Properties

Label 5440.2.a.bu.1.3
Level $5440$
Weight $2$
Character 5440.1
Self dual yes
Analytic conductor $43.439$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5440,2,Mod(1,5440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5440, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5440.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5440 = 2^{6} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5440.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,-3,0,-4,0,8,0,-2,0,-5,0,-3,0,-3,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4386186996\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 680)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.29240\) of defining polynomial
Character \(\chi\) \(=\) 5440.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.29240 q^{3} -1.00000 q^{5} +1.54751 q^{7} +7.83991 q^{9} -3.54751 q^{11} -2.25511 q^{13} -3.29240 q^{15} -1.00000 q^{17} +4.83991 q^{19} +5.09501 q^{21} -1.54751 q^{23} +1.00000 q^{25} +15.9349 q^{27} +2.83991 q^{29} +7.87720 q^{31} -11.6798 q^{33} -1.54751 q^{35} +0.584803 q^{37} -7.42471 q^{39} +9.09501 q^{41} +2.00000 q^{43} -7.83991 q^{45} +6.83991 q^{47} -4.60522 q^{49} -3.29240 q^{51} +12.9145 q^{53} +3.54751 q^{55} +15.9349 q^{57} -13.3501 q^{59} -3.74489 q^{61} +12.1323 q^{63} +2.25511 q^{65} -10.2646 q^{67} -5.09501 q^{69} +4.78219 q^{71} -6.83991 q^{73} +3.29240 q^{75} -5.48979 q^{77} -2.64252 q^{79} +28.9444 q^{81} +2.51021 q^{83} +1.00000 q^{85} +9.35012 q^{87} +18.0095 q^{89} -3.48979 q^{91} +25.9349 q^{93} -4.83991 q^{95} +11.7449 q^{97} -27.8121 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} - 4 q^{7} + 8 q^{9} - 2 q^{11} - 5 q^{13} - 3 q^{15} - 3 q^{17} - q^{19} - 2 q^{21} + 4 q^{23} + 3 q^{25} + 15 q^{27} - 7 q^{29} + 3 q^{31} - 4 q^{33} + 4 q^{35} - 12 q^{37} + 7 q^{39}+ \cdots - 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.29240 1.90087 0.950434 0.310925i \(-0.100639\pi\)
0.950434 + 0.310925i \(0.100639\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 1.54751 0.584903 0.292451 0.956280i \(-0.405529\pi\)
0.292451 + 0.956280i \(0.405529\pi\)
\(8\) 0 0
\(9\) 7.83991 2.61330
\(10\) 0 0
\(11\) −3.54751 −1.06961 −0.534807 0.844974i \(-0.679616\pi\)
−0.534807 + 0.844974i \(0.679616\pi\)
\(12\) 0 0
\(13\) −2.25511 −0.625454 −0.312727 0.949843i \(-0.601242\pi\)
−0.312727 + 0.949843i \(0.601242\pi\)
\(14\) 0 0
\(15\) −3.29240 −0.850094
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 4.83991 1.11035 0.555176 0.831733i \(-0.312651\pi\)
0.555176 + 0.831733i \(0.312651\pi\)
\(20\) 0 0
\(21\) 5.09501 1.11182
\(22\) 0 0
\(23\) −1.54751 −0.322677 −0.161339 0.986899i \(-0.551581\pi\)
−0.161339 + 0.986899i \(0.551581\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 15.9349 3.06668
\(28\) 0 0
\(29\) 2.83991 0.527358 0.263679 0.964611i \(-0.415064\pi\)
0.263679 + 0.964611i \(0.415064\pi\)
\(30\) 0 0
\(31\) 7.87720 1.41479 0.707394 0.706820i \(-0.249871\pi\)
0.707394 + 0.706820i \(0.249871\pi\)
\(32\) 0 0
\(33\) −11.6798 −2.03320
\(34\) 0 0
\(35\) −1.54751 −0.261576
\(36\) 0 0
\(37\) 0.584803 0.0961410 0.0480705 0.998844i \(-0.484693\pi\)
0.0480705 + 0.998844i \(0.484693\pi\)
\(38\) 0 0
\(39\) −7.42471 −1.18891
\(40\) 0 0
\(41\) 9.09501 1.42040 0.710201 0.703999i \(-0.248604\pi\)
0.710201 + 0.703999i \(0.248604\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) −7.83991 −1.16870
\(46\) 0 0
\(47\) 6.83991 0.997703 0.498852 0.866687i \(-0.333755\pi\)
0.498852 + 0.866687i \(0.333755\pi\)
\(48\) 0 0
\(49\) −4.60522 −0.657889
\(50\) 0 0
\(51\) −3.29240 −0.461028
\(52\) 0 0
\(53\) 12.9145 1.77394 0.886972 0.461824i \(-0.152805\pi\)
0.886972 + 0.461824i \(0.152805\pi\)
\(54\) 0 0
\(55\) 3.54751 0.478346
\(56\) 0 0
\(57\) 15.9349 2.11063
\(58\) 0 0
\(59\) −13.3501 −1.73804 −0.869019 0.494779i \(-0.835249\pi\)
−0.869019 + 0.494779i \(0.835249\pi\)
\(60\) 0 0
\(61\) −3.74489 −0.479485 −0.239742 0.970837i \(-0.577063\pi\)
−0.239742 + 0.970837i \(0.577063\pi\)
\(62\) 0 0
\(63\) 12.1323 1.52853
\(64\) 0 0
\(65\) 2.25511 0.279711
\(66\) 0 0
\(67\) −10.2646 −1.25402 −0.627011 0.779010i \(-0.715722\pi\)
−0.627011 + 0.779010i \(0.715722\pi\)
\(68\) 0 0
\(69\) −5.09501 −0.613368
\(70\) 0 0
\(71\) 4.78219 0.567542 0.283771 0.958892i \(-0.408414\pi\)
0.283771 + 0.958892i \(0.408414\pi\)
\(72\) 0 0
\(73\) −6.83991 −0.800551 −0.400275 0.916395i \(-0.631086\pi\)
−0.400275 + 0.916395i \(0.631086\pi\)
\(74\) 0 0
\(75\) 3.29240 0.380174
\(76\) 0 0
\(77\) −5.48979 −0.625620
\(78\) 0 0
\(79\) −2.64252 −0.297307 −0.148653 0.988889i \(-0.547494\pi\)
−0.148653 + 0.988889i \(0.547494\pi\)
\(80\) 0 0
\(81\) 28.9444 3.21605
\(82\) 0 0
\(83\) 2.51021 0.275531 0.137766 0.990465i \(-0.456008\pi\)
0.137766 + 0.990465i \(0.456008\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) 9.35012 1.00244
\(88\) 0 0
\(89\) 18.0095 1.90900 0.954502 0.298203i \(-0.0963874\pi\)
0.954502 + 0.298203i \(0.0963874\pi\)
\(90\) 0 0
\(91\) −3.48979 −0.365829
\(92\) 0 0
\(93\) 25.9349 2.68933
\(94\) 0 0
\(95\) −4.83991 −0.496564
\(96\) 0 0
\(97\) 11.7449 1.19251 0.596257 0.802794i \(-0.296654\pi\)
0.596257 + 0.802794i \(0.296654\pi\)
\(98\) 0 0
\(99\) −27.8121 −2.79522
\(100\) 0 0
\(101\) 10.5848 1.05323 0.526614 0.850105i \(-0.323461\pi\)
0.526614 + 0.850105i \(0.323461\pi\)
\(102\) 0 0
\(103\) 9.60522 0.946431 0.473215 0.880947i \(-0.343093\pi\)
0.473215 + 0.880947i \(0.343093\pi\)
\(104\) 0 0
\(105\) −5.09501 −0.497222
\(106\) 0 0
\(107\) 19.2273 1.85878 0.929388 0.369105i \(-0.120336\pi\)
0.929388 + 0.369105i \(0.120336\pi\)
\(108\) 0 0
\(109\) −9.93492 −0.951593 −0.475796 0.879555i \(-0.657840\pi\)
−0.475796 + 0.879555i \(0.657840\pi\)
\(110\) 0 0
\(111\) 1.92541 0.182752
\(112\) 0 0
\(113\) 12.0095 1.12976 0.564880 0.825173i \(-0.308922\pi\)
0.564880 + 0.825173i \(0.308922\pi\)
\(114\) 0 0
\(115\) 1.54751 0.144306
\(116\) 0 0
\(117\) −17.6798 −1.63450
\(118\) 0 0
\(119\) −1.54751 −0.141860
\(120\) 0 0
\(121\) 1.58480 0.144073
\(122\) 0 0
\(123\) 29.9444 2.70000
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −13.9349 −1.23652 −0.618262 0.785972i \(-0.712163\pi\)
−0.618262 + 0.785972i \(0.712163\pi\)
\(128\) 0 0
\(129\) 6.58480 0.579760
\(130\) 0 0
\(131\) −17.2273 −1.50516 −0.752579 0.658502i \(-0.771190\pi\)
−0.752579 + 0.658502i \(0.771190\pi\)
\(132\) 0 0
\(133\) 7.48979 0.649447
\(134\) 0 0
\(135\) −15.9349 −1.37146
\(136\) 0 0
\(137\) −8.51021 −0.727076 −0.363538 0.931579i \(-0.618431\pi\)
−0.363538 + 0.931579i \(0.618431\pi\)
\(138\) 0 0
\(139\) −0.452493 −0.0383800 −0.0191900 0.999816i \(-0.506109\pi\)
−0.0191900 + 0.999816i \(0.506109\pi\)
\(140\) 0 0
\(141\) 22.5197 1.89650
\(142\) 0 0
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) −2.83991 −0.235842
\(146\) 0 0
\(147\) −15.1622 −1.25056
\(148\) 0 0
\(149\) 21.8698 1.79165 0.895824 0.444410i \(-0.146587\pi\)
0.895824 + 0.444410i \(0.146587\pi\)
\(150\) 0 0
\(151\) −10.5848 −0.861379 −0.430690 0.902500i \(-0.641730\pi\)
−0.430690 + 0.902500i \(0.641730\pi\)
\(152\) 0 0
\(153\) −7.83991 −0.633819
\(154\) 0 0
\(155\) −7.87720 −0.632712
\(156\) 0 0
\(157\) −11.1696 −0.891432 −0.445716 0.895175i \(-0.647051\pi\)
−0.445716 + 0.895175i \(0.647051\pi\)
\(158\) 0 0
\(159\) 42.5197 3.37203
\(160\) 0 0
\(161\) −2.39478 −0.188735
\(162\) 0 0
\(163\) −5.15273 −0.403593 −0.201796 0.979427i \(-0.564678\pi\)
−0.201796 + 0.979427i \(0.564678\pi\)
\(164\) 0 0
\(165\) 11.6798 0.909272
\(166\) 0 0
\(167\) 23.6221 1.82793 0.913966 0.405790i \(-0.133003\pi\)
0.913966 + 0.405790i \(0.133003\pi\)
\(168\) 0 0
\(169\) −7.91450 −0.608808
\(170\) 0 0
\(171\) 37.9444 2.90168
\(172\) 0 0
\(173\) −19.2850 −1.46621 −0.733107 0.680113i \(-0.761931\pi\)
−0.733107 + 0.680113i \(0.761931\pi\)
\(174\) 0 0
\(175\) 1.54751 0.116981
\(176\) 0 0
\(177\) −43.9540 −3.30378
\(178\) 0 0
\(179\) −4.90499 −0.366616 −0.183308 0.983056i \(-0.558681\pi\)
−0.183308 + 0.983056i \(0.558681\pi\)
\(180\) 0 0
\(181\) −18.2646 −1.35760 −0.678799 0.734324i \(-0.737499\pi\)
−0.678799 + 0.734324i \(0.737499\pi\)
\(182\) 0 0
\(183\) −12.3297 −0.911438
\(184\) 0 0
\(185\) −0.584803 −0.0429956
\(186\) 0 0
\(187\) 3.54751 0.259419
\(188\) 0 0
\(189\) 24.6594 1.79371
\(190\) 0 0
\(191\) 25.1696 1.82121 0.910604 0.413279i \(-0.135617\pi\)
0.910604 + 0.413279i \(0.135617\pi\)
\(192\) 0 0
\(193\) 4.07459 0.293296 0.146648 0.989189i \(-0.453152\pi\)
0.146648 + 0.989189i \(0.453152\pi\)
\(194\) 0 0
\(195\) 7.42471 0.531695
\(196\) 0 0
\(197\) −21.7544 −1.54994 −0.774969 0.632000i \(-0.782234\pi\)
−0.774969 + 0.632000i \(0.782234\pi\)
\(198\) 0 0
\(199\) −19.9926 −1.41724 −0.708620 0.705590i \(-0.750682\pi\)
−0.708620 + 0.705590i \(0.750682\pi\)
\(200\) 0 0
\(201\) −33.7952 −2.38373
\(202\) 0 0
\(203\) 4.39478 0.308453
\(204\) 0 0
\(205\) −9.09501 −0.635223
\(206\) 0 0
\(207\) −12.1323 −0.843254
\(208\) 0 0
\(209\) −17.1696 −1.18765
\(210\) 0 0
\(211\) −1.11189 −0.0765456 −0.0382728 0.999267i \(-0.512186\pi\)
−0.0382728 + 0.999267i \(0.512186\pi\)
\(212\) 0 0
\(213\) 15.7449 1.07882
\(214\) 0 0
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) 12.1900 0.827513
\(218\) 0 0
\(219\) −22.5197 −1.52174
\(220\) 0 0
\(221\) 2.25511 0.151695
\(222\) 0 0
\(223\) −5.78574 −0.387441 −0.193721 0.981057i \(-0.562056\pi\)
−0.193721 + 0.981057i \(0.562056\pi\)
\(224\) 0 0
\(225\) 7.83991 0.522661
\(226\) 0 0
\(227\) −15.5570 −1.03256 −0.516278 0.856421i \(-0.672683\pi\)
−0.516278 + 0.856421i \(0.672683\pi\)
\(228\) 0 0
\(229\) −7.60522 −0.502567 −0.251284 0.967913i \(-0.580853\pi\)
−0.251284 + 0.967913i \(0.580853\pi\)
\(230\) 0 0
\(231\) −18.0746 −1.18922
\(232\) 0 0
\(233\) 9.93492 0.650858 0.325429 0.945566i \(-0.394491\pi\)
0.325429 + 0.945566i \(0.394491\pi\)
\(234\) 0 0
\(235\) −6.83991 −0.446186
\(236\) 0 0
\(237\) −8.70024 −0.565141
\(238\) 0 0
\(239\) 8.51021 0.550480 0.275240 0.961376i \(-0.411243\pi\)
0.275240 + 0.961376i \(0.411243\pi\)
\(240\) 0 0
\(241\) −29.6243 −1.90827 −0.954133 0.299383i \(-0.903219\pi\)
−0.954133 + 0.299383i \(0.903219\pi\)
\(242\) 0 0
\(243\) 47.4919 3.04661
\(244\) 0 0
\(245\) 4.60522 0.294217
\(246\) 0 0
\(247\) −10.9145 −0.694473
\(248\) 0 0
\(249\) 8.26462 0.523749
\(250\) 0 0
\(251\) −2.19003 −0.138233 −0.0691166 0.997609i \(-0.522018\pi\)
−0.0691166 + 0.997609i \(0.522018\pi\)
\(252\) 0 0
\(253\) 5.48979 0.345140
\(254\) 0 0
\(255\) 3.29240 0.206178
\(256\) 0 0
\(257\) −1.67982 −0.104784 −0.0523920 0.998627i \(-0.516685\pi\)
−0.0523920 + 0.998627i \(0.516685\pi\)
\(258\) 0 0
\(259\) 0.904987 0.0562331
\(260\) 0 0
\(261\) 22.2646 1.37815
\(262\) 0 0
\(263\) −31.7639 −1.95865 −0.979324 0.202299i \(-0.935159\pi\)
−0.979324 + 0.202299i \(0.935159\pi\)
\(264\) 0 0
\(265\) −12.9145 −0.793332
\(266\) 0 0
\(267\) 59.2946 3.62877
\(268\) 0 0
\(269\) 3.23468 0.197222 0.0986111 0.995126i \(-0.468560\pi\)
0.0986111 + 0.995126i \(0.468560\pi\)
\(270\) 0 0
\(271\) −10.8304 −0.657900 −0.328950 0.944347i \(-0.606695\pi\)
−0.328950 + 0.944347i \(0.606695\pi\)
\(272\) 0 0
\(273\) −11.4898 −0.695394
\(274\) 0 0
\(275\) −3.54751 −0.213923
\(276\) 0 0
\(277\) −23.1696 −1.39213 −0.696063 0.717980i \(-0.745067\pi\)
−0.696063 + 0.717980i \(0.745067\pi\)
\(278\) 0 0
\(279\) 61.7566 3.69727
\(280\) 0 0
\(281\) −15.7449 −0.939262 −0.469631 0.882863i \(-0.655613\pi\)
−0.469631 + 0.882863i \(0.655613\pi\)
\(282\) 0 0
\(283\) 9.61259 0.571409 0.285704 0.958318i \(-0.407772\pi\)
0.285704 + 0.958318i \(0.407772\pi\)
\(284\) 0 0
\(285\) −15.9349 −0.943903
\(286\) 0 0
\(287\) 14.0746 0.830797
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 38.6689 2.26681
\(292\) 0 0
\(293\) 5.78574 0.338006 0.169003 0.985616i \(-0.445945\pi\)
0.169003 + 0.985616i \(0.445945\pi\)
\(294\) 0 0
\(295\) 13.3501 0.777274
\(296\) 0 0
\(297\) −56.5292 −3.28016
\(298\) 0 0
\(299\) 3.48979 0.201820
\(300\) 0 0
\(301\) 3.09501 0.178394
\(302\) 0 0
\(303\) 34.8494 2.00205
\(304\) 0 0
\(305\) 3.74489 0.214432
\(306\) 0 0
\(307\) 28.5848 1.63142 0.815710 0.578460i \(-0.196346\pi\)
0.815710 + 0.578460i \(0.196346\pi\)
\(308\) 0 0
\(309\) 31.6243 1.79904
\(310\) 0 0
\(311\) 25.7375 1.45944 0.729721 0.683745i \(-0.239650\pi\)
0.729721 + 0.683745i \(0.239650\pi\)
\(312\) 0 0
\(313\) 17.2442 0.974700 0.487350 0.873207i \(-0.337964\pi\)
0.487350 + 0.873207i \(0.337964\pi\)
\(314\) 0 0
\(315\) −12.1323 −0.683578
\(316\) 0 0
\(317\) −9.63898 −0.541379 −0.270689 0.962667i \(-0.587252\pi\)
−0.270689 + 0.962667i \(0.587252\pi\)
\(318\) 0 0
\(319\) −10.0746 −0.564069
\(320\) 0 0
\(321\) 63.3041 3.53329
\(322\) 0 0
\(323\) −4.83991 −0.269300
\(324\) 0 0
\(325\) −2.25511 −0.125091
\(326\) 0 0
\(327\) −32.7098 −1.80885
\(328\) 0 0
\(329\) 10.5848 0.583559
\(330\) 0 0
\(331\) 13.4993 0.741989 0.370994 0.928635i \(-0.379017\pi\)
0.370994 + 0.928635i \(0.379017\pi\)
\(332\) 0 0
\(333\) 4.58480 0.251246
\(334\) 0 0
\(335\) 10.2646 0.560816
\(336\) 0 0
\(337\) −2.72447 −0.148412 −0.0742058 0.997243i \(-0.523642\pi\)
−0.0742058 + 0.997243i \(0.523642\pi\)
\(338\) 0 0
\(339\) 39.5401 2.14753
\(340\) 0 0
\(341\) −27.9444 −1.51328
\(342\) 0 0
\(343\) −17.9592 −0.969703
\(344\) 0 0
\(345\) 5.09501 0.274306
\(346\) 0 0
\(347\) 20.4620 1.09846 0.549229 0.835672i \(-0.314921\pi\)
0.549229 + 0.835672i \(0.314921\pi\)
\(348\) 0 0
\(349\) 8.70024 0.465713 0.232856 0.972511i \(-0.425193\pi\)
0.232856 + 0.972511i \(0.425193\pi\)
\(350\) 0 0
\(351\) −35.9349 −1.91806
\(352\) 0 0
\(353\) −14.5292 −0.773313 −0.386657 0.922224i \(-0.626370\pi\)
−0.386657 + 0.922224i \(0.626370\pi\)
\(354\) 0 0
\(355\) −4.78219 −0.253812
\(356\) 0 0
\(357\) −5.09501 −0.269657
\(358\) 0 0
\(359\) 4.24559 0.224074 0.112037 0.993704i \(-0.464263\pi\)
0.112037 + 0.993704i \(0.464263\pi\)
\(360\) 0 0
\(361\) 4.42471 0.232880
\(362\) 0 0
\(363\) 5.21781 0.273864
\(364\) 0 0
\(365\) 6.83991 0.358017
\(366\) 0 0
\(367\) −12.6425 −0.659934 −0.329967 0.943992i \(-0.607038\pi\)
−0.329967 + 0.943992i \(0.607038\pi\)
\(368\) 0 0
\(369\) 71.3041 3.71194
\(370\) 0 0
\(371\) 19.9853 1.03758
\(372\) 0 0
\(373\) −20.0190 −1.03655 −0.518273 0.855215i \(-0.673425\pi\)
−0.518273 + 0.855215i \(0.673425\pi\)
\(374\) 0 0
\(375\) −3.29240 −0.170019
\(376\) 0 0
\(377\) −6.40429 −0.329838
\(378\) 0 0
\(379\) 12.4525 0.639642 0.319821 0.947478i \(-0.396377\pi\)
0.319821 + 0.947478i \(0.396377\pi\)
\(380\) 0 0
\(381\) −45.8794 −2.35047
\(382\) 0 0
\(383\) −6.95534 −0.355401 −0.177701 0.984085i \(-0.556866\pi\)
−0.177701 + 0.984085i \(0.556866\pi\)
\(384\) 0 0
\(385\) 5.48979 0.279786
\(386\) 0 0
\(387\) 15.6798 0.797050
\(388\) 0 0
\(389\) −31.0950 −1.57658 −0.788290 0.615304i \(-0.789033\pi\)
−0.788290 + 0.615304i \(0.789033\pi\)
\(390\) 0 0
\(391\) 1.54751 0.0782608
\(392\) 0 0
\(393\) −56.7193 −2.86111
\(394\) 0 0
\(395\) 2.64252 0.132960
\(396\) 0 0
\(397\) 7.53063 0.377951 0.188976 0.981982i \(-0.439483\pi\)
0.188976 + 0.981982i \(0.439483\pi\)
\(398\) 0 0
\(399\) 24.6594 1.23451
\(400\) 0 0
\(401\) −6.65940 −0.332554 −0.166277 0.986079i \(-0.553175\pi\)
−0.166277 + 0.986079i \(0.553175\pi\)
\(402\) 0 0
\(403\) −17.7639 −0.884884
\(404\) 0 0
\(405\) −28.9444 −1.43826
\(406\) 0 0
\(407\) −2.07459 −0.102834
\(408\) 0 0
\(409\) 5.93492 0.293463 0.146731 0.989176i \(-0.453125\pi\)
0.146731 + 0.989176i \(0.453125\pi\)
\(410\) 0 0
\(411\) −28.0190 −1.38208
\(412\) 0 0
\(413\) −20.6594 −1.01658
\(414\) 0 0
\(415\) −2.51021 −0.123221
\(416\) 0 0
\(417\) −1.48979 −0.0729553
\(418\) 0 0
\(419\) 9.07814 0.443496 0.221748 0.975104i \(-0.428824\pi\)
0.221748 + 0.975104i \(0.428824\pi\)
\(420\) 0 0
\(421\) −7.73538 −0.376999 −0.188500 0.982073i \(-0.560362\pi\)
−0.188500 + 0.982073i \(0.560362\pi\)
\(422\) 0 0
\(423\) 53.6243 2.60730
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −5.79525 −0.280452
\(428\) 0 0
\(429\) 26.3392 1.27167
\(430\) 0 0
\(431\) −5.62210 −0.270807 −0.135404 0.990791i \(-0.543233\pi\)
−0.135404 + 0.990791i \(0.543233\pi\)
\(432\) 0 0
\(433\) 6.84942 0.329162 0.164581 0.986364i \(-0.447373\pi\)
0.164581 + 0.986364i \(0.447373\pi\)
\(434\) 0 0
\(435\) −9.35012 −0.448304
\(436\) 0 0
\(437\) −7.48979 −0.358285
\(438\) 0 0
\(439\) −7.43207 −0.354714 −0.177357 0.984147i \(-0.556755\pi\)
−0.177357 + 0.984147i \(0.556755\pi\)
\(440\) 0 0
\(441\) −36.1045 −1.71926
\(442\) 0 0
\(443\) −15.5644 −0.739486 −0.369743 0.929134i \(-0.620554\pi\)
−0.369743 + 0.929134i \(0.620554\pi\)
\(444\) 0 0
\(445\) −18.0095 −0.853733
\(446\) 0 0
\(447\) 72.0043 3.40569
\(448\) 0 0
\(449\) 11.4152 0.538716 0.269358 0.963040i \(-0.413188\pi\)
0.269358 + 0.963040i \(0.413188\pi\)
\(450\) 0 0
\(451\) −32.2646 −1.51928
\(452\) 0 0
\(453\) −34.8494 −1.63737
\(454\) 0 0
\(455\) 3.48979 0.163604
\(456\) 0 0
\(457\) 7.63898 0.357336 0.178668 0.983909i \(-0.442821\pi\)
0.178668 + 0.983909i \(0.442821\pi\)
\(458\) 0 0
\(459\) −15.9349 −0.743778
\(460\) 0 0
\(461\) 1.85081 0.0862010 0.0431005 0.999071i \(-0.486276\pi\)
0.0431005 + 0.999071i \(0.486276\pi\)
\(462\) 0 0
\(463\) 22.1995 1.03170 0.515850 0.856679i \(-0.327476\pi\)
0.515850 + 0.856679i \(0.327476\pi\)
\(464\) 0 0
\(465\) −25.9349 −1.20270
\(466\) 0 0
\(467\) −10.5102 −0.486355 −0.243177 0.969982i \(-0.578190\pi\)
−0.243177 + 0.969982i \(0.578190\pi\)
\(468\) 0 0
\(469\) −15.8846 −0.733481
\(470\) 0 0
\(471\) −36.7748 −1.69449
\(472\) 0 0
\(473\) −7.09501 −0.326229
\(474\) 0 0
\(475\) 4.83991 0.222070
\(476\) 0 0
\(477\) 101.249 4.63585
\(478\) 0 0
\(479\) −14.3319 −0.654839 −0.327419 0.944879i \(-0.606179\pi\)
−0.327419 + 0.944879i \(0.606179\pi\)
\(480\) 0 0
\(481\) −1.31879 −0.0601318
\(482\) 0 0
\(483\) −7.88457 −0.358760
\(484\) 0 0
\(485\) −11.7449 −0.533308
\(486\) 0 0
\(487\) 26.8663 1.21743 0.608714 0.793390i \(-0.291686\pi\)
0.608714 + 0.793390i \(0.291686\pi\)
\(488\) 0 0
\(489\) −16.9649 −0.767177
\(490\) 0 0
\(491\) −8.69072 −0.392207 −0.196103 0.980583i \(-0.562829\pi\)
−0.196103 + 0.980583i \(0.562829\pi\)
\(492\) 0 0
\(493\) −2.83991 −0.127903
\(494\) 0 0
\(495\) 27.8121 1.25006
\(496\) 0 0
\(497\) 7.40047 0.331957
\(498\) 0 0
\(499\) 11.4173 0.511111 0.255555 0.966794i \(-0.417742\pi\)
0.255555 + 0.966794i \(0.417742\pi\)
\(500\) 0 0
\(501\) 77.7734 3.47466
\(502\) 0 0
\(503\) −2.81352 −0.125449 −0.0627243 0.998031i \(-0.519979\pi\)
−0.0627243 + 0.998031i \(0.519979\pi\)
\(504\) 0 0
\(505\) −10.5848 −0.471018
\(506\) 0 0
\(507\) −26.0577 −1.15726
\(508\) 0 0
\(509\) −9.48979 −0.420628 −0.210314 0.977634i \(-0.567449\pi\)
−0.210314 + 0.977634i \(0.567449\pi\)
\(510\) 0 0
\(511\) −10.5848 −0.468244
\(512\) 0 0
\(513\) 77.1236 3.40509
\(514\) 0 0
\(515\) −9.60522 −0.423257
\(516\) 0 0
\(517\) −24.2646 −1.06716
\(518\) 0 0
\(519\) −63.4941 −2.78708
\(520\) 0 0
\(521\) −27.8290 −1.21921 −0.609605 0.792705i \(-0.708672\pi\)
−0.609605 + 0.792705i \(0.708672\pi\)
\(522\) 0 0
\(523\) −19.4342 −0.849799 −0.424900 0.905240i \(-0.639691\pi\)
−0.424900 + 0.905240i \(0.639691\pi\)
\(524\) 0 0
\(525\) 5.09501 0.222365
\(526\) 0 0
\(527\) −7.87720 −0.343136
\(528\) 0 0
\(529\) −20.6052 −0.895879
\(530\) 0 0
\(531\) −104.664 −4.54202
\(532\) 0 0
\(533\) −20.5102 −0.888396
\(534\) 0 0
\(535\) −19.2273 −0.831270
\(536\) 0 0
\(537\) −16.1492 −0.696889
\(538\) 0 0
\(539\) 16.3371 0.703687
\(540\) 0 0
\(541\) −3.28504 −0.141235 −0.0706174 0.997503i \(-0.522497\pi\)
−0.0706174 + 0.997503i \(0.522497\pi\)
\(542\) 0 0
\(543\) −60.1345 −2.58062
\(544\) 0 0
\(545\) 9.93492 0.425565
\(546\) 0 0
\(547\) 14.2720 0.610226 0.305113 0.952316i \(-0.401306\pi\)
0.305113 + 0.952316i \(0.401306\pi\)
\(548\) 0 0
\(549\) −29.3596 −1.25304
\(550\) 0 0
\(551\) 13.7449 0.585552
\(552\) 0 0
\(553\) −4.08932 −0.173895
\(554\) 0 0
\(555\) −1.92541 −0.0817290
\(556\) 0 0
\(557\) −8.44513 −0.357832 −0.178916 0.983864i \(-0.557259\pi\)
−0.178916 + 0.983864i \(0.557259\pi\)
\(558\) 0 0
\(559\) −4.51021 −0.190762
\(560\) 0 0
\(561\) 11.6798 0.493122
\(562\) 0 0
\(563\) −7.16961 −0.302163 −0.151081 0.988521i \(-0.548276\pi\)
−0.151081 + 0.988521i \(0.548276\pi\)
\(564\) 0 0
\(565\) −12.0095 −0.505244
\(566\) 0 0
\(567\) 44.7917 1.88107
\(568\) 0 0
\(569\) 21.5739 0.904425 0.452212 0.891910i \(-0.350635\pi\)
0.452212 + 0.891910i \(0.350635\pi\)
\(570\) 0 0
\(571\) 32.7361 1.36996 0.684982 0.728560i \(-0.259810\pi\)
0.684982 + 0.728560i \(0.259810\pi\)
\(572\) 0 0
\(573\) 82.8685 3.46188
\(574\) 0 0
\(575\) −1.54751 −0.0645355
\(576\) 0 0
\(577\) −44.5292 −1.85378 −0.926888 0.375337i \(-0.877527\pi\)
−0.926888 + 0.375337i \(0.877527\pi\)
\(578\) 0 0
\(579\) 13.4152 0.557517
\(580\) 0 0
\(581\) 3.88457 0.161159
\(582\) 0 0
\(583\) −45.8143 −1.89743
\(584\) 0 0
\(585\) 17.6798 0.730970
\(586\) 0 0
\(587\) −18.0000 −0.742940 −0.371470 0.928445i \(-0.621146\pi\)
−0.371470 + 0.928445i \(0.621146\pi\)
\(588\) 0 0
\(589\) 38.1249 1.57091
\(590\) 0 0
\(591\) −71.6243 −2.94623
\(592\) 0 0
\(593\) 20.9796 0.861528 0.430764 0.902465i \(-0.358244\pi\)
0.430764 + 0.902465i \(0.358244\pi\)
\(594\) 0 0
\(595\) 1.54751 0.0634416
\(596\) 0 0
\(597\) −65.8238 −2.69399
\(598\) 0 0
\(599\) 22.7002 0.927507 0.463753 0.885964i \(-0.346502\pi\)
0.463753 + 0.885964i \(0.346502\pi\)
\(600\) 0 0
\(601\) −33.1140 −1.35075 −0.675375 0.737474i \(-0.736018\pi\)
−0.675375 + 0.737474i \(0.736018\pi\)
\(602\) 0 0
\(603\) −80.4737 −3.27714
\(604\) 0 0
\(605\) −1.58480 −0.0644314
\(606\) 0 0
\(607\) 3.58835 0.145647 0.0728233 0.997345i \(-0.476799\pi\)
0.0728233 + 0.997345i \(0.476799\pi\)
\(608\) 0 0
\(609\) 14.4694 0.586328
\(610\) 0 0
\(611\) −15.4247 −0.624017
\(612\) 0 0
\(613\) 32.7843 1.32415 0.662074 0.749439i \(-0.269677\pi\)
0.662074 + 0.749439i \(0.269677\pi\)
\(614\) 0 0
\(615\) −29.9444 −1.20748
\(616\) 0 0
\(617\) 22.0504 0.887714 0.443857 0.896098i \(-0.353610\pi\)
0.443857 + 0.896098i \(0.353610\pi\)
\(618\) 0 0
\(619\) 19.4511 0.781806 0.390903 0.920432i \(-0.372163\pi\)
0.390903 + 0.920432i \(0.372163\pi\)
\(620\) 0 0
\(621\) −24.6594 −0.989547
\(622\) 0 0
\(623\) 27.8698 1.11658
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −56.5292 −2.25756
\(628\) 0 0
\(629\) −0.584803 −0.0233176
\(630\) 0 0
\(631\) −11.0950 −0.441686 −0.220843 0.975309i \(-0.570881\pi\)
−0.220843 + 0.975309i \(0.570881\pi\)
\(632\) 0 0
\(633\) −3.66079 −0.145503
\(634\) 0 0
\(635\) 13.9349 0.552990
\(636\) 0 0
\(637\) 10.3853 0.411479
\(638\) 0 0
\(639\) 37.4919 1.48316
\(640\) 0 0
\(641\) −11.1359 −0.439840 −0.219920 0.975518i \(-0.570580\pi\)
−0.219920 + 0.975518i \(0.570580\pi\)
\(642\) 0 0
\(643\) 30.7361 1.21212 0.606058 0.795421i \(-0.292750\pi\)
0.606058 + 0.795421i \(0.292750\pi\)
\(644\) 0 0
\(645\) −6.58480 −0.259276
\(646\) 0 0
\(647\) −19.3691 −0.761480 −0.380740 0.924682i \(-0.624331\pi\)
−0.380740 + 0.924682i \(0.624331\pi\)
\(648\) 0 0
\(649\) 47.3596 1.85903
\(650\) 0 0
\(651\) 40.1345 1.57299
\(652\) 0 0
\(653\) −17.7354 −0.694039 −0.347020 0.937858i \(-0.612806\pi\)
−0.347020 + 0.937858i \(0.612806\pi\)
\(654\) 0 0
\(655\) 17.2273 0.673127
\(656\) 0 0
\(657\) −53.6243 −2.09208
\(658\) 0 0
\(659\) 18.7843 0.731734 0.365867 0.930667i \(-0.380772\pi\)
0.365867 + 0.930667i \(0.380772\pi\)
\(660\) 0 0
\(661\) 40.2091 1.56395 0.781976 0.623309i \(-0.214212\pi\)
0.781976 + 0.623309i \(0.214212\pi\)
\(662\) 0 0
\(663\) 7.42471 0.288352
\(664\) 0 0
\(665\) −7.48979 −0.290442
\(666\) 0 0
\(667\) −4.39478 −0.170166
\(668\) 0 0
\(669\) −19.0490 −0.736475
\(670\) 0 0
\(671\) 13.2850 0.512863
\(672\) 0 0
\(673\) 1.01091 0.0389675 0.0194838 0.999810i \(-0.493798\pi\)
0.0194838 + 0.999810i \(0.493798\pi\)
\(674\) 0 0
\(675\) 15.9349 0.613335
\(676\) 0 0
\(677\) 1.85081 0.0711326 0.0355663 0.999367i \(-0.488677\pi\)
0.0355663 + 0.999367i \(0.488677\pi\)
\(678\) 0 0
\(679\) 18.1753 0.697504
\(680\) 0 0
\(681\) −51.2200 −1.96275
\(682\) 0 0
\(683\) 36.6112 1.40089 0.700444 0.713707i \(-0.252985\pi\)
0.700444 + 0.713707i \(0.252985\pi\)
\(684\) 0 0
\(685\) 8.51021 0.325158
\(686\) 0 0
\(687\) −25.0394 −0.955315
\(688\) 0 0
\(689\) −29.1236 −1.10952
\(690\) 0 0
\(691\) −29.8867 −1.13694 −0.568472 0.822702i \(-0.692465\pi\)
−0.568472 + 0.822702i \(0.692465\pi\)
\(692\) 0 0
\(693\) −43.0394 −1.63493
\(694\) 0 0
\(695\) 0.452493 0.0171641
\(696\) 0 0
\(697\) −9.09501 −0.344498
\(698\) 0 0
\(699\) 32.7098 1.23720
\(700\) 0 0
\(701\) 15.2442 0.575765 0.287883 0.957666i \(-0.407049\pi\)
0.287883 + 0.957666i \(0.407049\pi\)
\(702\) 0 0
\(703\) 2.83039 0.106750
\(704\) 0 0
\(705\) −22.5197 −0.848142
\(706\) 0 0
\(707\) 16.3801 0.616035
\(708\) 0 0
\(709\) −34.5606 −1.29795 −0.648975 0.760810i \(-0.724802\pi\)
−0.648975 + 0.760810i \(0.724802\pi\)
\(710\) 0 0
\(711\) −20.7171 −0.776952
\(712\) 0 0
\(713\) −12.1900 −0.456520
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) 28.0190 1.04639
\(718\) 0 0
\(719\) 20.1418 0.751163 0.375582 0.926789i \(-0.377443\pi\)
0.375582 + 0.926789i \(0.377443\pi\)
\(720\) 0 0
\(721\) 14.8641 0.553570
\(722\) 0 0
\(723\) −97.5349 −3.62736
\(724\) 0 0
\(725\) 2.83991 0.105472
\(726\) 0 0
\(727\) −36.8998 −1.36854 −0.684268 0.729230i \(-0.739878\pi\)
−0.684268 + 0.729230i \(0.739878\pi\)
\(728\) 0 0
\(729\) 69.5292 2.57516
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) 0 0
\(733\) 42.6784 1.57636 0.788182 0.615442i \(-0.211023\pi\)
0.788182 + 0.615442i \(0.211023\pi\)
\(734\) 0 0
\(735\) 15.1622 0.559268
\(736\) 0 0
\(737\) 36.4138 1.34132
\(738\) 0 0
\(739\) 28.7098 1.05611 0.528053 0.849212i \(-0.322922\pi\)
0.528053 + 0.849212i \(0.322922\pi\)
\(740\) 0 0
\(741\) −35.9349 −1.32010
\(742\) 0 0
\(743\) −18.4525 −0.676956 −0.338478 0.940974i \(-0.609912\pi\)
−0.338478 + 0.940974i \(0.609912\pi\)
\(744\) 0 0
\(745\) −21.8698 −0.801249
\(746\) 0 0
\(747\) 19.6798 0.720047
\(748\) 0 0
\(749\) 29.7544 1.08720
\(750\) 0 0
\(751\) 0.271981 0.00992474 0.00496237 0.999988i \(-0.498420\pi\)
0.00496237 + 0.999988i \(0.498420\pi\)
\(752\) 0 0
\(753\) −7.21045 −0.262763
\(754\) 0 0
\(755\) 10.5848 0.385220
\(756\) 0 0
\(757\) −30.7843 −1.11888 −0.559438 0.828872i \(-0.688983\pi\)
−0.559438 + 0.828872i \(0.688983\pi\)
\(758\) 0 0
\(759\) 18.0746 0.656066
\(760\) 0 0
\(761\) −39.9853 −1.44947 −0.724733 0.689030i \(-0.758037\pi\)
−0.724733 + 0.689030i \(0.758037\pi\)
\(762\) 0 0
\(763\) −15.3744 −0.556589
\(764\) 0 0
\(765\) 7.83991 0.283452
\(766\) 0 0
\(767\) 30.1059 1.08706
\(768\) 0 0
\(769\) −19.8195 −0.714709 −0.357355 0.933969i \(-0.616321\pi\)
−0.357355 + 0.933969i \(0.616321\pi\)
\(770\) 0 0
\(771\) −5.53063 −0.199181
\(772\) 0 0
\(773\) −16.5102 −0.593831 −0.296915 0.954904i \(-0.595958\pi\)
−0.296915 + 0.954904i \(0.595958\pi\)
\(774\) 0 0
\(775\) 7.87720 0.282958
\(776\) 0 0
\(777\) 2.97958 0.106892
\(778\) 0 0
\(779\) 44.0190 1.57715
\(780\) 0 0
\(781\) −16.9649 −0.607050
\(782\) 0 0
\(783\) 45.2537 1.61724
\(784\) 0 0
\(785\) 11.1696 0.398660
\(786\) 0 0
\(787\) −33.1214 −1.18065 −0.590325 0.807165i \(-0.701001\pi\)
−0.590325 + 0.807165i \(0.701001\pi\)
\(788\) 0 0
\(789\) −104.580 −3.72313
\(790\) 0 0
\(791\) 18.5848 0.660800
\(792\) 0 0
\(793\) 8.44513 0.299895
\(794\) 0 0
\(795\) −42.5197 −1.50802
\(796\) 0 0
\(797\) −52.5701 −1.86213 −0.931064 0.364856i \(-0.881118\pi\)
−0.931064 + 0.364856i \(0.881118\pi\)
\(798\) 0 0
\(799\) −6.83991 −0.241979
\(800\) 0 0
\(801\) 141.193 4.98881
\(802\) 0 0
\(803\) 24.2646 0.856280
\(804\) 0 0
\(805\) 2.39478 0.0844048
\(806\) 0 0
\(807\) 10.6499 0.374894
\(808\) 0 0
\(809\) −0.979580 −0.0344402 −0.0172201 0.999852i \(-0.505482\pi\)
−0.0172201 + 0.999852i \(0.505482\pi\)
\(810\) 0 0
\(811\) 43.7157 1.53507 0.767533 0.641009i \(-0.221484\pi\)
0.767533 + 0.641009i \(0.221484\pi\)
\(812\) 0 0
\(813\) −35.6580 −1.25058
\(814\) 0 0
\(815\) 5.15273 0.180492
\(816\) 0 0
\(817\) 9.67982 0.338654
\(818\) 0 0
\(819\) −27.3596 −0.956023
\(820\) 0 0
\(821\) 44.9335 1.56819 0.784096 0.620640i \(-0.213127\pi\)
0.784096 + 0.620640i \(0.213127\pi\)
\(822\) 0 0
\(823\) −18.0767 −0.630116 −0.315058 0.949072i \(-0.602024\pi\)
−0.315058 + 0.949072i \(0.602024\pi\)
\(824\) 0 0
\(825\) −11.6798 −0.406639
\(826\) 0 0
\(827\) −30.7361 −1.06880 −0.534400 0.845232i \(-0.679462\pi\)
−0.534400 + 0.845232i \(0.679462\pi\)
\(828\) 0 0
\(829\) 16.8494 0.585205 0.292602 0.956234i \(-0.405479\pi\)
0.292602 + 0.956234i \(0.405479\pi\)
\(830\) 0 0
\(831\) −76.2836 −2.64625
\(832\) 0 0
\(833\) 4.60522 0.159562
\(834\) 0 0
\(835\) −23.6221 −0.817476
\(836\) 0 0
\(837\) 125.523 4.33870
\(838\) 0 0
\(839\) 41.5570 1.43471 0.717354 0.696709i \(-0.245353\pi\)
0.717354 + 0.696709i \(0.245353\pi\)
\(840\) 0 0
\(841\) −20.9349 −0.721894
\(842\) 0 0
\(843\) −51.8385 −1.78541
\(844\) 0 0
\(845\) 7.91450 0.272267
\(846\) 0 0
\(847\) 2.45249 0.0842687
\(848\) 0 0
\(849\) 31.6485 1.08617
\(850\) 0 0
\(851\) −0.904987 −0.0310225
\(852\) 0 0
\(853\) 30.6447 1.04925 0.524627 0.851332i \(-0.324205\pi\)
0.524627 + 0.851332i \(0.324205\pi\)
\(854\) 0 0
\(855\) −37.9444 −1.29767
\(856\) 0 0
\(857\) −51.8794 −1.77217 −0.886083 0.463527i \(-0.846584\pi\)
−0.886083 + 0.463527i \(0.846584\pi\)
\(858\) 0 0
\(859\) 10.5007 0.358279 0.179140 0.983824i \(-0.442669\pi\)
0.179140 + 0.983824i \(0.442669\pi\)
\(860\) 0 0
\(861\) 46.3392 1.57924
\(862\) 0 0
\(863\) −5.22517 −0.177867 −0.0889334 0.996038i \(-0.528346\pi\)
−0.0889334 + 0.996038i \(0.528346\pi\)
\(864\) 0 0
\(865\) 19.2850 0.655711
\(866\) 0 0
\(867\) 3.29240 0.111816
\(868\) 0 0
\(869\) 9.37436 0.318003
\(870\) 0 0
\(871\) 23.1478 0.784333
\(872\) 0 0
\(873\) 92.0789 3.11640
\(874\) 0 0
\(875\) −1.54751 −0.0523153
\(876\) 0 0
\(877\) 3.38144 0.114183 0.0570916 0.998369i \(-0.481817\pi\)
0.0570916 + 0.998369i \(0.481817\pi\)
\(878\) 0 0
\(879\) 19.0490 0.642506
\(880\) 0 0
\(881\) −38.6447 −1.30197 −0.650986 0.759090i \(-0.725644\pi\)
−0.650986 + 0.759090i \(0.725644\pi\)
\(882\) 0 0
\(883\) 18.4138 0.619674 0.309837 0.950790i \(-0.399726\pi\)
0.309837 + 0.950790i \(0.399726\pi\)
\(884\) 0 0
\(885\) 43.9540 1.47750
\(886\) 0 0
\(887\) 30.7171 1.03138 0.515690 0.856775i \(-0.327536\pi\)
0.515690 + 0.856775i \(0.327536\pi\)
\(888\) 0 0
\(889\) −21.5644 −0.723246
\(890\) 0 0
\(891\) −102.681 −3.43993
\(892\) 0 0
\(893\) 33.1045 1.10780
\(894\) 0 0
\(895\) 4.90499 0.163956
\(896\) 0 0
\(897\) 11.4898 0.383633
\(898\) 0 0
\(899\) 22.3705 0.746099
\(900\) 0 0
\(901\) −12.9145 −0.430244
\(902\) 0 0
\(903\) 10.1900 0.339103
\(904\) 0 0
\(905\) 18.2646 0.607136
\(906\) 0 0
\(907\) 26.5219 0.880644 0.440322 0.897840i \(-0.354864\pi\)
0.440322 + 0.897840i \(0.354864\pi\)
\(908\) 0 0
\(909\) 82.9839 2.75240
\(910\) 0 0
\(911\) −23.6967 −0.785106 −0.392553 0.919729i \(-0.628408\pi\)
−0.392553 + 0.919729i \(0.628408\pi\)
\(912\) 0 0
\(913\) −8.90499 −0.294712
\(914\) 0 0
\(915\) 12.3297 0.407607
\(916\) 0 0
\(917\) −26.6594 −0.880371
\(918\) 0 0
\(919\) 27.2295 0.898218 0.449109 0.893477i \(-0.351742\pi\)
0.449109 + 0.893477i \(0.351742\pi\)
\(920\) 0 0
\(921\) 94.1127 3.10112
\(922\) 0 0
\(923\) −10.7843 −0.354971
\(924\) 0 0
\(925\) 0.584803 0.0192282
\(926\) 0 0
\(927\) 75.3041 2.47331
\(928\) 0 0
\(929\) 1.09501 0.0359262 0.0179631 0.999839i \(-0.494282\pi\)
0.0179631 + 0.999839i \(0.494282\pi\)
\(930\) 0 0
\(931\) −22.2889 −0.730488
\(932\) 0 0
\(933\) 84.7383 2.77421
\(934\) 0 0
\(935\) −3.54751 −0.116016
\(936\) 0 0
\(937\) −19.6798 −0.642912 −0.321456 0.946925i \(-0.604172\pi\)
−0.321456 + 0.946925i \(0.604172\pi\)
\(938\) 0 0
\(939\) 56.7748 1.85278
\(940\) 0 0
\(941\) −42.5606 −1.38743 −0.693717 0.720247i \(-0.744028\pi\)
−0.693717 + 0.720247i \(0.744028\pi\)
\(942\) 0 0
\(943\) −14.0746 −0.458332
\(944\) 0 0
\(945\) −24.6594 −0.802170
\(946\) 0 0
\(947\) 5.72802 0.186136 0.0930678 0.995660i \(-0.470333\pi\)
0.0930678 + 0.995660i \(0.470333\pi\)
\(948\) 0 0
\(949\) 15.4247 0.500707
\(950\) 0 0
\(951\) −31.7354 −1.02909
\(952\) 0 0
\(953\) 7.85081 0.254313 0.127156 0.991883i \(-0.459415\pi\)
0.127156 + 0.991883i \(0.459415\pi\)
\(954\) 0 0
\(955\) −25.1696 −0.814469
\(956\) 0 0
\(957\) −33.1696 −1.07222
\(958\) 0 0
\(959\) −13.1696 −0.425269
\(960\) 0 0
\(961\) 31.0504 1.00162
\(962\) 0 0
\(963\) 150.740 4.85754
\(964\) 0 0
\(965\) −4.07459 −0.131166
\(966\) 0 0
\(967\) −12.3202 −0.396190 −0.198095 0.980183i \(-0.563476\pi\)
−0.198095 + 0.980183i \(0.563476\pi\)
\(968\) 0 0
\(969\) −15.9349 −0.511903
\(970\) 0 0
\(971\) 4.69072 0.150532 0.0752662 0.997163i \(-0.476019\pi\)
0.0752662 + 0.997163i \(0.476019\pi\)
\(972\) 0 0
\(973\) −0.700237 −0.0224486
\(974\) 0 0
\(975\) −7.42471 −0.237781
\(976\) 0 0
\(977\) 19.8290 0.634386 0.317193 0.948361i \(-0.397260\pi\)
0.317193 + 0.948361i \(0.397260\pi\)
\(978\) 0 0
\(979\) −63.8889 −2.04190
\(980\) 0 0
\(981\) −77.8889 −2.48680
\(982\) 0 0
\(983\) −2.86630 −0.0914207 −0.0457104 0.998955i \(-0.514555\pi\)
−0.0457104 + 0.998955i \(0.514555\pi\)
\(984\) 0 0
\(985\) 21.7544 0.693153
\(986\) 0 0
\(987\) 34.8494 1.10927
\(988\) 0 0
\(989\) −3.09501 −0.0984157
\(990\) 0 0
\(991\) 38.3319 1.21765 0.608826 0.793304i \(-0.291641\pi\)
0.608826 + 0.793304i \(0.291641\pi\)
\(992\) 0 0
\(993\) 44.4451 1.41042
\(994\) 0 0
\(995\) 19.9926 0.633809
\(996\) 0 0
\(997\) −20.3055 −0.643080 −0.321540 0.946896i \(-0.604201\pi\)
−0.321540 + 0.946896i \(0.604201\pi\)
\(998\) 0 0
\(999\) 9.31879 0.294834
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5440.2.a.bu.1.3 3
4.3 odd 2 5440.2.a.bn.1.1 3
8.3 odd 2 680.2.a.h.1.3 3
8.5 even 2 1360.2.a.p.1.1 3
24.11 even 2 6120.2.a.bq.1.1 3
40.3 even 4 3400.2.e.i.2449.6 6
40.19 odd 2 3400.2.a.k.1.1 3
40.27 even 4 3400.2.e.i.2449.1 6
40.29 even 2 6800.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.a.h.1.3 3 8.3 odd 2
1360.2.a.p.1.1 3 8.5 even 2
3400.2.a.k.1.1 3 40.19 odd 2
3400.2.e.i.2449.1 6 40.27 even 4
3400.2.e.i.2449.6 6 40.3 even 4
5440.2.a.bn.1.1 3 4.3 odd 2
5440.2.a.bu.1.3 3 1.1 even 1 trivial
6120.2.a.bq.1.1 3 24.11 even 2
6800.2.a.bs.1.3 3 40.29 even 2