gp: [N,k,chi] = [6897,2,Mod(1,6897)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("6897.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6897, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [24,1,24,37,9,1,3,0,24,-1,0,37,3]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(3\)
\( -1 \)
\(11\)
\( -1 \)
\(19\)
\( -1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6897))\):
\( T_{2}^{24} - T_{2}^{23} - 42 T_{2}^{22} + 41 T_{2}^{21} + 766 T_{2}^{20} - 730 T_{2}^{19} - 7958 T_{2}^{18} + \cdots - 880 \)
T2^24 - T2^23 - 42*T2^22 + 41*T2^21 + 766*T2^20 - 730*T2^19 - 7958*T2^18 + 7391*T2^17 + 51941*T2^16 - 46761*T2^15 - 221698*T2^14 + 191153*T2^13 + 625319*T2^12 - 504274*T2^11 - 1154228*T2^10 + 833567*T2^9 + 1355868*T2^8 - 814322*T2^7 - 958690*T2^6 + 429960*T2^5 + 353633*T2^4 - 108736*T2^3 - 42064*T2^2 + 14760*T2 - 880
\( T_{5}^{24} - 9 T_{5}^{23} - 45 T_{5}^{22} + 607 T_{5}^{21} + 324 T_{5}^{20} - 16940 T_{5}^{19} + \cdots - 5403584 \)
T5^24 - 9*T5^23 - 45*T5^22 + 607*T5^21 + 324*T5^20 - 16940*T5^19 + 17183*T5^18 + 253054*T5^17 - 476412*T5^16 - 2179098*T5^15 + 5595708*T5^14 + 10764035*T5^13 - 36207442*T5^12 - 27672739*T5^11 + 135343491*T5^10 + 22395999*T5^9 - 287360757*T5^8 + 43770771*T5^7 + 326019701*T5^6 - 95819674*T5^5 - 182124249*T5^4 + 53128212*T5^3 + 49165416*T5^2 - 8939328*T5 - 5403584
\( T_{7}^{24} - 3 T_{7}^{23} - 109 T_{7}^{22} + 324 T_{7}^{21} + 5070 T_{7}^{20} - 14912 T_{7}^{19} + \cdots - 312840000 \)
T7^24 - 3*T7^23 - 109*T7^22 + 324*T7^21 + 5070*T7^20 - 14912*T7^19 - 132148*T7^18 + 383927*T7^17 + 2133438*T7^16 - 6112812*T7^15 - 22282546*T7^14 + 62920843*T7^13 + 152754994*T7^12 - 425684489*T7^11 - 682424190*T7^10 + 1887129897*T7^9 + 1926273956*T7^8 - 5357339442*T7^7 - 3206314577*T7^6 + 9241182176*T7^5 + 2678100311*T7^4 - 8671928380*T7^3 - 579689600*T7^2 + 3341988000*T7 - 312840000
\( T_{13}^{24} - 3 T_{13}^{23} - 190 T_{13}^{22} + 394 T_{13}^{21} + 15581 T_{13}^{20} - 17309 T_{13}^{19} + \cdots + 747556864 \)
T13^24 - 3*T13^23 - 190*T13^22 + 394*T13^21 + 15581*T13^20 - 17309*T13^19 - 713355*T13^18 + 116999*T13^17 + 19586282*T13^16 + 14326285*T13^15 - 319644765*T13^14 - 505274444*T13^13 + 2826700057*T13^12 + 7065040124*T13^11 - 9832406172*T13^10 - 42574858568*T13^9 - 10969092912*T13^8 + 84894732064*T13^7 + 79773632256*T13^6 - 39387611392*T13^5 - 80354010368*T13^4 - 23529582080*T13^3 + 10192720896*T13^2 + 6048634880*T13 + 747556864