Properties

Label 6800.2.a.bs.1.3
Level $6800$
Weight $2$
Character 6800.1
Self dual yes
Analytic conductor $54.298$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,0,0,4,0,8,0,2,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 680)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.29240\) of defining polynomial
Character \(\chi\) \(=\) 6800.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.29240 q^{3} -1.54751 q^{7} +7.83991 q^{9} +3.54751 q^{11} -2.25511 q^{13} +1.00000 q^{17} -4.83991 q^{19} -5.09501 q^{21} +1.54751 q^{23} +15.9349 q^{27} -2.83991 q^{29} +7.87720 q^{31} +11.6798 q^{33} +0.584803 q^{37} -7.42471 q^{39} +9.09501 q^{41} +2.00000 q^{43} -6.83991 q^{47} -4.60522 q^{49} +3.29240 q^{51} +12.9145 q^{53} -15.9349 q^{57} +13.3501 q^{59} +3.74489 q^{61} -12.1323 q^{63} -10.2646 q^{67} +5.09501 q^{69} +4.78219 q^{71} +6.83991 q^{73} -5.48979 q^{77} -2.64252 q^{79} +28.9444 q^{81} +2.51021 q^{83} -9.35012 q^{87} +18.0095 q^{89} +3.48979 q^{91} +25.9349 q^{93} -11.7449 q^{97} +27.8121 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 4 q^{7} + 8 q^{9} + 2 q^{11} - 5 q^{13} + 3 q^{17} + q^{19} + 2 q^{21} - 4 q^{23} + 15 q^{27} + 7 q^{29} + 3 q^{31} + 4 q^{33} - 12 q^{37} + 7 q^{39} + 10 q^{41} + 6 q^{43} - 5 q^{47} + 7 q^{49}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.29240 1.90087 0.950434 0.310925i \(-0.100639\pi\)
0.950434 + 0.310925i \(0.100639\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1.54751 −0.584903 −0.292451 0.956280i \(-0.594471\pi\)
−0.292451 + 0.956280i \(0.594471\pi\)
\(8\) 0 0
\(9\) 7.83991 2.61330
\(10\) 0 0
\(11\) 3.54751 1.06961 0.534807 0.844974i \(-0.320384\pi\)
0.534807 + 0.844974i \(0.320384\pi\)
\(12\) 0 0
\(13\) −2.25511 −0.625454 −0.312727 0.949843i \(-0.601242\pi\)
−0.312727 + 0.949843i \(0.601242\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −4.83991 −1.11035 −0.555176 0.831733i \(-0.687349\pi\)
−0.555176 + 0.831733i \(0.687349\pi\)
\(20\) 0 0
\(21\) −5.09501 −1.11182
\(22\) 0 0
\(23\) 1.54751 0.322677 0.161339 0.986899i \(-0.448419\pi\)
0.161339 + 0.986899i \(0.448419\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 15.9349 3.06668
\(28\) 0 0
\(29\) −2.83991 −0.527358 −0.263679 0.964611i \(-0.584936\pi\)
−0.263679 + 0.964611i \(0.584936\pi\)
\(30\) 0 0
\(31\) 7.87720 1.41479 0.707394 0.706820i \(-0.249871\pi\)
0.707394 + 0.706820i \(0.249871\pi\)
\(32\) 0 0
\(33\) 11.6798 2.03320
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.584803 0.0961410 0.0480705 0.998844i \(-0.484693\pi\)
0.0480705 + 0.998844i \(0.484693\pi\)
\(38\) 0 0
\(39\) −7.42471 −1.18891
\(40\) 0 0
\(41\) 9.09501 1.42040 0.710201 0.703999i \(-0.248604\pi\)
0.710201 + 0.703999i \(0.248604\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.83991 −0.997703 −0.498852 0.866687i \(-0.666245\pi\)
−0.498852 + 0.866687i \(0.666245\pi\)
\(48\) 0 0
\(49\) −4.60522 −0.657889
\(50\) 0 0
\(51\) 3.29240 0.461028
\(52\) 0 0
\(53\) 12.9145 1.77394 0.886972 0.461824i \(-0.152805\pi\)
0.886972 + 0.461824i \(0.152805\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −15.9349 −2.11063
\(58\) 0 0
\(59\) 13.3501 1.73804 0.869019 0.494779i \(-0.164751\pi\)
0.869019 + 0.494779i \(0.164751\pi\)
\(60\) 0 0
\(61\) 3.74489 0.479485 0.239742 0.970837i \(-0.422937\pi\)
0.239742 + 0.970837i \(0.422937\pi\)
\(62\) 0 0
\(63\) −12.1323 −1.52853
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −10.2646 −1.25402 −0.627011 0.779010i \(-0.715722\pi\)
−0.627011 + 0.779010i \(0.715722\pi\)
\(68\) 0 0
\(69\) 5.09501 0.613368
\(70\) 0 0
\(71\) 4.78219 0.567542 0.283771 0.958892i \(-0.408414\pi\)
0.283771 + 0.958892i \(0.408414\pi\)
\(72\) 0 0
\(73\) 6.83991 0.800551 0.400275 0.916395i \(-0.368914\pi\)
0.400275 + 0.916395i \(0.368914\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −5.48979 −0.625620
\(78\) 0 0
\(79\) −2.64252 −0.297307 −0.148653 0.988889i \(-0.547494\pi\)
−0.148653 + 0.988889i \(0.547494\pi\)
\(80\) 0 0
\(81\) 28.9444 3.21605
\(82\) 0 0
\(83\) 2.51021 0.275531 0.137766 0.990465i \(-0.456008\pi\)
0.137766 + 0.990465i \(0.456008\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −9.35012 −1.00244
\(88\) 0 0
\(89\) 18.0095 1.90900 0.954502 0.298203i \(-0.0963874\pi\)
0.954502 + 0.298203i \(0.0963874\pi\)
\(90\) 0 0
\(91\) 3.48979 0.365829
\(92\) 0 0
\(93\) 25.9349 2.68933
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −11.7449 −1.19251 −0.596257 0.802794i \(-0.703346\pi\)
−0.596257 + 0.802794i \(0.703346\pi\)
\(98\) 0 0
\(99\) 27.8121 2.79522
\(100\) 0 0
\(101\) −10.5848 −1.05323 −0.526614 0.850105i \(-0.676539\pi\)
−0.526614 + 0.850105i \(0.676539\pi\)
\(102\) 0 0
\(103\) −9.60522 −0.946431 −0.473215 0.880947i \(-0.656907\pi\)
−0.473215 + 0.880947i \(0.656907\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.2273 1.85878 0.929388 0.369105i \(-0.120336\pi\)
0.929388 + 0.369105i \(0.120336\pi\)
\(108\) 0 0
\(109\) 9.93492 0.951593 0.475796 0.879555i \(-0.342160\pi\)
0.475796 + 0.879555i \(0.342160\pi\)
\(110\) 0 0
\(111\) 1.92541 0.182752
\(112\) 0 0
\(113\) −12.0095 −1.12976 −0.564880 0.825173i \(-0.691078\pi\)
−0.564880 + 0.825173i \(0.691078\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −17.6798 −1.63450
\(118\) 0 0
\(119\) −1.54751 −0.141860
\(120\) 0 0
\(121\) 1.58480 0.144073
\(122\) 0 0
\(123\) 29.9444 2.70000
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 13.9349 1.23652 0.618262 0.785972i \(-0.287837\pi\)
0.618262 + 0.785972i \(0.287837\pi\)
\(128\) 0 0
\(129\) 6.58480 0.579760
\(130\) 0 0
\(131\) 17.2273 1.50516 0.752579 0.658502i \(-0.228810\pi\)
0.752579 + 0.658502i \(0.228810\pi\)
\(132\) 0 0
\(133\) 7.48979 0.649447
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.51021 0.727076 0.363538 0.931579i \(-0.381569\pi\)
0.363538 + 0.931579i \(0.381569\pi\)
\(138\) 0 0
\(139\) 0.452493 0.0383800 0.0191900 0.999816i \(-0.493891\pi\)
0.0191900 + 0.999816i \(0.493891\pi\)
\(140\) 0 0
\(141\) −22.5197 −1.89650
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −15.1622 −1.25056
\(148\) 0 0
\(149\) −21.8698 −1.79165 −0.895824 0.444410i \(-0.853413\pi\)
−0.895824 + 0.444410i \(0.853413\pi\)
\(150\) 0 0
\(151\) −10.5848 −0.861379 −0.430690 0.902500i \(-0.641730\pi\)
−0.430690 + 0.902500i \(0.641730\pi\)
\(152\) 0 0
\(153\) 7.83991 0.633819
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −11.1696 −0.891432 −0.445716 0.895175i \(-0.647051\pi\)
−0.445716 + 0.895175i \(0.647051\pi\)
\(158\) 0 0
\(159\) 42.5197 3.37203
\(160\) 0 0
\(161\) −2.39478 −0.188735
\(162\) 0 0
\(163\) −5.15273 −0.403593 −0.201796 0.979427i \(-0.564678\pi\)
−0.201796 + 0.979427i \(0.564678\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −23.6221 −1.82793 −0.913966 0.405790i \(-0.866997\pi\)
−0.913966 + 0.405790i \(0.866997\pi\)
\(168\) 0 0
\(169\) −7.91450 −0.608808
\(170\) 0 0
\(171\) −37.9444 −2.90168
\(172\) 0 0
\(173\) −19.2850 −1.46621 −0.733107 0.680113i \(-0.761931\pi\)
−0.733107 + 0.680113i \(0.761931\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 43.9540 3.30378
\(178\) 0 0
\(179\) 4.90499 0.366616 0.183308 0.983056i \(-0.441319\pi\)
0.183308 + 0.983056i \(0.441319\pi\)
\(180\) 0 0
\(181\) 18.2646 1.35760 0.678799 0.734324i \(-0.262501\pi\)
0.678799 + 0.734324i \(0.262501\pi\)
\(182\) 0 0
\(183\) 12.3297 0.911438
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.54751 0.259419
\(188\) 0 0
\(189\) −24.6594 −1.79371
\(190\) 0 0
\(191\) 25.1696 1.82121 0.910604 0.413279i \(-0.135617\pi\)
0.910604 + 0.413279i \(0.135617\pi\)
\(192\) 0 0
\(193\) −4.07459 −0.293296 −0.146648 0.989189i \(-0.546848\pi\)
−0.146648 + 0.989189i \(0.546848\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −21.7544 −1.54994 −0.774969 0.632000i \(-0.782234\pi\)
−0.774969 + 0.632000i \(0.782234\pi\)
\(198\) 0 0
\(199\) −19.9926 −1.41724 −0.708620 0.705590i \(-0.750682\pi\)
−0.708620 + 0.705590i \(0.750682\pi\)
\(200\) 0 0
\(201\) −33.7952 −2.38373
\(202\) 0 0
\(203\) 4.39478 0.308453
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 12.1323 0.843254
\(208\) 0 0
\(209\) −17.1696 −1.18765
\(210\) 0 0
\(211\) 1.11189 0.0765456 0.0382728 0.999267i \(-0.487814\pi\)
0.0382728 + 0.999267i \(0.487814\pi\)
\(212\) 0 0
\(213\) 15.7449 1.07882
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −12.1900 −0.827513
\(218\) 0 0
\(219\) 22.5197 1.52174
\(220\) 0 0
\(221\) −2.25511 −0.151695
\(222\) 0 0
\(223\) 5.78574 0.387441 0.193721 0.981057i \(-0.437944\pi\)
0.193721 + 0.981057i \(0.437944\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −15.5570 −1.03256 −0.516278 0.856421i \(-0.672683\pi\)
−0.516278 + 0.856421i \(0.672683\pi\)
\(228\) 0 0
\(229\) 7.60522 0.502567 0.251284 0.967913i \(-0.419147\pi\)
0.251284 + 0.967913i \(0.419147\pi\)
\(230\) 0 0
\(231\) −18.0746 −1.18922
\(232\) 0 0
\(233\) −9.93492 −0.650858 −0.325429 0.945566i \(-0.605509\pi\)
−0.325429 + 0.945566i \(0.605509\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −8.70024 −0.565141
\(238\) 0 0
\(239\) 8.51021 0.550480 0.275240 0.961376i \(-0.411243\pi\)
0.275240 + 0.961376i \(0.411243\pi\)
\(240\) 0 0
\(241\) −29.6243 −1.90827 −0.954133 0.299383i \(-0.903219\pi\)
−0.954133 + 0.299383i \(0.903219\pi\)
\(242\) 0 0
\(243\) 47.4919 3.04661
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 10.9145 0.694473
\(248\) 0 0
\(249\) 8.26462 0.523749
\(250\) 0 0
\(251\) 2.19003 0.138233 0.0691166 0.997609i \(-0.477982\pi\)
0.0691166 + 0.997609i \(0.477982\pi\)
\(252\) 0 0
\(253\) 5.48979 0.345140
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.67982 0.104784 0.0523920 0.998627i \(-0.483315\pi\)
0.0523920 + 0.998627i \(0.483315\pi\)
\(258\) 0 0
\(259\) −0.904987 −0.0562331
\(260\) 0 0
\(261\) −22.2646 −1.37815
\(262\) 0 0
\(263\) 31.7639 1.95865 0.979324 0.202299i \(-0.0648414\pi\)
0.979324 + 0.202299i \(0.0648414\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 59.2946 3.62877
\(268\) 0 0
\(269\) −3.23468 −0.197222 −0.0986111 0.995126i \(-0.531440\pi\)
−0.0986111 + 0.995126i \(0.531440\pi\)
\(270\) 0 0
\(271\) −10.8304 −0.657900 −0.328950 0.944347i \(-0.606695\pi\)
−0.328950 + 0.944347i \(0.606695\pi\)
\(272\) 0 0
\(273\) 11.4898 0.695394
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −23.1696 −1.39213 −0.696063 0.717980i \(-0.745067\pi\)
−0.696063 + 0.717980i \(0.745067\pi\)
\(278\) 0 0
\(279\) 61.7566 3.69727
\(280\) 0 0
\(281\) −15.7449 −0.939262 −0.469631 0.882863i \(-0.655613\pi\)
−0.469631 + 0.882863i \(0.655613\pi\)
\(282\) 0 0
\(283\) 9.61259 0.571409 0.285704 0.958318i \(-0.407772\pi\)
0.285704 + 0.958318i \(0.407772\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.0746 −0.830797
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −38.6689 −2.26681
\(292\) 0 0
\(293\) 5.78574 0.338006 0.169003 0.985616i \(-0.445945\pi\)
0.169003 + 0.985616i \(0.445945\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 56.5292 3.28016
\(298\) 0 0
\(299\) −3.48979 −0.201820
\(300\) 0 0
\(301\) −3.09501 −0.178394
\(302\) 0 0
\(303\) −34.8494 −2.00205
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.5848 1.63142 0.815710 0.578460i \(-0.196346\pi\)
0.815710 + 0.578460i \(0.196346\pi\)
\(308\) 0 0
\(309\) −31.6243 −1.79904
\(310\) 0 0
\(311\) 25.7375 1.45944 0.729721 0.683745i \(-0.239650\pi\)
0.729721 + 0.683745i \(0.239650\pi\)
\(312\) 0 0
\(313\) −17.2442 −0.974700 −0.487350 0.873207i \(-0.662036\pi\)
−0.487350 + 0.873207i \(0.662036\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.63898 −0.541379 −0.270689 0.962667i \(-0.587252\pi\)
−0.270689 + 0.962667i \(0.587252\pi\)
\(318\) 0 0
\(319\) −10.0746 −0.564069
\(320\) 0 0
\(321\) 63.3041 3.53329
\(322\) 0 0
\(323\) −4.83991 −0.269300
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 32.7098 1.80885
\(328\) 0 0
\(329\) 10.5848 0.583559
\(330\) 0 0
\(331\) −13.4993 −0.741989 −0.370994 0.928635i \(-0.620983\pi\)
−0.370994 + 0.928635i \(0.620983\pi\)
\(332\) 0 0
\(333\) 4.58480 0.251246
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.72447 0.148412 0.0742058 0.997243i \(-0.476358\pi\)
0.0742058 + 0.997243i \(0.476358\pi\)
\(338\) 0 0
\(339\) −39.5401 −2.14753
\(340\) 0 0
\(341\) 27.9444 1.51328
\(342\) 0 0
\(343\) 17.9592 0.969703
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.4620 1.09846 0.549229 0.835672i \(-0.314921\pi\)
0.549229 + 0.835672i \(0.314921\pi\)
\(348\) 0 0
\(349\) −8.70024 −0.465713 −0.232856 0.972511i \(-0.574807\pi\)
−0.232856 + 0.972511i \(0.574807\pi\)
\(350\) 0 0
\(351\) −35.9349 −1.91806
\(352\) 0 0
\(353\) 14.5292 0.773313 0.386657 0.922224i \(-0.373630\pi\)
0.386657 + 0.922224i \(0.373630\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −5.09501 −0.269657
\(358\) 0 0
\(359\) 4.24559 0.224074 0.112037 0.993704i \(-0.464263\pi\)
0.112037 + 0.993704i \(0.464263\pi\)
\(360\) 0 0
\(361\) 4.42471 0.232880
\(362\) 0 0
\(363\) 5.21781 0.273864
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 12.6425 0.659934 0.329967 0.943992i \(-0.392962\pi\)
0.329967 + 0.943992i \(0.392962\pi\)
\(368\) 0 0
\(369\) 71.3041 3.71194
\(370\) 0 0
\(371\) −19.9853 −1.03758
\(372\) 0 0
\(373\) −20.0190 −1.03655 −0.518273 0.855215i \(-0.673425\pi\)
−0.518273 + 0.855215i \(0.673425\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.40429 0.329838
\(378\) 0 0
\(379\) −12.4525 −0.639642 −0.319821 0.947478i \(-0.603623\pi\)
−0.319821 + 0.947478i \(0.603623\pi\)
\(380\) 0 0
\(381\) 45.8794 2.35047
\(382\) 0 0
\(383\) 6.95534 0.355401 0.177701 0.984085i \(-0.443134\pi\)
0.177701 + 0.984085i \(0.443134\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 15.6798 0.797050
\(388\) 0 0
\(389\) 31.0950 1.57658 0.788290 0.615304i \(-0.210967\pi\)
0.788290 + 0.615304i \(0.210967\pi\)
\(390\) 0 0
\(391\) 1.54751 0.0782608
\(392\) 0 0
\(393\) 56.7193 2.86111
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.53063 0.377951 0.188976 0.981982i \(-0.439483\pi\)
0.188976 + 0.981982i \(0.439483\pi\)
\(398\) 0 0
\(399\) 24.6594 1.23451
\(400\) 0 0
\(401\) −6.65940 −0.332554 −0.166277 0.986079i \(-0.553175\pi\)
−0.166277 + 0.986079i \(0.553175\pi\)
\(402\) 0 0
\(403\) −17.7639 −0.884884
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.07459 0.102834
\(408\) 0 0
\(409\) 5.93492 0.293463 0.146731 0.989176i \(-0.453125\pi\)
0.146731 + 0.989176i \(0.453125\pi\)
\(410\) 0 0
\(411\) 28.0190 1.38208
\(412\) 0 0
\(413\) −20.6594 −1.01658
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.48979 0.0729553
\(418\) 0 0
\(419\) −9.07814 −0.443496 −0.221748 0.975104i \(-0.571176\pi\)
−0.221748 + 0.975104i \(0.571176\pi\)
\(420\) 0 0
\(421\) 7.73538 0.376999 0.188500 0.982073i \(-0.439638\pi\)
0.188500 + 0.982073i \(0.439638\pi\)
\(422\) 0 0
\(423\) −53.6243 −2.60730
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −5.79525 −0.280452
\(428\) 0 0
\(429\) −26.3392 −1.27167
\(430\) 0 0
\(431\) −5.62210 −0.270807 −0.135404 0.990791i \(-0.543233\pi\)
−0.135404 + 0.990791i \(0.543233\pi\)
\(432\) 0 0
\(433\) −6.84942 −0.329162 −0.164581 0.986364i \(-0.552627\pi\)
−0.164581 + 0.986364i \(0.552627\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −7.48979 −0.358285
\(438\) 0 0
\(439\) −7.43207 −0.354714 −0.177357 0.984147i \(-0.556755\pi\)
−0.177357 + 0.984147i \(0.556755\pi\)
\(440\) 0 0
\(441\) −36.1045 −1.71926
\(442\) 0 0
\(443\) −15.5644 −0.739486 −0.369743 0.929134i \(-0.620554\pi\)
−0.369743 + 0.929134i \(0.620554\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −72.0043 −3.40569
\(448\) 0 0
\(449\) 11.4152 0.538716 0.269358 0.963040i \(-0.413188\pi\)
0.269358 + 0.963040i \(0.413188\pi\)
\(450\) 0 0
\(451\) 32.2646 1.51928
\(452\) 0 0
\(453\) −34.8494 −1.63737
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −7.63898 −0.357336 −0.178668 0.983909i \(-0.557179\pi\)
−0.178668 + 0.983909i \(0.557179\pi\)
\(458\) 0 0
\(459\) 15.9349 0.743778
\(460\) 0 0
\(461\) −1.85081 −0.0862010 −0.0431005 0.999071i \(-0.513724\pi\)
−0.0431005 + 0.999071i \(0.513724\pi\)
\(462\) 0 0
\(463\) −22.1995 −1.03170 −0.515850 0.856679i \(-0.672524\pi\)
−0.515850 + 0.856679i \(0.672524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.5102 −0.486355 −0.243177 0.969982i \(-0.578190\pi\)
−0.243177 + 0.969982i \(0.578190\pi\)
\(468\) 0 0
\(469\) 15.8846 0.733481
\(470\) 0 0
\(471\) −36.7748 −1.69449
\(472\) 0 0
\(473\) 7.09501 0.326229
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 101.249 4.63585
\(478\) 0 0
\(479\) −14.3319 −0.654839 −0.327419 0.944879i \(-0.606179\pi\)
−0.327419 + 0.944879i \(0.606179\pi\)
\(480\) 0 0
\(481\) −1.31879 −0.0601318
\(482\) 0 0
\(483\) −7.88457 −0.358760
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −26.8663 −1.21743 −0.608714 0.793390i \(-0.708314\pi\)
−0.608714 + 0.793390i \(0.708314\pi\)
\(488\) 0 0
\(489\) −16.9649 −0.767177
\(490\) 0 0
\(491\) 8.69072 0.392207 0.196103 0.980583i \(-0.437171\pi\)
0.196103 + 0.980583i \(0.437171\pi\)
\(492\) 0 0
\(493\) −2.83991 −0.127903
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −7.40047 −0.331957
\(498\) 0 0
\(499\) −11.4173 −0.511111 −0.255555 0.966794i \(-0.582258\pi\)
−0.255555 + 0.966794i \(0.582258\pi\)
\(500\) 0 0
\(501\) −77.7734 −3.47466
\(502\) 0 0
\(503\) 2.81352 0.125449 0.0627243 0.998031i \(-0.480021\pi\)
0.0627243 + 0.998031i \(0.480021\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −26.0577 −1.15726
\(508\) 0 0
\(509\) 9.48979 0.420628 0.210314 0.977634i \(-0.432551\pi\)
0.210314 + 0.977634i \(0.432551\pi\)
\(510\) 0 0
\(511\) −10.5848 −0.468244
\(512\) 0 0
\(513\) −77.1236 −3.40509
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −24.2646 −1.06716
\(518\) 0 0
\(519\) −63.4941 −2.78708
\(520\) 0 0
\(521\) −27.8290 −1.21921 −0.609605 0.792705i \(-0.708672\pi\)
−0.609605 + 0.792705i \(0.708672\pi\)
\(522\) 0 0
\(523\) −19.4342 −0.849799 −0.424900 0.905240i \(-0.639691\pi\)
−0.424900 + 0.905240i \(0.639691\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.87720 0.343136
\(528\) 0 0
\(529\) −20.6052 −0.895879
\(530\) 0 0
\(531\) 104.664 4.54202
\(532\) 0 0
\(533\) −20.5102 −0.888396
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 16.1492 0.696889
\(538\) 0 0
\(539\) −16.3371 −0.703687
\(540\) 0 0
\(541\) 3.28504 0.141235 0.0706174 0.997503i \(-0.477503\pi\)
0.0706174 + 0.997503i \(0.477503\pi\)
\(542\) 0 0
\(543\) 60.1345 2.58062
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 14.2720 0.610226 0.305113 0.952316i \(-0.401306\pi\)
0.305113 + 0.952316i \(0.401306\pi\)
\(548\) 0 0
\(549\) 29.3596 1.25304
\(550\) 0 0
\(551\) 13.7449 0.585552
\(552\) 0 0
\(553\) 4.08932 0.173895
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.44513 −0.357832 −0.178916 0.983864i \(-0.557259\pi\)
−0.178916 + 0.983864i \(0.557259\pi\)
\(558\) 0 0
\(559\) −4.51021 −0.190762
\(560\) 0 0
\(561\) 11.6798 0.493122
\(562\) 0 0
\(563\) −7.16961 −0.302163 −0.151081 0.988521i \(-0.548276\pi\)
−0.151081 + 0.988521i \(0.548276\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −44.7917 −1.88107
\(568\) 0 0
\(569\) 21.5739 0.904425 0.452212 0.891910i \(-0.350635\pi\)
0.452212 + 0.891910i \(0.350635\pi\)
\(570\) 0 0
\(571\) −32.7361 −1.36996 −0.684982 0.728560i \(-0.740190\pi\)
−0.684982 + 0.728560i \(0.740190\pi\)
\(572\) 0 0
\(573\) 82.8685 3.46188
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 44.5292 1.85378 0.926888 0.375337i \(-0.122473\pi\)
0.926888 + 0.375337i \(0.122473\pi\)
\(578\) 0 0
\(579\) −13.4152 −0.557517
\(580\) 0 0
\(581\) −3.88457 −0.161159
\(582\) 0 0
\(583\) 45.8143 1.89743
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) −38.1249 −1.57091
\(590\) 0 0
\(591\) −71.6243 −2.94623
\(592\) 0 0
\(593\) −20.9796 −0.861528 −0.430764 0.902465i \(-0.641756\pi\)
−0.430764 + 0.902465i \(0.641756\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −65.8238 −2.69399
\(598\) 0 0
\(599\) 22.7002 0.927507 0.463753 0.885964i \(-0.346502\pi\)
0.463753 + 0.885964i \(0.346502\pi\)
\(600\) 0 0
\(601\) −33.1140 −1.35075 −0.675375 0.737474i \(-0.736018\pi\)
−0.675375 + 0.737474i \(0.736018\pi\)
\(602\) 0 0
\(603\) −80.4737 −3.27714
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −3.58835 −0.145647 −0.0728233 0.997345i \(-0.523201\pi\)
−0.0728233 + 0.997345i \(0.523201\pi\)
\(608\) 0 0
\(609\) 14.4694 0.586328
\(610\) 0 0
\(611\) 15.4247 0.624017
\(612\) 0 0
\(613\) 32.7843 1.32415 0.662074 0.749439i \(-0.269677\pi\)
0.662074 + 0.749439i \(0.269677\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −22.0504 −0.887714 −0.443857 0.896098i \(-0.646390\pi\)
−0.443857 + 0.896098i \(0.646390\pi\)
\(618\) 0 0
\(619\) −19.4511 −0.781806 −0.390903 0.920432i \(-0.627837\pi\)
−0.390903 + 0.920432i \(0.627837\pi\)
\(620\) 0 0
\(621\) 24.6594 0.989547
\(622\) 0 0
\(623\) −27.8698 −1.11658
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −56.5292 −2.25756
\(628\) 0 0
\(629\) 0.584803 0.0233176
\(630\) 0 0
\(631\) −11.0950 −0.441686 −0.220843 0.975309i \(-0.570881\pi\)
−0.220843 + 0.975309i \(0.570881\pi\)
\(632\) 0 0
\(633\) 3.66079 0.145503
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 10.3853 0.411479
\(638\) 0 0
\(639\) 37.4919 1.48316
\(640\) 0 0
\(641\) −11.1359 −0.439840 −0.219920 0.975518i \(-0.570580\pi\)
−0.219920 + 0.975518i \(0.570580\pi\)
\(642\) 0 0
\(643\) 30.7361 1.21212 0.606058 0.795421i \(-0.292750\pi\)
0.606058 + 0.795421i \(0.292750\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.3691 0.761480 0.380740 0.924682i \(-0.375669\pi\)
0.380740 + 0.924682i \(0.375669\pi\)
\(648\) 0 0
\(649\) 47.3596 1.85903
\(650\) 0 0
\(651\) −40.1345 −1.57299
\(652\) 0 0
\(653\) −17.7354 −0.694039 −0.347020 0.937858i \(-0.612806\pi\)
−0.347020 + 0.937858i \(0.612806\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 53.6243 2.09208
\(658\) 0 0
\(659\) −18.7843 −0.731734 −0.365867 0.930667i \(-0.619228\pi\)
−0.365867 + 0.930667i \(0.619228\pi\)
\(660\) 0 0
\(661\) −40.2091 −1.56395 −0.781976 0.623309i \(-0.785788\pi\)
−0.781976 + 0.623309i \(0.785788\pi\)
\(662\) 0 0
\(663\) −7.42471 −0.288352
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.39478 −0.170166
\(668\) 0 0
\(669\) 19.0490 0.736475
\(670\) 0 0
\(671\) 13.2850 0.512863
\(672\) 0 0
\(673\) −1.01091 −0.0389675 −0.0194838 0.999810i \(-0.506202\pi\)
−0.0194838 + 0.999810i \(0.506202\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 1.85081 0.0711326 0.0355663 0.999367i \(-0.488677\pi\)
0.0355663 + 0.999367i \(0.488677\pi\)
\(678\) 0 0
\(679\) 18.1753 0.697504
\(680\) 0 0
\(681\) −51.2200 −1.96275
\(682\) 0 0
\(683\) 36.6112 1.40089 0.700444 0.713707i \(-0.252985\pi\)
0.700444 + 0.713707i \(0.252985\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 25.0394 0.955315
\(688\) 0 0
\(689\) −29.1236 −1.10952
\(690\) 0 0
\(691\) 29.8867 1.13694 0.568472 0.822702i \(-0.307535\pi\)
0.568472 + 0.822702i \(0.307535\pi\)
\(692\) 0 0
\(693\) −43.0394 −1.63493
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9.09501 0.344498
\(698\) 0 0
\(699\) −32.7098 −1.23720
\(700\) 0 0
\(701\) −15.2442 −0.575765 −0.287883 0.957666i \(-0.592951\pi\)
−0.287883 + 0.957666i \(0.592951\pi\)
\(702\) 0 0
\(703\) −2.83039 −0.106750
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.3801 0.616035
\(708\) 0 0
\(709\) 34.5606 1.29795 0.648975 0.760810i \(-0.275198\pi\)
0.648975 + 0.760810i \(0.275198\pi\)
\(710\) 0 0
\(711\) −20.7171 −0.776952
\(712\) 0 0
\(713\) 12.1900 0.456520
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 28.0190 1.04639
\(718\) 0 0
\(719\) 20.1418 0.751163 0.375582 0.926789i \(-0.377443\pi\)
0.375582 + 0.926789i \(0.377443\pi\)
\(720\) 0 0
\(721\) 14.8641 0.553570
\(722\) 0 0
\(723\) −97.5349 −3.62736
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 36.8998 1.36854 0.684268 0.729230i \(-0.260122\pi\)
0.684268 + 0.729230i \(0.260122\pi\)
\(728\) 0 0
\(729\) 69.5292 2.57516
\(730\) 0 0
\(731\) 2.00000 0.0739727
\(732\) 0 0
\(733\) 42.6784 1.57636 0.788182 0.615442i \(-0.211023\pi\)
0.788182 + 0.615442i \(0.211023\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −36.4138 −1.34132
\(738\) 0 0
\(739\) −28.7098 −1.05611 −0.528053 0.849212i \(-0.677078\pi\)
−0.528053 + 0.849212i \(0.677078\pi\)
\(740\) 0 0
\(741\) 35.9349 1.32010
\(742\) 0 0
\(743\) 18.4525 0.676956 0.338478 0.940974i \(-0.390088\pi\)
0.338478 + 0.940974i \(0.390088\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 19.6798 0.720047
\(748\) 0 0
\(749\) −29.7544 −1.08720
\(750\) 0 0
\(751\) 0.271981 0.00992474 0.00496237 0.999988i \(-0.498420\pi\)
0.00496237 + 0.999988i \(0.498420\pi\)
\(752\) 0 0
\(753\) 7.21045 0.262763
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −30.7843 −1.11888 −0.559438 0.828872i \(-0.688983\pi\)
−0.559438 + 0.828872i \(0.688983\pi\)
\(758\) 0 0
\(759\) 18.0746 0.656066
\(760\) 0 0
\(761\) −39.9853 −1.44947 −0.724733 0.689030i \(-0.758037\pi\)
−0.724733 + 0.689030i \(0.758037\pi\)
\(762\) 0 0
\(763\) −15.3744 −0.556589
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −30.1059 −1.08706
\(768\) 0 0
\(769\) −19.8195 −0.714709 −0.357355 0.933969i \(-0.616321\pi\)
−0.357355 + 0.933969i \(0.616321\pi\)
\(770\) 0 0
\(771\) 5.53063 0.199181
\(772\) 0 0
\(773\) −16.5102 −0.593831 −0.296915 0.954904i \(-0.595958\pi\)
−0.296915 + 0.954904i \(0.595958\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −2.97958 −0.106892
\(778\) 0 0
\(779\) −44.0190 −1.57715
\(780\) 0 0
\(781\) 16.9649 0.607050
\(782\) 0 0
\(783\) −45.2537 −1.61724
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −33.1214 −1.18065 −0.590325 0.807165i \(-0.701001\pi\)
−0.590325 + 0.807165i \(0.701001\pi\)
\(788\) 0 0
\(789\) 104.580 3.72313
\(790\) 0 0
\(791\) 18.5848 0.660800
\(792\) 0 0
\(793\) −8.44513 −0.299895
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −52.5701 −1.86213 −0.931064 0.364856i \(-0.881118\pi\)
−0.931064 + 0.364856i \(0.881118\pi\)
\(798\) 0 0
\(799\) −6.83991 −0.241979
\(800\) 0 0
\(801\) 141.193 4.98881
\(802\) 0 0
\(803\) 24.2646 0.856280
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.6499 −0.374894
\(808\) 0 0
\(809\) −0.979580 −0.0344402 −0.0172201 0.999852i \(-0.505482\pi\)
−0.0172201 + 0.999852i \(0.505482\pi\)
\(810\) 0 0
\(811\) −43.7157 −1.53507 −0.767533 0.641009i \(-0.778516\pi\)
−0.767533 + 0.641009i \(0.778516\pi\)
\(812\) 0 0
\(813\) −35.6580 −1.25058
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −9.67982 −0.338654
\(818\) 0 0
\(819\) 27.3596 0.956023
\(820\) 0 0
\(821\) −44.9335 −1.56819 −0.784096 0.620640i \(-0.786873\pi\)
−0.784096 + 0.620640i \(0.786873\pi\)
\(822\) 0 0
\(823\) 18.0767 0.630116 0.315058 0.949072i \(-0.397976\pi\)
0.315058 + 0.949072i \(0.397976\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.7361 −1.06880 −0.534400 0.845232i \(-0.679462\pi\)
−0.534400 + 0.845232i \(0.679462\pi\)
\(828\) 0 0
\(829\) −16.8494 −0.585205 −0.292602 0.956234i \(-0.594521\pi\)
−0.292602 + 0.956234i \(0.594521\pi\)
\(830\) 0 0
\(831\) −76.2836 −2.64625
\(832\) 0 0
\(833\) −4.60522 −0.159562
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 125.523 4.33870
\(838\) 0 0
\(839\) 41.5570 1.43471 0.717354 0.696709i \(-0.245353\pi\)
0.717354 + 0.696709i \(0.245353\pi\)
\(840\) 0 0
\(841\) −20.9349 −0.721894
\(842\) 0 0
\(843\) −51.8385 −1.78541
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −2.45249 −0.0842687
\(848\) 0 0
\(849\) 31.6485 1.08617
\(850\) 0 0
\(851\) 0.904987 0.0310225
\(852\) 0 0
\(853\) 30.6447 1.04925 0.524627 0.851332i \(-0.324205\pi\)
0.524627 + 0.851332i \(0.324205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 51.8794 1.77217 0.886083 0.463527i \(-0.153416\pi\)
0.886083 + 0.463527i \(0.153416\pi\)
\(858\) 0 0
\(859\) −10.5007 −0.358279 −0.179140 0.983824i \(-0.557331\pi\)
−0.179140 + 0.983824i \(0.557331\pi\)
\(860\) 0 0
\(861\) −46.3392 −1.57924
\(862\) 0 0
\(863\) 5.22517 0.177867 0.0889334 0.996038i \(-0.471654\pi\)
0.0889334 + 0.996038i \(0.471654\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 3.29240 0.111816
\(868\) 0 0
\(869\) −9.37436 −0.318003
\(870\) 0 0
\(871\) 23.1478 0.784333
\(872\) 0 0
\(873\) −92.0789 −3.11640
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.38144 0.114183 0.0570916 0.998369i \(-0.481817\pi\)
0.0570916 + 0.998369i \(0.481817\pi\)
\(878\) 0 0
\(879\) 19.0490 0.642506
\(880\) 0 0
\(881\) −38.6447 −1.30197 −0.650986 0.759090i \(-0.725644\pi\)
−0.650986 + 0.759090i \(0.725644\pi\)
\(882\) 0 0
\(883\) 18.4138 0.619674 0.309837 0.950790i \(-0.399726\pi\)
0.309837 + 0.950790i \(0.399726\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.7171 −1.03138 −0.515690 0.856775i \(-0.672464\pi\)
−0.515690 + 0.856775i \(0.672464\pi\)
\(888\) 0 0
\(889\) −21.5644 −0.723246
\(890\) 0 0
\(891\) 102.681 3.43993
\(892\) 0 0
\(893\) 33.1045 1.10780
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −11.4898 −0.383633
\(898\) 0 0
\(899\) −22.3705 −0.746099
\(900\) 0 0
\(901\) 12.9145 0.430244
\(902\) 0 0
\(903\) −10.1900 −0.339103
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 26.5219 0.880644 0.440322 0.897840i \(-0.354864\pi\)
0.440322 + 0.897840i \(0.354864\pi\)
\(908\) 0 0
\(909\) −82.9839 −2.75240
\(910\) 0 0
\(911\) −23.6967 −0.785106 −0.392553 0.919729i \(-0.628408\pi\)
−0.392553 + 0.919729i \(0.628408\pi\)
\(912\) 0 0
\(913\) 8.90499 0.294712
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −26.6594 −0.880371
\(918\) 0 0
\(919\) 27.2295 0.898218 0.449109 0.893477i \(-0.351742\pi\)
0.449109 + 0.893477i \(0.351742\pi\)
\(920\) 0 0
\(921\) 94.1127 3.10112
\(922\) 0 0
\(923\) −10.7843 −0.354971
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −75.3041 −2.47331
\(928\) 0 0
\(929\) 1.09501 0.0359262 0.0179631 0.999839i \(-0.494282\pi\)
0.0179631 + 0.999839i \(0.494282\pi\)
\(930\) 0 0
\(931\) 22.2889 0.730488
\(932\) 0 0
\(933\) 84.7383 2.77421
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 19.6798 0.642912 0.321456 0.946925i \(-0.395828\pi\)
0.321456 + 0.946925i \(0.395828\pi\)
\(938\) 0 0
\(939\) −56.7748 −1.85278
\(940\) 0 0
\(941\) 42.5606 1.38743 0.693717 0.720247i \(-0.255972\pi\)
0.693717 + 0.720247i \(0.255972\pi\)
\(942\) 0 0
\(943\) 14.0746 0.458332
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.72802 0.186136 0.0930678 0.995660i \(-0.470333\pi\)
0.0930678 + 0.995660i \(0.470333\pi\)
\(948\) 0 0
\(949\) −15.4247 −0.500707
\(950\) 0 0
\(951\) −31.7354 −1.02909
\(952\) 0 0
\(953\) −7.85081 −0.254313 −0.127156 0.991883i \(-0.540585\pi\)
−0.127156 + 0.991883i \(0.540585\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −33.1696 −1.07222
\(958\) 0 0
\(959\) −13.1696 −0.425269
\(960\) 0 0
\(961\) 31.0504 1.00162
\(962\) 0 0
\(963\) 150.740 4.85754
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 12.3202 0.396190 0.198095 0.980183i \(-0.436524\pi\)
0.198095 + 0.980183i \(0.436524\pi\)
\(968\) 0 0
\(969\) −15.9349 −0.511903
\(970\) 0 0
\(971\) −4.69072 −0.150532 −0.0752662 0.997163i \(-0.523981\pi\)
−0.0752662 + 0.997163i \(0.523981\pi\)
\(972\) 0 0
\(973\) −0.700237 −0.0224486
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −19.8290 −0.634386 −0.317193 0.948361i \(-0.602740\pi\)
−0.317193 + 0.948361i \(0.602740\pi\)
\(978\) 0 0
\(979\) 63.8889 2.04190
\(980\) 0 0
\(981\) 77.8889 2.48680
\(982\) 0 0
\(983\) 2.86630 0.0914207 0.0457104 0.998955i \(-0.485445\pi\)
0.0457104 + 0.998955i \(0.485445\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 34.8494 1.10927
\(988\) 0 0
\(989\) 3.09501 0.0984157
\(990\) 0 0
\(991\) 38.3319 1.21765 0.608826 0.793304i \(-0.291641\pi\)
0.608826 + 0.793304i \(0.291641\pi\)
\(992\) 0 0
\(993\) −44.4451 −1.41042
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20.3055 −0.643080 −0.321540 0.946896i \(-0.604201\pi\)
−0.321540 + 0.946896i \(0.604201\pi\)
\(998\) 0 0
\(999\) 9.31879 0.294834
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6800.2.a.bs.1.3 3
4.3 odd 2 3400.2.a.k.1.1 3
5.4 even 2 1360.2.a.p.1.1 3
20.3 even 4 3400.2.e.i.2449.1 6
20.7 even 4 3400.2.e.i.2449.6 6
20.19 odd 2 680.2.a.h.1.3 3
40.19 odd 2 5440.2.a.bn.1.1 3
40.29 even 2 5440.2.a.bu.1.3 3
60.59 even 2 6120.2.a.bq.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.a.h.1.3 3 20.19 odd 2
1360.2.a.p.1.1 3 5.4 even 2
3400.2.a.k.1.1 3 4.3 odd 2
3400.2.e.i.2449.1 6 20.3 even 4
3400.2.e.i.2449.6 6 20.7 even 4
5440.2.a.bn.1.1 3 40.19 odd 2
5440.2.a.bu.1.3 3 40.29 even 2
6120.2.a.bq.1.1 3 60.59 even 2
6800.2.a.bs.1.3 3 1.1 even 1 trivial