Newspace parameters
| Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 627.j (of order \(5\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.00662020673\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(12\) over \(\Q(\zeta_{5})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 58.1 | −2.11187 | + | 1.53436i | 0.309017 | + | 0.951057i | 1.48769 | − | 4.57863i | 3.35778 | + | 2.43957i | −2.11187 | − | 1.53436i | −0.926090 | + | 2.85021i | 2.27016 | + | 6.98682i | −0.809017 | + | 0.587785i | −10.8344 | ||
| 58.2 | −2.06226 | + | 1.49832i | 0.309017 | + | 0.951057i | 1.38992 | − | 4.27772i | −0.615292 | − | 0.447036i | −2.06226 | − | 1.49832i | 0.660018 | − | 2.03133i | 1.96760 | + | 6.05565i | −0.809017 | + | 0.587785i | 1.93869 | ||
| 58.3 | −1.72493 | + | 1.25324i | 0.309017 | + | 0.951057i | 0.786754 | − | 2.42138i | −3.42790 | − | 2.49052i | −1.72493 | − | 1.25324i | −0.479654 | + | 1.47622i | 0.359733 | + | 1.10714i | −0.809017 | + | 0.587785i | 9.03410 | ||
| 58.4 | −0.782102 | + | 0.568230i | 0.309017 | + | 0.951057i | −0.329236 | + | 1.01328i | −0.534189 | − | 0.388111i | −0.782102 | − | 0.568230i | −1.56670 | + | 4.82180i | −0.915756 | − | 2.81841i | −0.809017 | + | 0.587785i | 0.638327 | ||
| 58.5 | −0.588622 | + | 0.427659i | 0.309017 | + | 0.951057i | −0.454450 | + | 1.39865i | −1.02019 | − | 0.741209i | −0.588622 | − | 0.427659i | 1.29179 | − | 3.97571i | −0.780315 | − | 2.40156i | −0.809017 | + | 0.587785i | 0.917489 | ||
| 58.6 | 0.0657473 | − | 0.0477682i | 0.309017 | + | 0.951057i | −0.615993 | + | 1.89583i | 2.17188 | + | 1.57796i | 0.0657473 | + | 0.0477682i | −0.568000 | + | 1.74812i | 0.100287 | + | 0.308652i | −0.809017 | + | 0.587785i | 0.218171 | ||
| 58.7 | 0.265896 | − | 0.193185i | 0.309017 | + | 0.951057i | −0.584654 | + | 1.79938i | −2.23293 | − | 1.62232i | 0.265896 | + | 0.193185i | 0.858966 | − | 2.64363i | 0.395282 | + | 1.21655i | −0.809017 | + | 0.587785i | −0.907136 | ||
| 58.8 | 1.19604 | − | 0.868977i | 0.309017 | + | 0.951057i | 0.0573668 | − | 0.176557i | −2.18819 | − | 1.58981i | 1.19604 | + | 0.868977i | −0.569713 | + | 1.75340i | 0.828886 | + | 2.55105i | −0.809017 | + | 0.587785i | −3.99868 | ||
| 58.9 | 1.24506 | − | 0.904586i | 0.309017 | + | 0.951057i | 0.113854 | − | 0.350407i | 2.86588 | + | 2.08219i | 1.24506 | + | 0.904586i | 1.51688 | − | 4.66849i | 0.775919 | + | 2.38803i | −0.809017 | + | 0.587785i | 5.45170 | ||
| 58.10 | 1.65003 | − | 1.19882i | 0.309017 | + | 0.951057i | 0.667400 | − | 2.05405i | 0.548371 | + | 0.398415i | 1.65003 | + | 1.19882i | −0.906984 | + | 2.79141i | −0.100685 | − | 0.309877i | −0.809017 | + | 0.587785i | 1.38245 | ||
| 58.11 | 1.96889 | − | 1.43048i | 0.309017 | + | 0.951057i | 1.21222 | − | 3.73082i | −3.27684 | − | 2.38076i | 1.96889 | + | 1.43048i | −0.0301523 | + | 0.0927992i | −1.44606 | − | 4.45051i | −0.809017 | + | 0.587785i | −9.85739 | ||
| 58.12 | 2.18714 | − | 1.58905i | 0.309017 | + | 0.951057i | 1.64046 | − | 5.04881i | 1.61555 | + | 1.17377i | 2.18714 | + | 1.58905i | 0.601600 | − | 1.85153i | −2.76407 | − | 8.50693i | −0.809017 | + | 0.587785i | 5.39861 | ||
| 115.1 | −0.851316 | − | 2.62008i | −0.809017 | − | 0.587785i | −4.52205 | + | 3.28546i | 0.837122 | − | 2.57640i | −0.851316 | + | 2.62008i | −3.77984 | + | 2.74621i | 8.00032 | + | 5.81257i | 0.309017 | + | 0.951057i | −7.46302 | ||
| 115.2 | −0.826496 | − | 2.54369i | −0.809017 | − | 0.587785i | −4.16924 | + | 3.02913i | −0.160039 | + | 0.492550i | −0.826496 | + | 2.54369i | 3.38338 | − | 2.45817i | 6.82344 | + | 4.95752i | 0.309017 | + | 0.951057i | 1.38517 | ||
| 115.3 | −0.500247 | − | 1.53960i | −0.809017 | − | 0.587785i | −0.502094 | + | 0.364792i | −1.05148 | + | 3.23611i | −0.500247 | + | 1.53960i | 3.47743 | − | 2.52650i | −1.80652 | − | 1.31251i | 0.309017 | + | 0.951057i | 5.50832 | ||
| 115.4 | −0.471765 | − | 1.45194i | −0.809017 | − | 0.587785i | −0.267543 | + | 0.194382i | 1.03061 | − | 3.17190i | −0.471765 | + | 1.45194i | 0.872292 | − | 0.633757i | −2.06174 | − | 1.49795i | 0.309017 | + | 0.951057i | −5.09162 | ||
| 115.5 | −0.393256 | − | 1.21032i | −0.809017 | − | 0.587785i | 0.307812 | − | 0.223639i | −0.120480 | + | 0.370799i | −0.393256 | + | 1.21032i | −2.45110 | + | 1.78083i | −2.45084 | − | 1.78064i | 0.309017 | + | 0.951057i | 0.496164 | ||
| 115.6 | −0.0802465 | − | 0.246973i | −0.809017 | − | 0.587785i | 1.56348 | − | 1.13593i | −0.402758 | + | 1.23956i | −0.0802465 | + | 0.246973i | 1.27421 | − | 0.925771i | −0.826185 | − | 0.600259i | 0.309017 | + | 0.951057i | 0.338459 | ||
| 115.7 | 0.243519 | + | 0.749473i | −0.809017 | − | 0.587785i | 1.11563 | − | 0.810549i | 1.25975 | − | 3.87712i | 0.243519 | − | 0.749473i | 2.54451 | − | 1.84870i | 2.15424 | + | 1.56515i | 0.309017 | + | 0.951057i | 3.21257 | ||
| 115.8 | 0.285641 | + | 0.879113i | −0.809017 | − | 0.587785i | 0.926786 | − | 0.673349i | 0.275964 | − | 0.849330i | 0.285641 | − | 0.879113i | −1.05275 | + | 0.764867i | 2.35231 | + | 1.70906i | 0.309017 | + | 0.951057i | 0.825483 | ||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.c | even | 5 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 627.2.j.d | ✓ | 48 |
| 11.c | even | 5 | 1 | inner | 627.2.j.d | ✓ | 48 |
| 11.c | even | 5 | 1 | 6897.2.a.bp | 24 | ||
| 11.d | odd | 10 | 1 | 6897.2.a.bq | 24 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 627.2.j.d | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
| 627.2.j.d | ✓ | 48 | 11.c | even | 5 | 1 | inner |
| 6897.2.a.bp | 24 | 11.c | even | 5 | 1 | ||
| 6897.2.a.bq | 24 | 11.d | odd | 10 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{48} - 3 T_{2}^{47} + 27 T_{2}^{46} - 71 T_{2}^{45} + 409 T_{2}^{44} - 984 T_{2}^{43} + \cdots + 774400 \)
acting on \(S_{2}^{\mathrm{new}}(627, [\chi])\).