Properties

Label 2-6800-1.1-c1-0-82
Degree $2$
Conductor $6800$
Sign $1$
Analytic cond. $54.2982$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.29·3-s − 1.54·7-s + 7.83·9-s + 3.54·11-s − 2.25·13-s + 17-s − 4.83·19-s − 5.09·21-s + 1.54·23-s + 15.9·27-s − 2.83·29-s + 7.87·31-s + 11.6·33-s + 0.584·37-s − 7.42·39-s + 9.09·41-s + 2·43-s − 6.83·47-s − 4.60·49-s + 3.29·51-s + 12.9·53-s − 15.9·57-s + 13.3·59-s + 3.74·61-s − 12.1·63-s − 10.2·67-s + 5.09·69-s + ⋯
L(s)  = 1  + 1.90·3-s − 0.584·7-s + 2.61·9-s + 1.06·11-s − 0.625·13-s + 0.242·17-s − 1.11·19-s − 1.11·21-s + 0.322·23-s + 3.06·27-s − 0.527·29-s + 1.41·31-s + 2.03·33-s + 0.0961·37-s − 1.18·39-s + 1.42·41-s + 0.304·43-s − 0.997·47-s − 0.657·49-s + 0.461·51-s + 1.77·53-s − 2.11·57-s + 1.73·59-s + 0.479·61-s − 1.52·63-s − 1.25·67-s + 0.613·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6800\)    =    \(2^{4} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(54.2982\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.442276905\)
\(L(\frac12)\) \(\approx\) \(4.442276905\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good3 \( 1 - 3.29T + 3T^{2} \)
7 \( 1 + 1.54T + 7T^{2} \)
11 \( 1 - 3.54T + 11T^{2} \)
13 \( 1 + 2.25T + 13T^{2} \)
19 \( 1 + 4.83T + 19T^{2} \)
23 \( 1 - 1.54T + 23T^{2} \)
29 \( 1 + 2.83T + 29T^{2} \)
31 \( 1 - 7.87T + 31T^{2} \)
37 \( 1 - 0.584T + 37T^{2} \)
41 \( 1 - 9.09T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 6.83T + 47T^{2} \)
53 \( 1 - 12.9T + 53T^{2} \)
59 \( 1 - 13.3T + 59T^{2} \)
61 \( 1 - 3.74T + 61T^{2} \)
67 \( 1 + 10.2T + 67T^{2} \)
71 \( 1 - 4.78T + 71T^{2} \)
73 \( 1 - 6.83T + 73T^{2} \)
79 \( 1 + 2.64T + 79T^{2} \)
83 \( 1 - 2.51T + 83T^{2} \)
89 \( 1 - 18.0T + 89T^{2} \)
97 \( 1 + 11.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.138403027316202347225957881814, −7.33224181052779567092260208887, −6.80756358230150049994649966868, −6.11453255021216040276293556460, −4.80722010911119252737566414249, −4.07431551191088779423518125562, −3.57157677493960960492138982087, −2.68056045283070700104839067405, −2.13521988275044126963617806068, −1.02521189434480575516928809153, 1.02521189434480575516928809153, 2.13521988275044126963617806068, 2.68056045283070700104839067405, 3.57157677493960960492138982087, 4.07431551191088779423518125562, 4.80722010911119252737566414249, 6.11453255021216040276293556460, 6.80756358230150049994649966868, 7.33224181052779567092260208887, 8.138403027316202347225957881814

Graph of the $Z$-function along the critical line