Properties

Label 2-6897-1.1-c1-0-190
Degree $2$
Conductor $6897$
Sign $1$
Analytic cond. $55.0728$
Root an. cond. $7.42110$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.903·2-s + 3-s − 1.18·4-s + 3.13·5-s + 0.903·6-s + 3.44·7-s − 2.87·8-s + 9-s + 2.82·10-s − 1.18·12-s + 4.00·13-s + 3.10·14-s + 3.13·15-s − 0.227·16-s − 1.64·17-s + 0.903·18-s + 19-s − 3.70·20-s + 3.44·21-s + 0.497·23-s − 2.87·24-s + 4.80·25-s + 3.61·26-s + 27-s − 4.07·28-s − 3.13·29-s + 2.82·30-s + ⋯
L(s)  = 1  + 0.638·2-s + 0.577·3-s − 0.592·4-s + 1.40·5-s + 0.368·6-s + 1.30·7-s − 1.01·8-s + 0.333·9-s + 0.893·10-s − 0.341·12-s + 1.11·13-s + 0.831·14-s + 0.808·15-s − 0.0569·16-s − 0.399·17-s + 0.212·18-s + 0.229·19-s − 0.829·20-s + 0.751·21-s + 0.103·23-s − 0.586·24-s + 0.960·25-s + 0.709·26-s + 0.192·27-s − 0.770·28-s − 0.582·29-s + 0.516·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6897\)    =    \(3 \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(55.0728\)
Root analytic conductor: \(7.42110\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6897,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.867382319\)
\(L(\frac12)\) \(\approx\) \(4.867382319\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 0.903T + 2T^{2} \)
5 \( 1 - 3.13T + 5T^{2} \)
7 \( 1 - 3.44T + 7T^{2} \)
13 \( 1 - 4.00T + 13T^{2} \)
17 \( 1 + 1.64T + 17T^{2} \)
23 \( 1 - 0.497T + 23T^{2} \)
29 \( 1 + 3.13T + 29T^{2} \)
31 \( 1 + 5.97T + 31T^{2} \)
37 \( 1 - 9.79T + 37T^{2} \)
41 \( 1 - 4.40T + 41T^{2} \)
43 \( 1 - 4.36T + 43T^{2} \)
47 \( 1 + 3.09T + 47T^{2} \)
53 \( 1 - 9.30T + 53T^{2} \)
59 \( 1 + 6.95T + 59T^{2} \)
61 \( 1 + 8.05T + 61T^{2} \)
67 \( 1 - 10.5T + 67T^{2} \)
71 \( 1 + 15.4T + 71T^{2} \)
73 \( 1 - 1.86T + 73T^{2} \)
79 \( 1 - 14.8T + 79T^{2} \)
83 \( 1 - 3.41T + 83T^{2} \)
89 \( 1 + 6.81T + 89T^{2} \)
97 \( 1 + 4.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.103916368188968150369224845949, −7.31371840307810698312651258094, −6.20371276418833703005575992534, −5.79356113804937894951944374718, −5.10657151535759503789418970195, −4.39969534827284180939397035395, −3.72112710478033321076898693243, −2.71028386702752719436175843662, −1.91127705649358966812998929856, −1.09648922269214026256749235675, 1.09648922269214026256749235675, 1.91127705649358966812998929856, 2.71028386702752719436175843662, 3.72112710478033321076898693243, 4.39969534827284180939397035395, 5.10657151535759503789418970195, 5.79356113804937894951944374718, 6.20371276418833703005575992534, 7.31371840307810698312651258094, 8.103916368188968150369224845949

Graph of the $Z$-function along the critical line