Newspace parameters
| Level: | \( N \) | \(=\) | \( 627 = 3 \cdot 11 \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 627.j (of order \(5\), degree \(4\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.00662020673\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Relative dimension: | \(8\) over \(\Q(\zeta_{5})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 58.1 | −1.95491 | + | 1.42032i | −0.309017 | − | 0.951057i | 1.18631 | − | 3.65109i | 2.19357 | + | 1.59372i | 1.95491 | + | 1.42032i | 0.612153 | − | 1.88401i | 1.37318 | + | 4.22622i | −0.809017 | + | 0.587785i | −6.55182 | ||
| 58.2 | −1.88919 | + | 1.37258i | −0.309017 | − | 0.951057i | 1.06704 | − | 3.28402i | −2.21619 | − | 1.61016i | 1.88919 | + | 1.37258i | 1.09767 | − | 3.37829i | 1.04851 | + | 3.22699i | −0.809017 | + | 0.587785i | 6.39688 | ||
| 58.3 | −1.00492 | + | 0.730115i | −0.309017 | − | 0.951057i | −0.141244 | + | 0.434704i | −2.10635 | − | 1.53035i | 1.00492 | + | 0.730115i | −0.985669 | + | 3.03358i | −0.943134 | − | 2.90267i | −0.809017 | + | 0.587785i | 3.23404 | ||
| 58.4 | −0.249750 | + | 0.181454i | −0.309017 | − | 0.951057i | −0.588585 | + | 1.81148i | −3.34373 | − | 2.42936i | 0.249750 | + | 0.181454i | 0.539094 | − | 1.65916i | −0.372492 | − | 1.14641i | −0.809017 | + | 0.587785i | 1.27591 | ||
| 58.5 | −0.110913 | + | 0.0805833i | −0.309017 | − | 0.951057i | −0.612226 | + | 1.88424i | 0.816590 | + | 0.593287i | 0.110913 | + | 0.0805833i | −1.17467 | + | 3.61527i | −0.168664 | − | 0.519095i | −0.809017 | + | 0.587785i | −0.138380 | ||
| 58.6 | 1.14771 | − | 0.833860i | −0.309017 | − | 0.951057i | 0.00388078 | − | 0.0119438i | 1.27349 | + | 0.925244i | −1.14771 | − | 0.833860i | −0.731871 | + | 2.25247i | 0.871266 | + | 2.68148i | −0.809017 | + | 0.587785i | 2.23312 | ||
| 58.7 | 1.66801 | − | 1.21188i | −0.309017 | − | 0.951057i | 0.695567 | − | 2.14073i | 1.66790 | + | 1.21180i | −1.66801 | − | 1.21188i | 0.740608 | − | 2.27936i | −0.159855 | − | 0.491983i | −0.809017 | + | 0.587785i | 4.25062 | ||
| 58.8 | 2.08495 | − | 1.51480i | −0.309017 | − | 0.951057i | 1.43434 | − | 4.41444i | −1.52134 | − | 1.10532i | −2.08495 | − | 1.51480i | −0.406332 | + | 1.25056i | −2.10373 | − | 6.47461i | −0.809017 | + | 0.587785i | −4.84626 | ||
| 115.1 | −0.566294 | − | 1.74287i | 0.809017 | + | 0.587785i | −1.09889 | + | 0.798389i | 0.281504 | − | 0.866380i | 0.566294 | − | 1.74287i | −4.15169 | + | 3.01638i | −0.951370 | − | 0.691211i | 0.309017 | + | 0.951057i | −1.66941 | ||
| 115.2 | −0.451602 | − | 1.38989i | 0.809017 | + | 0.587785i | −0.109807 | + | 0.0797795i | 0.671386 | − | 2.06631i | 0.451602 | − | 1.38989i | 3.85952 | − | 2.80410i | −2.20414 | − | 1.60140i | 0.309017 | + | 0.951057i | −3.17514 | ||
| 115.3 | −0.208109 | − | 0.640494i | 0.809017 | + | 0.587785i | 1.25111 | − | 0.908986i | 0.522205 | − | 1.60718i | 0.208109 | − | 0.640494i | −1.33171 | + | 0.967547i | −1.93224 | − | 1.40385i | 0.309017 | + | 0.951057i | −1.13806 | ||
| 115.4 | −0.0651389 | − | 0.200477i | 0.809017 | + | 0.587785i | 1.58209 | − | 1.14945i | −0.858776 | + | 2.64304i | 0.0651389 | − | 0.200477i | 0.646449 | − | 0.469672i | −0.674565 | − | 0.490100i | 0.309017 | + | 0.951057i | 0.585808 | ||
| 115.5 | 0.235840 | + | 0.725842i | 0.809017 | + | 0.587785i | 1.14681 | − | 0.833205i | 0.482985 | − | 1.48647i | −0.235840 | + | 0.725842i | 1.88576 | − | 1.37009i | 2.11011 | + | 1.53309i | 0.309017 | + | 0.951057i | 1.19285 | ||
| 115.6 | 0.488337 | + | 1.50295i | 0.809017 | + | 0.587785i | −0.402345 | + | 0.292321i | −0.0608709 | + | 0.187341i | −0.488337 | + | 1.50295i | −0.921878 | + | 0.669784i | 1.92114 | + | 1.39579i | 0.309017 | + | 0.951057i | −0.311290 | ||
| 115.7 | 0.600451 | + | 1.84800i | 0.809017 | + | 0.587785i | −1.43652 | + | 1.04370i | −1.12140 | + | 3.45132i | −0.600451 | + | 1.84800i | −1.48755 | + | 1.08077i | 0.352691 | + | 0.256245i | 0.309017 | + | 0.951057i | −7.05138 | ||
| 115.8 | 0.775532 | + | 2.38684i | 0.809017 | + | 0.587785i | −3.47753 | + | 2.52657i | 1.31904 | − | 4.05958i | −0.775532 | + | 2.38684i | 2.31012 | − | 1.67840i | −4.66672 | − | 3.39057i | 0.309017 | + | 0.951057i | 10.7125 | ||
| 229.1 | −0.566294 | + | 1.74287i | 0.809017 | − | 0.587785i | −1.09889 | − | 0.798389i | 0.281504 | + | 0.866380i | 0.566294 | + | 1.74287i | −4.15169 | − | 3.01638i | −0.951370 | + | 0.691211i | 0.309017 | − | 0.951057i | −1.66941 | ||
| 229.2 | −0.451602 | + | 1.38989i | 0.809017 | − | 0.587785i | −0.109807 | − | 0.0797795i | 0.671386 | + | 2.06631i | 0.451602 | + | 1.38989i | 3.85952 | + | 2.80410i | −2.20414 | + | 1.60140i | 0.309017 | − | 0.951057i | −3.17514 | ||
| 229.3 | −0.208109 | + | 0.640494i | 0.809017 | − | 0.587785i | 1.25111 | + | 0.908986i | 0.522205 | + | 1.60718i | 0.208109 | + | 0.640494i | −1.33171 | − | 0.967547i | −1.93224 | + | 1.40385i | 0.309017 | − | 0.951057i | −1.13806 | ||
| 229.4 | −0.0651389 | + | 0.200477i | 0.809017 | − | 0.587785i | 1.58209 | + | 1.14945i | −0.858776 | − | 2.64304i | 0.0651389 | + | 0.200477i | 0.646449 | + | 0.469672i | −0.674565 | + | 0.490100i | 0.309017 | − | 0.951057i | 0.585808 | ||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.c | even | 5 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 627.2.j.b | ✓ | 32 |
| 11.c | even | 5 | 1 | inner | 627.2.j.b | ✓ | 32 |
| 11.c | even | 5 | 1 | 6897.2.a.bm | 16 | ||
| 11.d | odd | 10 | 1 | 6897.2.a.bl | 16 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 627.2.j.b | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
| 627.2.j.b | ✓ | 32 | 11.c | even | 5 | 1 | inner |
| 6897.2.a.bl | 16 | 11.d | odd | 10 | 1 | ||
| 6897.2.a.bm | 16 | 11.c | even | 5 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{32} - T_{2}^{31} + 8 T_{2}^{30} + 2 T_{2}^{29} + 64 T_{2}^{28} - 37 T_{2}^{27} + 597 T_{2}^{26} + \cdots + 25 \)
acting on \(S_{2}^{\mathrm{new}}(627, [\chi])\).