Properties

Label 6897.2.a.bl
Level $6897$
Weight $2$
Character orbit 6897.a
Self dual yes
Analytic conductor $55.073$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6897,2,Mod(1,6897)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6897.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6897, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6897 = 3 \cdot 11^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6897.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-3,-16,13,8,3,2,-6,16,-5,0,-13,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(55.0728222741\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} - 18 x^{14} + 57 x^{13} + 121 x^{12} - 417 x^{11} - 374 x^{10} + 1494 x^{9} + 490 x^{8} + \cdots - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 627)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - q^{3} + (\beta_{2} + 1) q^{4} - \beta_{9} q^{5} + \beta_1 q^{6} + \beta_{12} q^{7} + (\beta_{7} - \beta_{6} + \beta_{3} + \cdots - 1) q^{8} + q^{9} + ( - \beta_{13} + \beta_{11} + \beta_{10} + \cdots + 1) q^{10}+ \cdots + ( - \beta_{15} + \beta_{14} + \beta_{11} + \cdots + 8) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} - 16 q^{3} + 13 q^{4} + 8 q^{5} + 3 q^{6} + 2 q^{7} - 6 q^{8} + 16 q^{9} - 5 q^{10} - 13 q^{12} - 5 q^{13} + 4 q^{14} - 8 q^{15} + 3 q^{16} - 4 q^{17} - 3 q^{18} - 16 q^{19} + 10 q^{20} - 2 q^{21}+ \cdots + 41 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 3 x^{15} - 18 x^{14} + 57 x^{13} + 121 x^{12} - 417 x^{11} - 374 x^{10} + 1494 x^{9} + 490 x^{8} + \cdots - 5 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 49 \nu^{15} + 4513 \nu^{14} - 16093 \nu^{13} - 68058 \nu^{12} + 266742 \nu^{11} + 330931 \nu^{10} + \cdots + 10020 ) / 64790 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3387 \nu^{15} - 41222 \nu^{14} - 22990 \nu^{13} + 813789 \nu^{12} - 238320 \nu^{11} + \cdots + 1227455 ) / 323950 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 676 \nu^{15} - 1339 \nu^{14} - 11913 \nu^{13} + 16796 \nu^{12} + 85957 \nu^{11} - 38163 \nu^{10} + \cdots - 29690 ) / 32395 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 1955 \nu^{15} + 10476 \nu^{14} + 15466 \nu^{13} - 166193 \nu^{12} + 92316 \nu^{11} + 899857 \nu^{10} + \cdots + 8135 ) / 64790 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 2004 \nu^{15} + 5963 \nu^{14} + 31559 \nu^{13} - 98135 \nu^{12} - 174426 \nu^{11} + 568926 \nu^{10} + \cdots + 62905 ) / 64790 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 2017 \nu^{15} - 4369 \nu^{14} - 41382 \nu^{13} + 85500 \nu^{12} + 332198 \nu^{11} - 644293 \nu^{10} + \cdots + 164535 ) / 32395 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 10271 \nu^{15} - 22961 \nu^{14} - 239305 \nu^{13} + 502892 \nu^{12} + 2202405 \nu^{11} + \cdots + 660390 ) / 161975 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 35281 \nu^{15} + 106141 \nu^{14} + 632225 \nu^{13} - 2041322 \nu^{12} - 4211260 \nu^{11} + \cdots - 862540 ) / 323950 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 47483 \nu^{15} + 148003 \nu^{14} + 759715 \nu^{13} - 2615616 \nu^{12} - 4190540 \nu^{11} + \cdots - 1476170 ) / 323950 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 30346 \nu^{15} - 93251 \nu^{14} - 533995 \nu^{13} + 1731812 \nu^{12} + 3521690 \nu^{11} + \cdots + 917790 ) / 161975 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 65381 \nu^{15} + 203141 \nu^{14} + 1123375 \nu^{13} - 3736122 \nu^{12} - 7063910 \nu^{11} + \cdots - 955190 ) / 323950 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 66171 \nu^{15} + 198476 \nu^{14} + 1239370 \nu^{13} - 3867887 \nu^{12} - 8846890 \nu^{11} + \cdots - 1781165 ) / 323950 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 93011 \nu^{15} + 279051 \nu^{14} + 1691855 \nu^{13} - 5239972 \nu^{12} - 11686980 \nu^{11} + \cdots - 1891440 ) / 323950 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{7} + \beta_{6} - \beta_{3} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{9} + \beta_{8} + \beta_{7} + \beta_{5} + \beta_{4} + \beta_{3} + 6\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{15} + \beta_{14} + \beta_{13} - \beta_{10} - 9\beta_{7} + 8\beta_{6} - \beta_{5} - 8\beta_{3} + 27\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - \beta_{14} + \beta_{12} + \beta_{11} + \beta_{10} - 11 \beta_{9} + 9 \beta_{8} + 10 \beta_{7} + \cdots + 64 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 13 \beta_{15} + 11 \beta_{14} + 12 \beta_{13} - 2 \beta_{12} - \beta_{11} - 11 \beta_{10} - 2 \beta_{9} + \cdots + 50 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( \beta_{15} - 13 \beta_{14} + 13 \beta_{12} + 12 \beta_{11} + 14 \beta_{10} - 89 \beta_{9} + 66 \beta_{8} + \cdots + 341 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 117 \beta_{15} + 91 \beta_{14} + 102 \beta_{13} - 27 \beta_{12} - 13 \beta_{11} - 89 \beta_{10} + \cdots + 289 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 16 \beta_{15} - 119 \beta_{14} - 2 \beta_{13} + 116 \beta_{12} + 105 \beta_{11} + 132 \beta_{10} + \cdots + 1915 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 908 \beta_{15} + 678 \beta_{14} + 762 \beta_{13} - 248 \beta_{12} - 116 \beta_{11} - 648 \beta_{10} + \cdots + 1617 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 175 \beta_{15} - 949 \beta_{14} - 38 \beta_{13} + 896 \beta_{12} + 813 \beta_{11} + 1060 \beta_{10} + \cdots + 11143 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 6542 \beta_{15} + 4799 \beta_{14} + 5356 \beta_{13} - 1956 \beta_{12} - 897 \beta_{11} - 4509 \beta_{10} + \cdots + 8877 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 1634 \beta_{15} - 7067 \beta_{14} - 465 \beta_{13} + 6465 \beta_{12} + 5910 \beta_{11} + 7854 \beta_{10} + \cdots + 66437 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 45227 \beta_{15} + 33007 \beta_{14} + 36463 \beta_{13} - 14319 \beta_{12} - 6511 \beta_{11} + \cdots + 47915 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.50967
2.41640
2.33517
1.94310
1.58029
1.24215
0.763195
0.308708
0.137096
−0.210794
−0.673455
−1.41865
−1.46141
−1.83257
−2.06177
−2.57713
−2.50967 −1.00000 4.29846 4.26849 2.50967 2.85546 −5.76838 1.00000 −10.7125
1.2 −2.41640 −1.00000 3.83898 −2.71140 2.41640 −1.98097 −4.44371 1.00000 6.55182
1.3 −2.33517 −1.00000 3.45302 2.73936 2.33517 −3.55214 −3.39305 1.00000 −6.39688
1.4 −1.94310 −1.00000 1.77564 −3.62893 1.94310 −1.83871 0.435950 1.00000 7.05138
1.5 −1.58029 −1.00000 0.497326 −0.196982 1.58029 −1.13950 2.37467 1.00000 0.311290
1.6 −1.24215 −1.00000 −0.457075 2.60359 1.24215 3.18969 3.05204 1.00000 −3.23404
1.7 −0.763195 −1.00000 −1.41753 1.56297 0.763195 2.33093 2.60825 1.00000 −1.19285
1.8 −0.308708 −1.00000 −1.90470 4.13307 0.308708 −1.74454 1.20541 1.00000 −1.27591
1.9 −0.137096 −1.00000 −1.98120 −1.00936 0.137096 3.80132 0.545809 1.00000 0.138380
1.10 0.210794 −1.00000 −1.95557 −2.77906 −0.210794 0.799054 −0.833809 1.00000 −0.585808
1.11 0.673455 −1.00000 −1.54646 1.68989 −0.673455 −1.64609 −2.38838 1.00000 1.13806
1.12 1.41865 −1.00000 0.0125585 −1.57412 −1.41865 2.36838 −2.81948 1.00000 −2.23312
1.13 1.46141 −1.00000 0.135729 2.17265 −1.46141 4.77062 −2.72447 1.00000 3.17514
1.14 1.83257 −1.00000 1.35830 0.910966 −1.83257 −5.13177 −1.17596 1.00000 1.66941
1.15 2.06177 −1.00000 2.25090 −2.06163 −2.06177 −2.39666 0.517301 1.00000 −4.25062
1.16 2.57713 −1.00000 4.64162 1.88049 −2.57713 1.31492 6.80781 1.00000 4.84626
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.16
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(11\) \( -1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6897.2.a.bl 16
11.b odd 2 1 6897.2.a.bm 16
11.d odd 10 2 627.2.j.b 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
627.2.j.b 32 11.d odd 10 2
6897.2.a.bl 16 1.a even 1 1 trivial
6897.2.a.bm 16 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6897))\):

\( T_{2}^{16} + 3 T_{2}^{15} - 18 T_{2}^{14} - 57 T_{2}^{13} + 121 T_{2}^{12} + 417 T_{2}^{11} - 374 T_{2}^{10} + \cdots - 5 \) Copy content Toggle raw display
\( T_{5}^{16} - 8 T_{5}^{15} - 18 T_{5}^{14} + 278 T_{5}^{13} - 158 T_{5}^{12} - 3571 T_{5}^{11} + \cdots - 21824 \) Copy content Toggle raw display
\( T_{7}^{16} - 2 T_{7}^{15} - 62 T_{7}^{14} + 117 T_{7}^{13} + 1467 T_{7}^{12} - 2395 T_{7}^{11} + \cdots + 498880 \) Copy content Toggle raw display
\( T_{13}^{16} + 5 T_{13}^{15} - 90 T_{13}^{14} - 446 T_{13}^{13} + 3157 T_{13}^{12} + 15821 T_{13}^{11} + \cdots - 13718000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} + 3 T^{15} + \cdots - 5 \) Copy content Toggle raw display
$3$ \( (T + 1)^{16} \) Copy content Toggle raw display
$5$ \( T^{16} - 8 T^{15} + \cdots - 21824 \) Copy content Toggle raw display
$7$ \( T^{16} - 2 T^{15} + \cdots + 498880 \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( T^{16} + 5 T^{15} + \cdots - 13718000 \) Copy content Toggle raw display
$17$ \( T^{16} + 4 T^{15} + \cdots - 136720 \) Copy content Toggle raw display
$19$ \( (T + 1)^{16} \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 104808521 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots - 482548291 \) Copy content Toggle raw display
$31$ \( T^{16} - 19 T^{15} + \cdots - 92549 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 3997251920 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots - 5575549905 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 20863912000 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 22306902145 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 229797265351 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots - 18177777920 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots - 63134655305 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 4161239681555 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 12\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 4053802819 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 5142126873025 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 364089172775 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots - 21342579920 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots - 1227850230896 \) Copy content Toggle raw display
show more
show less