Properties

Label 6800.2.a.bs
Level $6800$
Weight $2$
Character orbit 6800.a
Self dual yes
Analytic conductor $54.298$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6800,2,Mod(1,6800)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6800, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6800.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 6800 = 2^{4} \cdot 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6800.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,3,0,0,0,4,0,8,0,2,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(54.2982733745\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 7x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 680)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 + 1) q^{3} + ( - \beta_{2} + 1) q^{7} + (\beta_{2} - \beta_1 + 3) q^{9} + (\beta_{2} + 1) q^{11} + ( - \beta_{2} - \beta_1 - 2) q^{13} + q^{17} + ( - \beta_{2} + \beta_1) q^{19} - 2 \beta_{2} q^{21}+ \cdots + (3 \beta_{2} - 4 \beta_1 + 11) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + 4 q^{7} + 8 q^{9} + 2 q^{11} - 5 q^{13} + 3 q^{17} + q^{19} + 2 q^{21} - 4 q^{23} + 15 q^{27} + 7 q^{29} + 3 q^{31} + 4 q^{33} - 12 q^{37} + 7 q^{39} + 10 q^{41} + 6 q^{43} - 5 q^{47} + 7 q^{49}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 7x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 5 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.89511
−0.602705
−2.29240
0 −1.89511 0 0 0 0.513465 0 0.591429 0
1.2 0 1.60270 0 0 0 5.03404 0 −0.431337 0
1.3 0 3.29240 0 0 0 −1.54751 0 7.83991 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6800.2.a.bs 3
4.b odd 2 1 3400.2.a.k 3
5.b even 2 1 1360.2.a.p 3
20.d odd 2 1 680.2.a.h 3
20.e even 4 2 3400.2.e.i 6
40.e odd 2 1 5440.2.a.bn 3
40.f even 2 1 5440.2.a.bu 3
60.h even 2 1 6120.2.a.bq 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.a.h 3 20.d odd 2 1
1360.2.a.p 3 5.b even 2 1
3400.2.a.k 3 4.b odd 2 1
3400.2.e.i 6 20.e even 4 2
5440.2.a.bn 3 40.e odd 2 1
5440.2.a.bu 3 40.f even 2 1
6120.2.a.bq 3 60.h even 2 1
6800.2.a.bs 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6800))\):

\( T_{3}^{3} - 3T_{3}^{2} - 4T_{3} + 10 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 6T_{7} + 4 \) Copy content Toggle raw display
\( T_{11}^{3} - 2T_{11}^{2} - 10T_{11} + 16 \) Copy content Toggle raw display
\( T_{13}^{3} + 5T_{13}^{2} - 8T_{13} - 32 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 3 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 2 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( T^{3} + 5 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$17$ \( (T - 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - T^{2} + \cdots + 40 \) Copy content Toggle raw display
$23$ \( T^{3} + 4 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$29$ \( T^{3} - 7 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$31$ \( T^{3} - 3 T^{2} + \cdots + 170 \) Copy content Toggle raw display
$37$ \( T^{3} + 12 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$41$ \( T^{3} - 10 T^{2} + \cdots + 184 \) Copy content Toggle raw display
$43$ \( (T - 2)^{3} \) Copy content Toggle raw display
$47$ \( T^{3} + 5 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( T^{3} - 13 T^{2} + \cdots + 1564 \) Copy content Toggle raw display
$59$ \( T^{3} - 21 T^{2} + \cdots + 776 \) Copy content Toggle raw display
$61$ \( T^{3} - 13 T^{2} + \cdots - 20 \) Copy content Toggle raw display
$67$ \( T^{3} - 14 T^{2} + \cdots + 1448 \) Copy content Toggle raw display
$71$ \( T^{3} - 11 T^{2} + \cdots + 410 \) Copy content Toggle raw display
$73$ \( T^{3} - 5 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$79$ \( T^{3} - 18 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$83$ \( T^{3} - 4 T^{2} + \cdots + 160 \) Copy content Toggle raw display
$89$ \( T^{3} - 11 T^{2} + \cdots + 536 \) Copy content Toggle raw display
$97$ \( T^{3} + 37 T^{2} + \cdots + 1684 \) Copy content Toggle raw display
show more
show less