) | \(62\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(118\) | \(45\) | \(73\) | \(112\) | \(45\) | \(67\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(112\) | \(33\) | \(79\) | \(106\) | \(33\) | \(73\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(109\) | \(35\) | \(74\) | \(103\) | \(35\) | \(68\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(113\) | \(50\) | \(63\) | \(107\) | \(50\) | \(57\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(442\) | \(154\) | \(288\) | \(419\) | \(154\) | \(265\) | \(23\) | \(0\) | \(23\) | |||||
| Minus space | \(-\) | \(462\) | \(172\) | \(290\) | \(438\) | \(172\) | \(266\) | \(24\) | \(0\) | \(24\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(6897))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(6897))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(6897)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(209))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(363))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(627))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2299))\)\(^{\oplus 2}\)