Properties

Label 2-6897-1.1-c1-0-262
Degree $2$
Conductor $6897$
Sign $1$
Analytic cond. $55.0728$
Root an. cond. $7.42110$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.67·2-s + 3-s + 5.15·4-s − 0.517·5-s + 2.67·6-s + 4.18·7-s + 8.43·8-s + 9-s − 1.38·10-s + 5.15·12-s − 1.18·13-s + 11.1·14-s − 0.517·15-s + 12.2·16-s − 5.98·17-s + 2.67·18-s + 19-s − 2.66·20-s + 4.18·21-s − 7.08·23-s + 8.43·24-s − 4.73·25-s − 3.18·26-s + 27-s + 21.5·28-s + 9.43·29-s − 1.38·30-s + ⋯
L(s)  = 1  + 1.89·2-s + 0.577·3-s + 2.57·4-s − 0.231·5-s + 1.09·6-s + 1.58·7-s + 2.98·8-s + 0.333·9-s − 0.438·10-s + 1.48·12-s − 0.329·13-s + 2.98·14-s − 0.133·15-s + 3.06·16-s − 1.45·17-s + 0.630·18-s + 0.229·19-s − 0.596·20-s + 0.912·21-s − 1.47·23-s + 1.72·24-s − 0.946·25-s − 0.623·26-s + 0.192·27-s + 4.07·28-s + 1.75·29-s − 0.252·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6897\)    =    \(3 \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(55.0728\)
Root analytic conductor: \(7.42110\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6897,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(10.34145895\)
\(L(\frac12)\) \(\approx\) \(10.34145895\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 2.67T + 2T^{2} \)
5 \( 1 + 0.517T + 5T^{2} \)
7 \( 1 - 4.18T + 7T^{2} \)
13 \( 1 + 1.18T + 13T^{2} \)
17 \( 1 + 5.98T + 17T^{2} \)
23 \( 1 + 7.08T + 23T^{2} \)
29 \( 1 - 9.43T + 29T^{2} \)
31 \( 1 - 1.60T + 31T^{2} \)
37 \( 1 - 5.55T + 37T^{2} \)
41 \( 1 - 9.96T + 41T^{2} \)
43 \( 1 - 7.78T + 43T^{2} \)
47 \( 1 - 11.4T + 47T^{2} \)
53 \( 1 + 6.70T + 53T^{2} \)
59 \( 1 + 1.93T + 59T^{2} \)
61 \( 1 + 7.79T + 61T^{2} \)
67 \( 1 - 2.29T + 67T^{2} \)
71 \( 1 + 0.870T + 71T^{2} \)
73 \( 1 + 10.4T + 73T^{2} \)
79 \( 1 + 4.65T + 79T^{2} \)
83 \( 1 + 4.20T + 83T^{2} \)
89 \( 1 + 4.82T + 89T^{2} \)
97 \( 1 - 5.41T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74376854621051680689200203452, −7.26505524455818593656559379235, −6.26640733791511762048531389492, −5.77729950805090869325748274874, −4.76997896486704103750505964253, −4.33979569449707953800362612326, −4.00481021962613215573252102923, −2.64926741613493434832327778252, −2.34297163451315784393369096676, −1.37620816936933808554376920603, 1.37620816936933808554376920603, 2.34297163451315784393369096676, 2.64926741613493434832327778252, 4.00481021962613215573252102923, 4.33979569449707953800362612326, 4.76997896486704103750505964253, 5.77729950805090869325748274874, 6.26640733791511762048531389492, 7.26505524455818593656559379235, 7.74376854621051680689200203452

Graph of the $Z$-function along the critical line