Properties

Label 2-6897-1.1-c1-0-113
Degree $2$
Conductor $6897$
Sign $1$
Analytic cond. $55.0728$
Root an. cond. $7.42110$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.24·2-s − 3-s − 0.457·4-s + 2.60·5-s + 1.24·6-s + 3.18·7-s + 3.05·8-s + 9-s − 3.23·10-s + 0.457·12-s + 4.38·13-s − 3.96·14-s − 2.60·15-s − 2.87·16-s − 2.32·17-s − 1.24·18-s − 19-s − 1.19·20-s − 3.18·21-s + 5.10·23-s − 3.05·24-s + 1.77·25-s − 5.44·26-s − 27-s − 1.45·28-s − 4.68·29-s + 3.23·30-s + ⋯
L(s)  = 1  − 0.878·2-s − 0.577·3-s − 0.228·4-s + 1.16·5-s + 0.507·6-s + 1.20·7-s + 1.07·8-s + 0.333·9-s − 1.02·10-s + 0.131·12-s + 1.21·13-s − 1.05·14-s − 0.672·15-s − 0.719·16-s − 0.564·17-s − 0.292·18-s − 0.229·19-s − 0.266·20-s − 0.696·21-s + 1.06·23-s − 0.622·24-s + 0.355·25-s − 1.06·26-s − 0.192·27-s − 0.275·28-s − 0.870·29-s + 0.590·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6897 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6897\)    =    \(3 \cdot 11^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(55.0728\)
Root analytic conductor: \(7.42110\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6897,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.495145251\)
\(L(\frac12)\) \(\approx\) \(1.495145251\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
11 \( 1 \)
19 \( 1 + T \)
good2 \( 1 + 1.24T + 2T^{2} \)
5 \( 1 - 2.60T + 5T^{2} \)
7 \( 1 - 3.18T + 7T^{2} \)
13 \( 1 - 4.38T + 13T^{2} \)
17 \( 1 + 2.32T + 17T^{2} \)
23 \( 1 - 5.10T + 23T^{2} \)
29 \( 1 + 4.68T + 29T^{2} \)
31 \( 1 + 5.72T + 31T^{2} \)
37 \( 1 - 1.86T + 37T^{2} \)
41 \( 1 - 10.1T + 41T^{2} \)
43 \( 1 - 0.884T + 43T^{2} \)
47 \( 1 - 7.21T + 47T^{2} \)
53 \( 1 + 13.9T + 53T^{2} \)
59 \( 1 + 0.502T + 59T^{2} \)
61 \( 1 - 7.31T + 61T^{2} \)
67 \( 1 - 5.78T + 67T^{2} \)
71 \( 1 - 9.87T + 71T^{2} \)
73 \( 1 + 4.11T + 73T^{2} \)
79 \( 1 + 5.49T + 79T^{2} \)
83 \( 1 - 8.18T + 83T^{2} \)
89 \( 1 - 16.7T + 89T^{2} \)
97 \( 1 - 8.91T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.998460240618112853983682811288, −7.45227012786514249391977166606, −6.54851446502266425138170618463, −5.82671844454170145253209740204, −5.20973212447626381979475774964, −4.55240486403264590211212627406, −3.73258312282949051328069021678, −2.20669705463134794795077275348, −1.58548964961317996553872403064, −0.809040933770763821414515387145, 0.809040933770763821414515387145, 1.58548964961317996553872403064, 2.20669705463134794795077275348, 3.73258312282949051328069021678, 4.55240486403264590211212627406, 5.20973212447626381979475774964, 5.82671844454170145253209740204, 6.54851446502266425138170618463, 7.45227012786514249391977166606, 7.998460240618112853983682811288

Graph of the $Z$-function along the critical line