Properties

Label 680.2.l.b.101.21
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.21
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.b.101.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.458720 - 1.33775i) q^{2} -2.54711 q^{3} +(-1.57915 - 1.22731i) q^{4} -1.00000 q^{5} +(-1.16841 + 3.40740i) q^{6} +0.654431i q^{7} +(-2.36622 + 1.54952i) q^{8} +3.48778 q^{9} +(-0.458720 + 1.33775i) q^{10} -2.31821 q^{11} +(4.02228 + 3.12609i) q^{12} +0.495577i q^{13} +(0.875466 + 0.300201i) q^{14} +2.54711 q^{15} +(0.987437 + 3.87621i) q^{16} +(2.19658 + 3.48928i) q^{17} +(1.59992 - 4.66578i) q^{18} -2.57745i q^{19} +(1.57915 + 1.22731i) q^{20} -1.66691i q^{21} +(-1.06341 + 3.10119i) q^{22} +0.188252i q^{23} +(6.02703 - 3.94680i) q^{24} +1.00000 q^{25} +(0.662958 + 0.227331i) q^{26} -1.24244 q^{27} +(0.803188 - 1.03345i) q^{28} +6.85794 q^{29} +(1.16841 - 3.40740i) q^{30} -3.96966i q^{31} +(5.63835 + 0.457151i) q^{32} +5.90475 q^{33} +(5.67539 - 1.33787i) q^{34} -0.654431i q^{35} +(-5.50774 - 4.28058i) q^{36} +3.06408 q^{37} +(-3.44799 - 1.18233i) q^{38} -1.26229i q^{39} +(2.36622 - 1.54952i) q^{40} -3.21537i q^{41} +(-2.22991 - 0.764646i) q^{42} +3.55727i q^{43} +(3.66081 + 2.84516i) q^{44} -3.48778 q^{45} +(0.251834 + 0.0863550i) q^{46} -3.43065 q^{47} +(-2.51511 - 9.87313i) q^{48} +6.57172 q^{49} +(0.458720 - 1.33775i) q^{50} +(-5.59493 - 8.88758i) q^{51} +(0.608224 - 0.782590i) q^{52} +8.47932i q^{53} +(-0.569934 + 1.66208i) q^{54} +2.31821 q^{55} +(-1.01405 - 1.54853i) q^{56} +6.56507i q^{57} +(3.14588 - 9.17420i) q^{58} +0.432821i q^{59} +(-4.02228 - 3.12609i) q^{60} +3.55435 q^{61} +(-5.31041 - 1.82096i) q^{62} +2.28252i q^{63} +(3.19798 - 7.33300i) q^{64} -0.495577i q^{65} +(2.70863 - 7.89908i) q^{66} +8.66134i q^{67} +(0.813685 - 8.20597i) q^{68} -0.479499i q^{69} +(-0.875466 - 0.300201i) q^{70} +9.72787i q^{71} +(-8.25286 + 5.40439i) q^{72} -3.67345i q^{73} +(1.40556 - 4.09897i) q^{74} -2.54711 q^{75} +(-3.16333 + 4.07019i) q^{76} -1.51711i q^{77} +(-1.68863 - 0.579038i) q^{78} -4.08394i q^{79} +(-0.987437 - 3.87621i) q^{80} -7.29871 q^{81} +(-4.30136 - 1.47495i) q^{82} +15.3164i q^{83} +(-2.04581 + 2.63230i) q^{84} +(-2.19658 - 3.48928i) q^{85} +(4.75874 + 1.63179i) q^{86} -17.4679 q^{87} +(5.48540 - 3.59211i) q^{88} +8.98386 q^{89} +(-1.59992 + 4.66578i) q^{90} -0.324321 q^{91} +(0.231043 - 0.297278i) q^{92} +10.1112i q^{93} +(-1.57371 + 4.58935i) q^{94} +2.57745i q^{95} +(-14.3615 - 1.16442i) q^{96} +11.6566i q^{97} +(3.01458 - 8.79132i) q^{98} -8.08543 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 4 q^{3} + 2 q^{4} - 36 q^{5} + 36 q^{9} + 8 q^{11} + 2 q^{12} - 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} - 2 q^{20} - 26 q^{24} + 36 q^{25} + 6 q^{26} + 16 q^{27} - 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.458720 1.33775i 0.324364 0.945932i
\(3\) −2.54711 −1.47058 −0.735288 0.677755i \(-0.762953\pi\)
−0.735288 + 0.677755i \(0.762953\pi\)
\(4\) −1.57915 1.22731i −0.789576 0.613653i
\(5\) −1.00000 −0.447214
\(6\) −1.16841 + 3.40740i −0.477003 + 1.39107i
\(7\) 0.654431i 0.247352i 0.992323 + 0.123676i \(0.0394683\pi\)
−0.992323 + 0.123676i \(0.960532\pi\)
\(8\) −2.36622 + 1.54952i −0.836585 + 0.547838i
\(9\) 3.48778 1.16259
\(10\) −0.458720 + 1.33775i −0.145060 + 0.423034i
\(11\) −2.31821 −0.698967 −0.349484 0.936942i \(-0.613643\pi\)
−0.349484 + 0.936942i \(0.613643\pi\)
\(12\) 4.02228 + 3.12609i 1.16113 + 0.902424i
\(13\) 0.495577i 0.137448i 0.997636 + 0.0687241i \(0.0218928\pi\)
−0.997636 + 0.0687241i \(0.978107\pi\)
\(14\) 0.875466 + 0.300201i 0.233978 + 0.0802321i
\(15\) 2.54711 0.657662
\(16\) 0.987437 + 3.87621i 0.246859 + 0.969051i
\(17\) 2.19658 + 3.48928i 0.532748 + 0.846274i
\(18\) 1.59992 4.66578i 0.377104 1.09974i
\(19\) 2.57745i 0.591308i −0.955295 0.295654i \(-0.904462\pi\)
0.955295 0.295654i \(-0.0955376\pi\)
\(20\) 1.57915 + 1.22731i 0.353109 + 0.274434i
\(21\) 1.66691i 0.363750i
\(22\) −1.06341 + 3.10119i −0.226720 + 0.661176i
\(23\) 0.188252i 0.0392532i 0.999807 + 0.0196266i \(0.00624775\pi\)
−0.999807 + 0.0196266i \(0.993752\pi\)
\(24\) 6.02703 3.94680i 1.23026 0.805637i
\(25\) 1.00000 0.200000
\(26\) 0.662958 + 0.227331i 0.130017 + 0.0445833i
\(27\) −1.24244 −0.239108
\(28\) 0.803188 1.03345i 0.151788 0.195303i
\(29\) 6.85794 1.27349 0.636743 0.771076i \(-0.280281\pi\)
0.636743 + 0.771076i \(0.280281\pi\)
\(30\) 1.16841 3.40740i 0.213322 0.622103i
\(31\) 3.96966i 0.712972i −0.934301 0.356486i \(-0.883975\pi\)
0.934301 0.356486i \(-0.116025\pi\)
\(32\) 5.63835 + 0.457151i 0.996729 + 0.0808137i
\(33\) 5.90475 1.02789
\(34\) 5.67539 1.33787i 0.973322 0.229443i
\(35\) 0.654431i 0.110619i
\(36\) −5.50774 4.28058i −0.917957 0.713430i
\(37\) 3.06408 0.503732 0.251866 0.967762i \(-0.418956\pi\)
0.251866 + 0.967762i \(0.418956\pi\)
\(38\) −3.44799 1.18233i −0.559338 0.191799i
\(39\) 1.26229i 0.202128i
\(40\) 2.36622 1.54952i 0.374132 0.245000i
\(41\) 3.21537i 0.502156i −0.967967 0.251078i \(-0.919215\pi\)
0.967967 0.251078i \(-0.0807851\pi\)
\(42\) −2.22991 0.764646i −0.344083 0.117987i
\(43\) 3.55727i 0.542479i 0.962512 + 0.271239i \(0.0874335\pi\)
−0.962512 + 0.271239i \(0.912566\pi\)
\(44\) 3.66081 + 2.84516i 0.551888 + 0.428924i
\(45\) −3.48778 −0.519928
\(46\) 0.251834 + 0.0863550i 0.0371309 + 0.0127324i
\(47\) −3.43065 −0.500411 −0.250206 0.968193i \(-0.580498\pi\)
−0.250206 + 0.968193i \(0.580498\pi\)
\(48\) −2.51511 9.87313i −0.363025 1.42506i
\(49\) 6.57172 0.938817
\(50\) 0.458720 1.33775i 0.0648729 0.189186i
\(51\) −5.59493 8.88758i −0.783447 1.24451i
\(52\) 0.608224 0.782590i 0.0843456 0.108526i
\(53\) 8.47932i 1.16472i 0.812930 + 0.582362i \(0.197871\pi\)
−0.812930 + 0.582362i \(0.802129\pi\)
\(54\) −0.569934 + 1.66208i −0.0775582 + 0.226180i
\(55\) 2.31821 0.312588
\(56\) −1.01405 1.54853i −0.135509 0.206931i
\(57\) 6.56507i 0.869564i
\(58\) 3.14588 9.17420i 0.413074 1.20463i
\(59\) 0.432821i 0.0563485i 0.999603 + 0.0281743i \(0.00896933\pi\)
−0.999603 + 0.0281743i \(0.991031\pi\)
\(60\) −4.02228 3.12609i −0.519274 0.403576i
\(61\) 3.55435 0.455089 0.227544 0.973768i \(-0.426930\pi\)
0.227544 + 0.973768i \(0.426930\pi\)
\(62\) −5.31041 1.82096i −0.674423 0.231263i
\(63\) 2.28252i 0.287570i
\(64\) 3.19798 7.33300i 0.399748 0.916625i
\(65\) 0.495577i 0.0614687i
\(66\) 2.70863 7.89908i 0.333409 0.972310i
\(67\) 8.66134i 1.05815i 0.848575 + 0.529076i \(0.177461\pi\)
−0.848575 + 0.529076i \(0.822539\pi\)
\(68\) 0.813685 8.20597i 0.0986738 0.995120i
\(69\) 0.479499i 0.0577249i
\(70\) −0.875466 0.300201i −0.104638 0.0358809i
\(71\) 9.72787i 1.15449i 0.816573 + 0.577243i \(0.195871\pi\)
−0.816573 + 0.577243i \(0.804129\pi\)
\(72\) −8.25286 + 5.40439i −0.972609 + 0.636913i
\(73\) 3.67345i 0.429945i −0.976620 0.214973i \(-0.931034\pi\)
0.976620 0.214973i \(-0.0689662\pi\)
\(74\) 1.40556 4.09897i 0.163393 0.476496i
\(75\) −2.54711 −0.294115
\(76\) −3.16333 + 4.07019i −0.362858 + 0.466883i
\(77\) 1.51711i 0.172891i
\(78\) −1.68863 0.579038i −0.191199 0.0655631i
\(79\) 4.08394i 0.459480i −0.973252 0.229740i \(-0.926212\pi\)
0.973252 0.229740i \(-0.0737875\pi\)
\(80\) −0.987437 3.87621i −0.110399 0.433373i
\(81\) −7.29871 −0.810968
\(82\) −4.30136 1.47495i −0.475006 0.162881i
\(83\) 15.3164i 1.68119i 0.541665 + 0.840595i \(0.317794\pi\)
−0.541665 + 0.840595i \(0.682206\pi\)
\(84\) −2.04581 + 2.63230i −0.223216 + 0.287208i
\(85\) −2.19658 3.48928i −0.238252 0.378465i
\(86\) 4.75874 + 1.63179i 0.513148 + 0.175961i
\(87\) −17.4679 −1.87276
\(88\) 5.48540 3.59211i 0.584745 0.382921i
\(89\) 8.98386 0.952287 0.476144 0.879368i \(-0.342034\pi\)
0.476144 + 0.879368i \(0.342034\pi\)
\(90\) −1.59992 + 4.66578i −0.168646 + 0.491817i
\(91\) −0.324321 −0.0339981
\(92\) 0.231043 0.297278i 0.0240879 0.0309934i
\(93\) 10.1112i 1.04848i
\(94\) −1.57371 + 4.58935i −0.162316 + 0.473355i
\(95\) 2.57745i 0.264441i
\(96\) −14.3615 1.16442i −1.46577 0.118843i
\(97\) 11.6566i 1.18355i 0.806102 + 0.591776i \(0.201573\pi\)
−0.806102 + 0.591776i \(0.798427\pi\)
\(98\) 3.01458 8.79132i 0.304519 0.888057i
\(99\) −8.08543 −0.812616
\(100\) −1.57915 1.22731i −0.157915 0.122731i
\(101\) 7.75678i 0.771828i 0.922535 + 0.385914i \(0.126114\pi\)
−0.922535 + 0.385914i \(0.873886\pi\)
\(102\) −14.4559 + 3.40770i −1.43134 + 0.337413i
\(103\) 5.75307 0.566866 0.283433 0.958992i \(-0.408527\pi\)
0.283433 + 0.958992i \(0.408527\pi\)
\(104\) −0.767905 1.17264i −0.0752993 0.114987i
\(105\) 1.66691i 0.162674i
\(106\) 11.3432 + 3.88964i 1.10175 + 0.377795i
\(107\) 11.3343 1.09572 0.547862 0.836569i \(-0.315442\pi\)
0.547862 + 0.836569i \(0.315442\pi\)
\(108\) 1.96201 + 1.52486i 0.188794 + 0.146730i
\(109\) 2.73908 0.262357 0.131178 0.991359i \(-0.458124\pi\)
0.131178 + 0.991359i \(0.458124\pi\)
\(110\) 1.06341 3.10119i 0.101392 0.295687i
\(111\) −7.80456 −0.740776
\(112\) −2.53671 + 0.646209i −0.239697 + 0.0610610i
\(113\) 13.9883i 1.31591i 0.753059 + 0.657953i \(0.228577\pi\)
−0.753059 + 0.657953i \(0.771423\pi\)
\(114\) 8.78242 + 3.01153i 0.822549 + 0.282056i
\(115\) 0.188252i 0.0175546i
\(116\) −10.8297 8.41679i −1.00551 0.781479i
\(117\) 1.72846i 0.159797i
\(118\) 0.579007 + 0.198544i 0.0533019 + 0.0182775i
\(119\) −2.28349 + 1.43751i −0.209327 + 0.131776i
\(120\) −6.02703 + 3.94680i −0.550190 + 0.360292i
\(121\) −5.62589 −0.511445
\(122\) 1.63046 4.75484i 0.147614 0.430483i
\(123\) 8.18990i 0.738459i
\(124\) −4.87199 + 6.26869i −0.437518 + 0.562945i
\(125\) −1.00000 −0.0894427
\(126\) 3.05344 + 1.04704i 0.272022 + 0.0932774i
\(127\) −16.7241 −1.48403 −0.742013 0.670385i \(-0.766129\pi\)
−0.742013 + 0.670385i \(0.766129\pi\)
\(128\) −8.34274 7.64190i −0.737401 0.675455i
\(129\) 9.06077i 0.797757i
\(130\) −0.662958 0.227331i −0.0581452 0.0199383i
\(131\) 1.25462 0.109617 0.0548084 0.998497i \(-0.482545\pi\)
0.0548084 + 0.998497i \(0.482545\pi\)
\(132\) −9.32449 7.24694i −0.811593 0.630765i
\(133\) 1.68677 0.146261
\(134\) 11.5867 + 3.97313i 1.00094 + 0.343227i
\(135\) 1.24244 0.106932
\(136\) −10.6043 4.85275i −0.909310 0.416120i
\(137\) 15.8578 1.35483 0.677413 0.735603i \(-0.263101\pi\)
0.677413 + 0.735603i \(0.263101\pi\)
\(138\) −0.641450 0.219956i −0.0546038 0.0187239i
\(139\) −5.49102 −0.465742 −0.232871 0.972508i \(-0.574812\pi\)
−0.232871 + 0.972508i \(0.574812\pi\)
\(140\) −0.803188 + 1.03345i −0.0678818 + 0.0873421i
\(141\) 8.73824 0.735893
\(142\) 13.0135 + 4.46237i 1.09206 + 0.374474i
\(143\) 1.14885i 0.0960718i
\(144\) 3.44397 + 13.5194i 0.286997 + 1.12661i
\(145\) −6.85794 −0.569521
\(146\) −4.91416 1.68509i −0.406699 0.139459i
\(147\) −16.7389 −1.38060
\(148\) −4.83865 3.76057i −0.397734 0.309117i
\(149\) 3.99288i 0.327109i −0.986534 0.163555i \(-0.947704\pi\)
0.986534 0.163555i \(-0.0522960\pi\)
\(150\) −1.16841 + 3.40740i −0.0954005 + 0.278213i
\(151\) −6.42385 −0.522765 −0.261383 0.965235i \(-0.584178\pi\)
−0.261383 + 0.965235i \(0.584178\pi\)
\(152\) 3.99381 + 6.09882i 0.323941 + 0.494680i
\(153\) 7.66119 + 12.1698i 0.619370 + 0.983874i
\(154\) −2.02952 0.695930i −0.163543 0.0560796i
\(155\) 3.96966i 0.318851i
\(156\) −1.54922 + 1.99335i −0.124037 + 0.159595i
\(157\) 22.9114i 1.82853i −0.405116 0.914265i \(-0.632769\pi\)
0.405116 0.914265i \(-0.367231\pi\)
\(158\) −5.46330 1.87339i −0.434637 0.149039i
\(159\) 21.5978i 1.71282i
\(160\) −5.63835 0.457151i −0.445751 0.0361410i
\(161\) −0.123198 −0.00970936
\(162\) −3.34807 + 9.76385i −0.263049 + 0.767121i
\(163\) 16.1246 1.26297 0.631487 0.775387i \(-0.282445\pi\)
0.631487 + 0.775387i \(0.282445\pi\)
\(164\) −3.94624 + 5.07755i −0.308150 + 0.396490i
\(165\) −5.90475 −0.459684
\(166\) 20.4895 + 7.02593i 1.59029 + 0.545318i
\(167\) 13.2324i 1.02395i −0.859000 0.511976i \(-0.828914\pi\)
0.859000 0.511976i \(-0.171086\pi\)
\(168\) 2.58291 + 3.94427i 0.199276 + 0.304307i
\(169\) 12.7544 0.981108
\(170\) −5.67539 + 1.33787i −0.435283 + 0.102610i
\(171\) 8.98960i 0.687452i
\(172\) 4.36586 5.61747i 0.332894 0.428328i
\(173\) −21.3027 −1.61961 −0.809806 0.586697i \(-0.800428\pi\)
−0.809806 + 0.586697i \(0.800428\pi\)
\(174\) −8.01290 + 23.3677i −0.607456 + 1.77150i
\(175\) 0.654431i 0.0494704i
\(176\) −2.28909 8.98587i −0.172546 0.677335i
\(177\) 1.10244i 0.0828648i
\(178\) 4.12108 12.0182i 0.308888 0.900799i
\(179\) 11.4748i 0.857667i 0.903384 + 0.428833i \(0.141075\pi\)
−0.903384 + 0.428833i \(0.858925\pi\)
\(180\) 5.50774 + 4.28058i 0.410523 + 0.319056i
\(181\) −8.44241 −0.627519 −0.313760 0.949502i \(-0.601589\pi\)
−0.313760 + 0.949502i \(0.601589\pi\)
\(182\) −0.148773 + 0.433860i −0.0110278 + 0.0321599i
\(183\) −9.05334 −0.669242
\(184\) −0.291700 0.445445i −0.0215044 0.0328387i
\(185\) −3.06408 −0.225276
\(186\) 13.5262 + 4.63820i 0.991791 + 0.340089i
\(187\) −5.09213 8.08888i −0.372374 0.591518i
\(188\) 5.41751 + 4.21045i 0.395112 + 0.307079i
\(189\) 0.813094i 0.0591439i
\(190\) 3.44799 + 1.18233i 0.250143 + 0.0857753i
\(191\) 26.7666 1.93676 0.968382 0.249473i \(-0.0802575\pi\)
0.968382 + 0.249473i \(0.0802575\pi\)
\(192\) −8.14562 + 18.6780i −0.587860 + 1.34797i
\(193\) 19.5588i 1.40788i 0.710261 + 0.703938i \(0.248577\pi\)
−0.710261 + 0.703938i \(0.751423\pi\)
\(194\) 15.5937 + 5.34714i 1.11956 + 0.383902i
\(195\) 1.26229i 0.0903944i
\(196\) −10.3777 8.06552i −0.741267 0.576108i
\(197\) −8.04276 −0.573023 −0.286512 0.958077i \(-0.592496\pi\)
−0.286512 + 0.958077i \(0.592496\pi\)
\(198\) −3.70895 + 10.8163i −0.263584 + 0.768680i
\(199\) 23.3064i 1.65215i −0.563561 0.826075i \(-0.690569\pi\)
0.563561 0.826075i \(-0.309431\pi\)
\(200\) −2.36622 + 1.54952i −0.167317 + 0.109568i
\(201\) 22.0614i 1.55609i
\(202\) 10.3766 + 3.55819i 0.730097 + 0.250353i
\(203\) 4.48805i 0.314999i
\(204\) −2.07255 + 20.9015i −0.145107 + 1.46340i
\(205\) 3.21537i 0.224571i
\(206\) 2.63905 7.69616i 0.183871 0.536217i
\(207\) 0.656582i 0.0456356i
\(208\) −1.92096 + 0.489350i −0.133194 + 0.0339303i
\(209\) 5.97509i 0.413305i
\(210\) 2.22991 + 0.764646i 0.153878 + 0.0527656i
\(211\) 21.8256 1.50254 0.751268 0.659998i \(-0.229443\pi\)
0.751268 + 0.659998i \(0.229443\pi\)
\(212\) 10.4067 13.3901i 0.714737 0.919638i
\(213\) 24.7780i 1.69776i
\(214\) 5.19925 15.1624i 0.355414 1.03648i
\(215\) 3.55727i 0.242604i
\(216\) 2.93989 1.92519i 0.200034 0.130993i
\(217\) 2.59787 0.176355
\(218\) 1.25647 3.66421i 0.0850992 0.248172i
\(219\) 9.35670i 0.632267i
\(220\) −3.66081 2.84516i −0.246812 0.191821i
\(221\) −1.72920 + 1.08857i −0.116319 + 0.0732253i
\(222\) −3.58011 + 10.4406i −0.240281 + 0.700724i
\(223\) −14.9113 −0.998536 −0.499268 0.866448i \(-0.666398\pi\)
−0.499268 + 0.866448i \(0.666398\pi\)
\(224\) −0.299174 + 3.68991i −0.0199894 + 0.246543i
\(225\) 3.48778 0.232519
\(226\) 18.7128 + 6.41671i 1.24476 + 0.426833i
\(227\) 6.36332 0.422348 0.211174 0.977448i \(-0.432271\pi\)
0.211174 + 0.977448i \(0.432271\pi\)
\(228\) 8.05735 10.3672i 0.533611 0.686587i
\(229\) 6.95553i 0.459634i −0.973234 0.229817i \(-0.926187\pi\)
0.973234 0.229817i \(-0.0738128\pi\)
\(230\) −0.251834 0.0863550i −0.0166054 0.00569408i
\(231\) 3.86425i 0.254249i
\(232\) −16.2274 + 10.6265i −1.06538 + 0.697664i
\(233\) 4.82255i 0.315936i 0.987444 + 0.157968i \(0.0504942\pi\)
−0.987444 + 0.157968i \(0.949506\pi\)
\(234\) 2.31225 + 0.792882i 0.151157 + 0.0518323i
\(235\) 3.43065 0.223791
\(236\) 0.531204 0.683490i 0.0345785 0.0444914i
\(237\) 10.4023i 0.675700i
\(238\) 0.875543 + 3.71416i 0.0567531 + 0.240753i
\(239\) 2.02631 0.131071 0.0655355 0.997850i \(-0.479124\pi\)
0.0655355 + 0.997850i \(0.479124\pi\)
\(240\) 2.51511 + 9.87313i 0.162350 + 0.637308i
\(241\) 5.62463i 0.362315i 0.983454 + 0.181157i \(0.0579843\pi\)
−0.983454 + 0.181157i \(0.942016\pi\)
\(242\) −2.58071 + 7.52604i −0.165894 + 0.483792i
\(243\) 22.3180 1.43170
\(244\) −5.61286 4.36228i −0.359327 0.279267i
\(245\) −6.57172 −0.419852
\(246\) 10.9560 + 3.75688i 0.698532 + 0.239530i
\(247\) 1.27733 0.0812743
\(248\) 6.15106 + 9.39308i 0.390593 + 0.596461i
\(249\) 39.0125i 2.47232i
\(250\) −0.458720 + 1.33775i −0.0290120 + 0.0846068i
\(251\) 21.2370i 1.34047i 0.742151 + 0.670233i \(0.233806\pi\)
−0.742151 + 0.670233i \(0.766194\pi\)
\(252\) 2.80135 3.60444i 0.176468 0.227058i
\(253\) 0.436408i 0.0274367i
\(254\) −7.67170 + 22.3727i −0.481365 + 1.40379i
\(255\) 5.59493 + 8.88758i 0.350368 + 0.556562i
\(256\) −14.0499 + 7.65501i −0.878121 + 0.478438i
\(257\) −3.56840 −0.222591 −0.111295 0.993787i \(-0.535500\pi\)
−0.111295 + 0.993787i \(0.535500\pi\)
\(258\) −12.1211 4.15636i −0.754624 0.258764i
\(259\) 2.00523i 0.124599i
\(260\) −0.608224 + 0.782590i −0.0377205 + 0.0485342i
\(261\) 23.9190 1.48055
\(262\) 0.575520 1.67837i 0.0355558 0.103690i
\(263\) 1.31194 0.0808976 0.0404488 0.999182i \(-0.487121\pi\)
0.0404488 + 0.999182i \(0.487121\pi\)
\(264\) −13.9719 + 9.14952i −0.859913 + 0.563114i
\(265\) 8.47932i 0.520880i
\(266\) 0.773754 2.25647i 0.0474419 0.138353i
\(267\) −22.8829 −1.40041
\(268\) 10.6301 13.6776i 0.649338 0.835490i
\(269\) −22.5763 −1.37650 −0.688249 0.725474i \(-0.741620\pi\)
−0.688249 + 0.725474i \(0.741620\pi\)
\(270\) 0.569934 1.66208i 0.0346851 0.101151i
\(271\) 7.24361 0.440018 0.220009 0.975498i \(-0.429391\pi\)
0.220009 + 0.975498i \(0.429391\pi\)
\(272\) −11.3562 + 11.9598i −0.688569 + 0.725171i
\(273\) 0.826082 0.0499967
\(274\) 7.27432 21.2138i 0.439457 1.28157i
\(275\) −2.31821 −0.139793
\(276\) −0.588492 + 0.757201i −0.0354231 + 0.0455782i
\(277\) 15.4507 0.928342 0.464171 0.885746i \(-0.346352\pi\)
0.464171 + 0.885746i \(0.346352\pi\)
\(278\) −2.51884 + 7.34561i −0.151070 + 0.440560i
\(279\) 13.8453i 0.828897i
\(280\) 1.01405 + 1.54853i 0.0606013 + 0.0925422i
\(281\) −19.5260 −1.16482 −0.582412 0.812894i \(-0.697891\pi\)
−0.582412 + 0.812894i \(0.697891\pi\)
\(282\) 4.00841 11.6896i 0.238697 0.696105i
\(283\) 21.5407 1.28046 0.640230 0.768183i \(-0.278839\pi\)
0.640230 + 0.768183i \(0.278839\pi\)
\(284\) 11.9391 15.3618i 0.708454 0.911553i
\(285\) 6.56507i 0.388881i
\(286\) −1.53688 0.527002i −0.0908774 0.0311623i
\(287\) 2.10424 0.124209
\(288\) 19.6654 + 1.59445i 1.15879 + 0.0939536i
\(289\) −7.35010 + 15.3289i −0.432359 + 0.901702i
\(290\) −3.14588 + 9.17420i −0.184732 + 0.538728i
\(291\) 29.6908i 1.74050i
\(292\) −4.50845 + 5.80094i −0.263837 + 0.339474i
\(293\) 21.2734i 1.24280i −0.783492 0.621401i \(-0.786564\pi\)
0.783492 0.621401i \(-0.213436\pi\)
\(294\) −7.67848 + 22.3925i −0.447818 + 1.30596i
\(295\) 0.432821i 0.0251998i
\(296\) −7.25028 + 4.74785i −0.421414 + 0.275963i
\(297\) 2.88025 0.167129
\(298\) −5.34148 1.83162i −0.309423 0.106103i
\(299\) −0.0932932 −0.00539529
\(300\) 4.02228 + 3.12609i 0.232226 + 0.180485i
\(301\) −2.32799 −0.134183
\(302\) −2.94675 + 8.59350i −0.169566 + 0.494501i
\(303\) 19.7574i 1.13503i
\(304\) 9.99074 2.54507i 0.573008 0.145970i
\(305\) −3.55435 −0.203522
\(306\) 19.7946 4.66620i 1.13158 0.266749i
\(307\) 24.5694i 1.40225i −0.713037 0.701126i \(-0.752681\pi\)
0.713037 0.701126i \(-0.247319\pi\)
\(308\) −1.86196 + 2.39575i −0.106095 + 0.136510i
\(309\) −14.6537 −0.833620
\(310\) 5.31041 + 1.82096i 0.301611 + 0.103424i
\(311\) 31.0746i 1.76208i 0.473044 + 0.881039i \(0.343155\pi\)
−0.473044 + 0.881039i \(0.656845\pi\)
\(312\) 1.95594 + 2.98685i 0.110733 + 0.169097i
\(313\) 15.7952i 0.892798i −0.894834 0.446399i \(-0.852706\pi\)
0.894834 0.446399i \(-0.147294\pi\)
\(314\) −30.6498 10.5099i −1.72967 0.593110i
\(315\) 2.28252i 0.128605i
\(316\) −5.01225 + 6.44916i −0.281961 + 0.362794i
\(317\) 3.40672 0.191341 0.0956704 0.995413i \(-0.469501\pi\)
0.0956704 + 0.995413i \(0.469501\pi\)
\(318\) −28.8924 9.90734i −1.62021 0.555576i
\(319\) −15.8982 −0.890126
\(320\) −3.19798 + 7.33300i −0.178773 + 0.409927i
\(321\) −28.8696 −1.61135
\(322\) −0.0565134 + 0.164808i −0.00314937 + 0.00918439i
\(323\) 8.99345 5.66158i 0.500409 0.315018i
\(324\) 11.5258 + 8.95776i 0.640320 + 0.497653i
\(325\) 0.495577i 0.0274896i
\(326\) 7.39667 21.5706i 0.409664 1.19469i
\(327\) −6.97676 −0.385816
\(328\) 4.98227 + 7.60826i 0.275100 + 0.420096i
\(329\) 2.24512i 0.123778i
\(330\) −2.70863 + 7.89908i −0.149105 + 0.434830i
\(331\) 17.2530i 0.948310i −0.880441 0.474155i \(-0.842754\pi\)
0.880441 0.474155i \(-0.157246\pi\)
\(332\) 18.7979 24.1869i 1.03167 1.32743i
\(333\) 10.6869 0.585636
\(334\) −17.7016 6.06996i −0.968589 0.332133i
\(335\) 8.66134i 0.473220i
\(336\) 6.46129 1.64597i 0.352492 0.0897949i
\(337\) 13.8486i 0.754383i 0.926135 + 0.377192i \(0.123110\pi\)
−0.926135 + 0.377192i \(0.876890\pi\)
\(338\) 5.85071 17.0622i 0.318236 0.928062i
\(339\) 35.6297i 1.93514i
\(340\) −0.813685 + 8.20597i −0.0441283 + 0.445031i
\(341\) 9.20251i 0.498344i
\(342\) −12.0258 4.12371i −0.650283 0.222985i
\(343\) 8.88176i 0.479570i
\(344\) −5.51206 8.41728i −0.297190 0.453829i
\(345\) 0.479499i 0.0258154i
\(346\) −9.77198 + 28.4977i −0.525345 + 1.53204i
\(347\) −6.09457 −0.327174 −0.163587 0.986529i \(-0.552306\pi\)
−0.163587 + 0.986529i \(0.552306\pi\)
\(348\) 27.5845 + 21.4385i 1.47869 + 1.14923i
\(349\) 34.5283i 1.84826i −0.382080 0.924129i \(-0.624792\pi\)
0.382080 0.924129i \(-0.375208\pi\)
\(350\) 0.875466 + 0.300201i 0.0467956 + 0.0160464i
\(351\) 0.615726i 0.0328650i
\(352\) −13.0709 1.05977i −0.696681 0.0564861i
\(353\) −33.5676 −1.78662 −0.893312 0.449437i \(-0.851625\pi\)
−0.893312 + 0.449437i \(0.851625\pi\)
\(354\) −1.47480 0.505714i −0.0783845 0.0268784i
\(355\) 9.72787i 0.516302i
\(356\) −14.1869 11.0260i −0.751903 0.584374i
\(357\) 5.81631 3.66150i 0.307832 0.193787i
\(358\) 15.3504 + 5.26372i 0.811295 + 0.278196i
\(359\) 9.02404 0.476271 0.238135 0.971232i \(-0.423464\pi\)
0.238135 + 0.971232i \(0.423464\pi\)
\(360\) 8.25286 5.40439i 0.434964 0.284836i
\(361\) 12.3567 0.650354
\(362\) −3.87271 + 11.2938i −0.203545 + 0.593591i
\(363\) 14.3298 0.752118
\(364\) 0.512152 + 0.398041i 0.0268440 + 0.0208630i
\(365\) 3.67345i 0.192277i
\(366\) −4.15295 + 12.1111i −0.217078 + 0.633058i
\(367\) 35.2634i 1.84073i 0.391055 + 0.920367i \(0.372110\pi\)
−0.391055 + 0.920367i \(0.627890\pi\)
\(368\) −0.729703 + 0.185887i −0.0380384 + 0.00969002i
\(369\) 11.2145i 0.583804i
\(370\) −1.40556 + 4.09897i −0.0730714 + 0.213096i
\(371\) −5.54913 −0.288097
\(372\) 12.4095 15.9671i 0.643403 0.827854i
\(373\) 28.7637i 1.48933i −0.667439 0.744664i \(-0.732610\pi\)
0.667439 0.744664i \(-0.267390\pi\)
\(374\) −13.1568 + 3.10147i −0.680320 + 0.160373i
\(375\) 2.54711 0.131532
\(376\) 8.11766 5.31585i 0.418636 0.274144i
\(377\) 3.39863i 0.175038i
\(378\) −1.08772 0.372983i −0.0559461 0.0191842i
\(379\) −2.79911 −0.143780 −0.0718902 0.997413i \(-0.522903\pi\)
−0.0718902 + 0.997413i \(0.522903\pi\)
\(380\) 3.16333 4.07019i 0.162275 0.208796i
\(381\) 42.5982 2.18237
\(382\) 12.2784 35.8070i 0.628217 1.83205i
\(383\) 4.68600 0.239444 0.119722 0.992807i \(-0.461800\pi\)
0.119722 + 0.992807i \(0.461800\pi\)
\(384\) 21.2499 + 19.4648i 1.08441 + 0.993308i
\(385\) 1.51711i 0.0773191i
\(386\) 26.1648 + 8.97204i 1.33176 + 0.456665i
\(387\) 12.4070i 0.630683i
\(388\) 14.3063 18.4076i 0.726291 0.934504i
\(389\) 35.9648i 1.82349i 0.410758 + 0.911744i \(0.365264\pi\)
−0.410758 + 0.911744i \(0.634736\pi\)
\(390\) 1.68863 + 0.579038i 0.0855070 + 0.0293207i
\(391\) −0.656863 + 0.413510i −0.0332190 + 0.0209121i
\(392\) −15.5501 + 10.1830i −0.785400 + 0.514319i
\(393\) −3.19566 −0.161200
\(394\) −3.68938 + 10.7592i −0.185868 + 0.542041i
\(395\) 4.08394i 0.205486i
\(396\) 12.7681 + 9.92330i 0.641622 + 0.498665i
\(397\) 21.8718 1.09772 0.548858 0.835916i \(-0.315063\pi\)
0.548858 + 0.835916i \(0.315063\pi\)
\(398\) −31.1782 10.6911i −1.56282 0.535898i
\(399\) −4.29638 −0.215088
\(400\) 0.987437 + 3.87621i 0.0493718 + 0.193810i
\(401\) 3.78040i 0.188784i −0.995535 0.0943922i \(-0.969909\pi\)
0.995535 0.0943922i \(-0.0300908\pi\)
\(402\) −29.5127 10.1200i −1.47196 0.504741i
\(403\) 1.96727 0.0979967
\(404\) 9.51994 12.2491i 0.473635 0.609417i
\(405\) 7.29871 0.362676
\(406\) 6.00389 + 2.05876i 0.297968 + 0.102174i
\(407\) −7.10319 −0.352092
\(408\) 27.0103 + 12.3605i 1.33721 + 0.611936i
\(409\) 23.7023 1.17200 0.586001 0.810311i \(-0.300702\pi\)
0.586001 + 0.810311i \(0.300702\pi\)
\(410\) 4.30136 + 1.47495i 0.212429 + 0.0728428i
\(411\) −40.3917 −1.99238
\(412\) −9.08496 7.06078i −0.447584 0.347859i
\(413\) −0.283252 −0.0139379
\(414\) 0.878343 + 0.301188i 0.0431682 + 0.0148026i
\(415\) 15.3164i 0.751851i
\(416\) −0.226553 + 2.79424i −0.0111077 + 0.136999i
\(417\) 13.9862 0.684909
\(418\) 7.99317 + 2.74089i 0.390959 + 0.134061i
\(419\) 3.14894 0.153836 0.0769180 0.997037i \(-0.475492\pi\)
0.0769180 + 0.997037i \(0.475492\pi\)
\(420\) 2.04581 2.63230i 0.0998253 0.128443i
\(421\) 13.3377i 0.650042i 0.945707 + 0.325021i \(0.105371\pi\)
−0.945707 + 0.325021i \(0.894629\pi\)
\(422\) 10.0118 29.1972i 0.487369 1.42130i
\(423\) −11.9654 −0.581775
\(424\) −13.1389 20.0639i −0.638080 0.974390i
\(425\) 2.19658 + 3.48928i 0.106550 + 0.169255i
\(426\) −33.1467 11.3662i −1.60596 0.550692i
\(427\) 2.32608i 0.112567i
\(428\) −17.8985 13.9106i −0.865157 0.672394i
\(429\) 2.92626i 0.141281i
\(430\) −4.75874 1.63179i −0.229487 0.0786921i
\(431\) 7.13978i 0.343911i −0.985105 0.171955i \(-0.944991\pi\)
0.985105 0.171955i \(-0.0550085\pi\)
\(432\) −1.22683 4.81596i −0.0590261 0.231708i
\(433\) −12.0593 −0.579534 −0.289767 0.957097i \(-0.593578\pi\)
−0.289767 + 0.957097i \(0.593578\pi\)
\(434\) 1.19170 3.47530i 0.0572032 0.166820i
\(435\) 17.4679 0.837523
\(436\) −4.32543 3.36170i −0.207150 0.160996i
\(437\) 0.485211 0.0232108
\(438\) 12.5169 + 4.29211i 0.598082 + 0.205085i
\(439\) 16.9899i 0.810885i 0.914121 + 0.405443i \(0.132883\pi\)
−0.914121 + 0.405443i \(0.867117\pi\)
\(440\) −5.48540 + 3.59211i −0.261506 + 0.171247i
\(441\) 22.9207 1.09146
\(442\) 0.663017 + 2.81259i 0.0315365 + 0.133781i
\(443\) 6.08646i 0.289176i 0.989492 + 0.144588i \(0.0461857\pi\)
−0.989492 + 0.144588i \(0.953814\pi\)
\(444\) 12.3246 + 9.57859i 0.584899 + 0.454580i
\(445\) −8.98386 −0.425876
\(446\) −6.84013 + 19.9476i −0.323890 + 0.944548i
\(447\) 10.1703i 0.481039i
\(448\) 4.79895 + 2.09286i 0.226729 + 0.0988783i
\(449\) 15.7621i 0.743859i 0.928261 + 0.371929i \(0.121304\pi\)
−0.928261 + 0.371929i \(0.878696\pi\)
\(450\) 1.59992 4.66578i 0.0754209 0.219947i
\(451\) 7.45391i 0.350991i
\(452\) 17.1679 22.0896i 0.807510 1.03901i
\(453\) 16.3623 0.768766
\(454\) 2.91898 8.51253i 0.136995 0.399513i
\(455\) 0.324321 0.0152044
\(456\) −10.1727 15.5344i −0.476380 0.727464i
\(457\) 7.72090 0.361169 0.180584 0.983560i \(-0.442201\pi\)
0.180584 + 0.983560i \(0.442201\pi\)
\(458\) −9.30476 3.19064i −0.434783 0.149089i
\(459\) −2.72912 4.33523i −0.127385 0.202351i
\(460\) −0.231043 + 0.297278i −0.0107724 + 0.0138607i
\(461\) 34.2083i 1.59324i 0.604481 + 0.796619i \(0.293380\pi\)
−0.604481 + 0.796619i \(0.706620\pi\)
\(462\) 5.16941 + 1.77261i 0.240502 + 0.0824694i
\(463\) 2.77955 0.129177 0.0645883 0.997912i \(-0.479427\pi\)
0.0645883 + 0.997912i \(0.479427\pi\)
\(464\) 6.77178 + 26.5828i 0.314372 + 1.23407i
\(465\) 10.1112i 0.468894i
\(466\) 6.45137 + 2.21220i 0.298854 + 0.102478i
\(467\) 25.2523i 1.16854i −0.811560 0.584269i \(-0.801381\pi\)
0.811560 0.584269i \(-0.198619\pi\)
\(468\) 2.12136 2.72951i 0.0980597 0.126171i
\(469\) −5.66825 −0.261736
\(470\) 1.57371 4.58935i 0.0725897 0.211691i
\(471\) 58.3580i 2.68899i
\(472\) −0.670665 1.02415i −0.0308698 0.0471403i
\(473\) 8.24651i 0.379175i
\(474\) 13.9156 + 4.77173i 0.639166 + 0.219173i
\(475\) 2.57745i 0.118262i
\(476\) 5.37024 + 0.532501i 0.246145 + 0.0244071i
\(477\) 29.5740i 1.35410i
\(478\) 0.929509 2.71069i 0.0425147 0.123984i
\(479\) 16.9072i 0.772511i 0.922392 + 0.386255i \(0.126232\pi\)
−0.922392 + 0.386255i \(0.873768\pi\)
\(480\) 14.3615 + 1.16442i 0.655511 + 0.0531481i
\(481\) 1.51849i 0.0692370i
\(482\) 7.52436 + 2.58013i 0.342725 + 0.117522i
\(483\) 0.313799 0.0142784
\(484\) 8.88413 + 6.90469i 0.403824 + 0.313850i
\(485\) 11.6566i 0.529301i
\(486\) 10.2377 29.8559i 0.464392 1.35429i
\(487\) 29.1269i 1.31987i −0.751324 0.659933i \(-0.770585\pi\)
0.751324 0.659933i \(-0.229415\pi\)
\(488\) −8.41038 + 5.50754i −0.380720 + 0.249315i
\(489\) −41.0711 −1.85730
\(490\) −3.01458 + 8.79132i −0.136185 + 0.397151i
\(491\) 23.7259i 1.07074i 0.844619 + 0.535368i \(0.179827\pi\)
−0.844619 + 0.535368i \(0.820173\pi\)
\(492\) 10.0515 12.9331i 0.453158 0.583069i
\(493\) 15.0640 + 23.9292i 0.678448 + 1.07772i
\(494\) 0.585935 1.70874i 0.0263625 0.0768800i
\(495\) 8.08543 0.363413
\(496\) 15.3872 3.91979i 0.690906 0.176004i
\(497\) −6.36622 −0.285564
\(498\) −52.1890 17.8958i −2.33864 0.801932i
\(499\) 3.53161 0.158097 0.0790483 0.996871i \(-0.474812\pi\)
0.0790483 + 0.996871i \(0.474812\pi\)
\(500\) 1.57915 + 1.22731i 0.0706218 + 0.0548868i
\(501\) 33.7043i 1.50580i
\(502\) 28.4098 + 9.74183i 1.26799 + 0.434799i
\(503\) 27.6635i 1.23346i 0.787177 + 0.616728i \(0.211542\pi\)
−0.787177 + 0.616728i \(0.788458\pi\)
\(504\) −3.53680 5.40093i −0.157542 0.240577i
\(505\) 7.75678i 0.345172i
\(506\) −0.583805 0.200189i −0.0259533 0.00889950i
\(507\) −32.4869 −1.44279
\(508\) 26.4099 + 20.5256i 1.17175 + 0.910678i
\(509\) 10.4113i 0.461472i −0.973016 0.230736i \(-0.925887\pi\)
0.973016 0.230736i \(-0.0741134\pi\)
\(510\) 14.4559 3.40770i 0.640117 0.150896i
\(511\) 2.40402 0.106348
\(512\) 3.79550 + 22.3068i 0.167739 + 0.985831i
\(513\) 3.20234i 0.141387i
\(514\) −1.63690 + 4.77363i −0.0722005 + 0.210556i
\(515\) −5.75307 −0.253510
\(516\) −11.1203 + 14.3083i −0.489546 + 0.629889i
\(517\) 7.95297 0.349771
\(518\) 2.68250 + 0.919840i 0.117862 + 0.0404154i
\(519\) 54.2603 2.38176
\(520\) 0.767905 + 1.17264i 0.0336749 + 0.0514238i
\(521\) 13.3749i 0.585965i −0.956118 0.292983i \(-0.905352\pi\)
0.956118 0.292983i \(-0.0946478\pi\)
\(522\) 10.9721 31.9977i 0.480237 1.40050i
\(523\) 31.3021i 1.36875i 0.729132 + 0.684373i \(0.239924\pi\)
−0.729132 + 0.684373i \(0.760076\pi\)
\(524\) −1.98124 1.53980i −0.0865507 0.0672667i
\(525\) 1.66691i 0.0727499i
\(526\) 0.601813 1.75505i 0.0262403 0.0765237i
\(527\) 13.8512 8.71966i 0.603369 0.379834i
\(528\) 5.83057 + 22.8880i 0.253743 + 0.996073i
\(529\) 22.9646 0.998459
\(530\) −11.3432 3.88964i −0.492718 0.168955i
\(531\) 1.50959i 0.0655105i
\(532\) −2.66366 2.07018i −0.115484 0.0897537i
\(533\) 1.59346 0.0690204
\(534\) −10.4969 + 30.6116i −0.454243 + 1.32469i
\(535\) −11.3343 −0.490023
\(536\) −13.4209 20.4946i −0.579695 0.885233i
\(537\) 29.2276i 1.26126i
\(538\) −10.3562 + 30.2014i −0.446487 + 1.30207i
\(539\) −15.2346 −0.656203
\(540\) −1.96201 1.52486i −0.0844313 0.0656195i
\(541\) 12.3847 0.532461 0.266231 0.963909i \(-0.414222\pi\)
0.266231 + 0.963909i \(0.414222\pi\)
\(542\) 3.32279 9.69014i 0.142726 0.416227i
\(543\) 21.5038 0.922815
\(544\) 10.7899 + 20.6779i 0.462615 + 0.886559i
\(545\) −2.73908 −0.117329
\(546\) 0.378941 1.10509i 0.0162172 0.0472935i
\(547\) 7.06558 0.302102 0.151051 0.988526i \(-0.451734\pi\)
0.151051 + 0.988526i \(0.451734\pi\)
\(548\) −25.0419 19.4624i −1.06974 0.831394i
\(549\) 12.3968 0.529084
\(550\) −1.06341 + 3.10119i −0.0453440 + 0.132235i
\(551\) 17.6760i 0.753023i
\(552\) 0.742993 + 1.13460i 0.0316239 + 0.0482918i
\(553\) 2.67266 0.113653
\(554\) 7.08754 20.6692i 0.301121 0.878148i
\(555\) 7.80456 0.331285
\(556\) 8.67114 + 6.73916i 0.367738 + 0.285804i
\(557\) 7.14741i 0.302845i −0.988469 0.151423i \(-0.951615\pi\)
0.988469 0.151423i \(-0.0483855\pi\)
\(558\) −18.5216 6.35113i −0.784081 0.268865i
\(559\) −1.76290 −0.0745627
\(560\) 2.53671 0.646209i 0.107196 0.0273073i
\(561\) 12.9702 + 20.6033i 0.547604 + 0.869872i
\(562\) −8.95698 + 26.1209i −0.377827 + 1.10184i
\(563\) 40.7336i 1.71672i −0.513049 0.858359i \(-0.671484\pi\)
0.513049 0.858359i \(-0.328516\pi\)
\(564\) −13.7990 10.7245i −0.581043 0.451583i
\(565\) 13.9883i 0.588491i
\(566\) 9.88114 28.8160i 0.415335 1.21123i
\(567\) 4.77651i 0.200594i
\(568\) −15.0735 23.0183i −0.632471 0.965825i
\(569\) 13.5629 0.568587 0.284293 0.958737i \(-0.408241\pi\)
0.284293 + 0.958737i \(0.408241\pi\)
\(570\) −8.78242 3.01153i −0.367855 0.126139i
\(571\) −12.9863 −0.543460 −0.271730 0.962374i \(-0.587596\pi\)
−0.271730 + 0.962374i \(0.587596\pi\)
\(572\) −1.40999 + 1.81421i −0.0589548 + 0.0758560i
\(573\) −68.1776 −2.84816
\(574\) 0.965256 2.81494i 0.0402890 0.117493i
\(575\) 0.188252i 0.00785065i
\(576\) 11.1539 25.5759i 0.464745 1.06566i
\(577\) −41.0167 −1.70755 −0.853773 0.520645i \(-0.825692\pi\)
−0.853773 + 0.520645i \(0.825692\pi\)
\(578\) 17.1346 + 16.8643i 0.712707 + 0.701462i
\(579\) 49.8186i 2.07039i
\(580\) 10.8297 + 8.41679i 0.449679 + 0.349488i
\(581\) −10.0235 −0.415845
\(582\) −39.7189 13.6198i −1.64640 0.564558i
\(583\) 19.6569i 0.814104i
\(584\) 5.69209 + 8.69220i 0.235540 + 0.359686i
\(585\) 1.72846i 0.0714632i
\(586\) −28.4584 9.75852i −1.17561 0.403121i
\(587\) 34.8343i 1.43777i 0.695131 + 0.718884i \(0.255347\pi\)
−0.695131 + 0.718884i \(0.744653\pi\)
\(588\) 26.4333 + 20.5438i 1.09009 + 0.847211i
\(589\) −10.2316 −0.421586
\(590\) −0.579007 0.198544i −0.0238373 0.00817393i
\(591\) 20.4858 0.842674
\(592\) 3.02558 + 11.8770i 0.124351 + 0.488142i
\(593\) −17.2670 −0.709072 −0.354536 0.935042i \(-0.615361\pi\)
−0.354536 + 0.935042i \(0.615361\pi\)
\(594\) 1.32123 3.85305i 0.0542107 0.158093i
\(595\) 2.28349 1.43751i 0.0936140 0.0589321i
\(596\) −4.90049 + 6.30536i −0.200732 + 0.258278i
\(597\) 59.3641i 2.42961i
\(598\) −0.0427955 + 0.124803i −0.00175004 + 0.00510358i
\(599\) 14.3306 0.585531 0.292766 0.956184i \(-0.405424\pi\)
0.292766 + 0.956184i \(0.405424\pi\)
\(600\) 6.02703 3.94680i 0.246052 0.161127i
\(601\) 1.65416i 0.0674746i −0.999431 0.0337373i \(-0.989259\pi\)
0.999431 0.0337373i \(-0.0107409\pi\)
\(602\) −1.06790 + 3.11427i −0.0435242 + 0.126928i
\(603\) 30.2089i 1.23020i
\(604\) 10.1442 + 7.88403i 0.412763 + 0.320797i
\(605\) 5.62589 0.228725
\(606\) −26.4304 9.06312i −1.07366 0.368164i
\(607\) 15.0062i 0.609082i 0.952499 + 0.304541i \(0.0985031\pi\)
−0.952499 + 0.304541i \(0.901497\pi\)
\(608\) 1.17829 14.5326i 0.0477858 0.589374i
\(609\) 11.4316i 0.463230i
\(610\) −1.63046 + 4.75484i −0.0660152 + 0.192518i
\(611\) 1.70015i 0.0687806i
\(612\) 2.83796 28.6207i 0.114718 1.15692i
\(613\) 17.7388i 0.716462i −0.933633 0.358231i \(-0.883380\pi\)
0.933633 0.358231i \(-0.116620\pi\)
\(614\) −32.8678 11.2705i −1.32644 0.454841i
\(615\) 8.18990i 0.330249i
\(616\) 2.35079 + 3.58982i 0.0947161 + 0.144638i
\(617\) 43.1029i 1.73526i −0.497211 0.867629i \(-0.665643\pi\)
0.497211 0.867629i \(-0.334357\pi\)
\(618\) −6.72196 + 19.6030i −0.270397 + 0.788548i
\(619\) −27.0444 −1.08700 −0.543502 0.839408i \(-0.682902\pi\)
−0.543502 + 0.839408i \(0.682902\pi\)
\(620\) 4.87199 6.26869i 0.195664 0.251757i
\(621\) 0.233892i 0.00938577i
\(622\) 41.5700 + 14.2545i 1.66681 + 0.571555i
\(623\) 5.87932i 0.235550i
\(624\) 4.89289 1.24643i 0.195873 0.0498972i
\(625\) 1.00000 0.0400000
\(626\) −21.1301 7.24559i −0.844527 0.289592i
\(627\) 15.2192i 0.607797i
\(628\) −28.1193 + 36.1806i −1.12208 + 1.44376i
\(629\) 6.73049 + 10.6914i 0.268362 + 0.426295i
\(630\) −3.05344 1.04704i −0.121652 0.0417149i
\(631\) −20.9950 −0.835796 −0.417898 0.908494i \(-0.637233\pi\)
−0.417898 + 0.908494i \(0.637233\pi\)
\(632\) 6.32815 + 9.66350i 0.251720 + 0.384394i
\(633\) −55.5922 −2.20959
\(634\) 1.56273 4.55735i 0.0620641 0.180995i
\(635\) 16.7241 0.663677
\(636\) −26.5071 + 34.1062i −1.05108 + 1.35240i
\(637\) 3.25679i 0.129039i
\(638\) −7.29281 + 21.2678i −0.288725 + 0.841999i
\(639\) 33.9287i 1.34220i
\(640\) 8.34274 + 7.64190i 0.329776 + 0.302073i
\(641\) 11.0768i 0.437509i 0.975780 + 0.218755i \(0.0701994\pi\)
−0.975780 + 0.218755i \(0.929801\pi\)
\(642\) −13.2431 + 38.6203i −0.522663 + 1.52422i
\(643\) 24.9194 0.982725 0.491363 0.870955i \(-0.336499\pi\)
0.491363 + 0.870955i \(0.336499\pi\)
\(644\) 0.194548 + 0.151202i 0.00766627 + 0.00595818i
\(645\) 9.06077i 0.356768i
\(646\) −3.44830 14.6281i −0.135671 0.575534i
\(647\) 38.2146 1.50237 0.751185 0.660092i \(-0.229483\pi\)
0.751185 + 0.660092i \(0.229483\pi\)
\(648\) 17.2703 11.3095i 0.678443 0.444279i
\(649\) 1.00337i 0.0393858i
\(650\) 0.662958 + 0.227331i 0.0260033 + 0.00891666i
\(651\) −6.61707 −0.259343
\(652\) −25.4631 19.7898i −0.997213 0.775028i
\(653\) −46.6416 −1.82523 −0.912613 0.408825i \(-0.865939\pi\)
−0.912613 + 0.408825i \(0.865939\pi\)
\(654\) −3.20038 + 9.33316i −0.125145 + 0.364955i
\(655\) −1.25462 −0.0490221
\(656\) 12.4634 3.17497i 0.486615 0.123962i
\(657\) 12.8122i 0.499852i
\(658\) −3.00341 1.02988i −0.117085 0.0401490i
\(659\) 29.2111i 1.13790i 0.822371 + 0.568952i \(0.192651\pi\)
−0.822371 + 0.568952i \(0.807349\pi\)
\(660\) 9.32449 + 7.24694i 0.362955 + 0.282087i
\(661\) 6.88515i 0.267801i 0.990995 + 0.133901i \(0.0427503\pi\)
−0.990995 + 0.133901i \(0.957250\pi\)
\(662\) −23.0802 7.91430i −0.897037 0.307598i
\(663\) 4.40448 2.77272i 0.171056 0.107683i
\(664\) −23.7330 36.2419i −0.921019 1.40646i
\(665\) −1.68677 −0.0654100
\(666\) 4.90228 14.2963i 0.189959 0.553972i
\(667\) 1.29102i 0.0499885i
\(668\) −16.2402 + 20.8959i −0.628351 + 0.808487i
\(669\) 37.9808 1.46842
\(670\) −11.5867 3.97313i −0.447634 0.153496i
\(671\) −8.23975 −0.318092
\(672\) 0.762030 9.39863i 0.0293960 0.362560i
\(673\) 39.7685i 1.53296i 0.642267 + 0.766481i \(0.277994\pi\)
−0.642267 + 0.766481i \(0.722006\pi\)
\(674\) 18.5260 + 6.35265i 0.713595 + 0.244695i
\(675\) −1.24244 −0.0478217
\(676\) −20.1411 15.6536i −0.774659 0.602060i
\(677\) −38.9268 −1.49608 −0.748039 0.663655i \(-0.769004\pi\)
−0.748039 + 0.663655i \(0.769004\pi\)
\(678\) −47.6637 16.3441i −1.83051 0.627691i
\(679\) −7.62847 −0.292754
\(680\) 10.6043 + 4.85275i 0.406656 + 0.186095i
\(681\) −16.2081 −0.621096
\(682\) 12.3107 + 4.22138i 0.471400 + 0.161645i
\(683\) −8.48371 −0.324620 −0.162310 0.986740i \(-0.551894\pi\)
−0.162310 + 0.986740i \(0.551894\pi\)
\(684\) −11.0330 + 14.1959i −0.421857 + 0.542795i
\(685\) −15.8578 −0.605897
\(686\) 11.8816 + 4.07424i 0.453641 + 0.155555i
\(687\) 17.7165i 0.675927i
\(688\) −13.7887 + 3.51258i −0.525690 + 0.133916i
\(689\) −4.20215 −0.160089
\(690\) 0.641450 + 0.219956i 0.0244196 + 0.00837358i
\(691\) −46.3733 −1.76412 −0.882061 0.471136i \(-0.843844\pi\)
−0.882061 + 0.471136i \(0.843844\pi\)
\(692\) 33.6402 + 26.1449i 1.27881 + 0.993881i
\(693\) 5.29136i 0.201002i
\(694\) −2.79570 + 8.15301i −0.106123 + 0.309484i
\(695\) 5.49102 0.208286
\(696\) 41.3330 27.0669i 1.56672 1.02597i
\(697\) 11.2193 7.06280i 0.424961 0.267523i
\(698\) −46.1903 15.8388i −1.74833 0.599509i
\(699\) 12.2836i 0.464608i
\(700\) 0.803188 1.03345i 0.0303576 0.0390606i
\(701\) 10.6927i 0.403858i −0.979400 0.201929i \(-0.935279\pi\)
0.979400 0.201929i \(-0.0647210\pi\)
\(702\) −0.823687 0.282446i −0.0310881 0.0106602i
\(703\) 7.89752i 0.297861i
\(704\) −7.41360 + 16.9995i −0.279411 + 0.640691i
\(705\) −8.73824 −0.329101
\(706\) −15.3982 + 44.9051i −0.579517 + 1.69003i
\(707\) −5.07628 −0.190913
\(708\) −1.35304 + 1.74093i −0.0508503 + 0.0654280i
\(709\) −30.9514 −1.16240 −0.581202 0.813759i \(-0.697418\pi\)
−0.581202 + 0.813759i \(0.697418\pi\)
\(710\) −13.0135 4.46237i −0.488386 0.167470i
\(711\) 14.2439i 0.534189i
\(712\) −21.2578 + 13.9207i −0.796669 + 0.521699i
\(713\) 0.747296 0.0279865
\(714\) −2.23011 9.46037i −0.0834597 0.354046i
\(715\) 1.14885i 0.0429646i
\(716\) 14.0831 18.1204i 0.526310 0.677193i
\(717\) −5.16123 −0.192750
\(718\) 4.13951 12.0719i 0.154485 0.450520i
\(719\) 4.18798i 0.156185i 0.996946 + 0.0780927i \(0.0248830\pi\)
−0.996946 + 0.0780927i \(0.975117\pi\)
\(720\) −3.44397 13.5194i −0.128349 0.503837i
\(721\) 3.76499i 0.140215i
\(722\) 5.66829 16.5302i 0.210952 0.615191i
\(723\) 14.3266i 0.532811i
\(724\) 13.3318 + 10.3614i 0.495474 + 0.385079i
\(725\) 6.85794 0.254697
\(726\) 6.57336 19.1697i 0.243960 0.711453i
\(727\) 26.6170 0.987169 0.493584 0.869698i \(-0.335686\pi\)
0.493584 + 0.869698i \(0.335686\pi\)
\(728\) 0.767414 0.502541i 0.0284423 0.0186254i
\(729\) −34.9503 −1.29445
\(730\) 4.91416 + 1.68509i 0.181881 + 0.0623679i
\(731\) −12.4123 + 7.81382i −0.459086 + 0.289005i
\(732\) 14.2966 + 11.1112i 0.528417 + 0.410683i
\(733\) 24.4994i 0.904905i 0.891788 + 0.452453i \(0.149451\pi\)
−0.891788 + 0.452453i \(0.850549\pi\)
\(734\) 47.1736 + 16.1760i 1.74121 + 0.597069i
\(735\) 16.7389 0.617424
\(736\) −0.0860596 + 1.06143i −0.00317220 + 0.0391248i
\(737\) 20.0788i 0.739613i
\(738\) −15.0022 5.14432i −0.552239 0.189365i
\(739\) 8.64956i 0.318179i −0.987264 0.159090i \(-0.949144\pi\)
0.987264 0.159090i \(-0.0508559\pi\)
\(740\) 4.83865 + 3.76057i 0.177872 + 0.138241i
\(741\) −3.25349 −0.119520
\(742\) −2.54550 + 7.42335i −0.0934482 + 0.272520i
\(743\) 29.2437i 1.07285i 0.843949 + 0.536424i \(0.180225\pi\)
−0.843949 + 0.536424i \(0.819775\pi\)
\(744\) −15.6674 23.9252i −0.574397 0.877142i
\(745\) 3.99288i 0.146288i
\(746\) −38.4787 13.1945i −1.40880 0.483085i
\(747\) 53.4202i 1.95454i
\(748\) −1.88629 + 19.0232i −0.0689697 + 0.695556i
\(749\) 7.41749i 0.271029i
\(750\) 1.16841 3.40740i 0.0426644 0.124421i
\(751\) 11.4840i 0.419057i −0.977802 0.209529i \(-0.932807\pi\)
0.977802 0.209529i \(-0.0671930\pi\)
\(752\) −3.38754 13.2979i −0.123531 0.484924i
\(753\) 54.0930i 1.97126i
\(754\) 4.54652 + 1.55902i 0.165575 + 0.0567762i
\(755\) 6.42385 0.233788
\(756\) −0.997915 + 1.28400i −0.0362938 + 0.0466985i
\(757\) 1.40306i 0.0509950i −0.999675 0.0254975i \(-0.991883\pi\)
0.999675 0.0254975i \(-0.00811699\pi\)
\(758\) −1.28401 + 3.74450i −0.0466372 + 0.136007i
\(759\) 1.11158i 0.0403478i
\(760\) −3.99381 6.09882i −0.144871 0.221227i
\(761\) 29.1306 1.05598 0.527991 0.849250i \(-0.322945\pi\)
0.527991 + 0.849250i \(0.322945\pi\)
\(762\) 19.5407 56.9858i 0.707884 2.06438i
\(763\) 1.79254i 0.0648944i
\(764\) −42.2685 32.8508i −1.52922 1.18850i
\(765\) −7.66119 12.1698i −0.276991 0.440002i
\(766\) 2.14957 6.26870i 0.0776670 0.226497i
\(767\) −0.214496 −0.00774500
\(768\) 35.7868 19.4982i 1.29134 0.703580i
\(769\) 16.7407 0.603685 0.301842 0.953358i \(-0.402398\pi\)
0.301842 + 0.953358i \(0.402398\pi\)
\(770\) 2.02952 + 0.695930i 0.0731387 + 0.0250796i
\(771\) 9.08912 0.327337
\(772\) 24.0047 30.8864i 0.863948 1.11162i
\(773\) 15.9297i 0.572951i 0.958088 + 0.286475i \(0.0924836\pi\)
−0.958088 + 0.286475i \(0.907516\pi\)
\(774\) 16.5975 + 5.69134i 0.596583 + 0.204571i
\(775\) 3.96966i 0.142594i
\(776\) −18.0622 27.5822i −0.648395 0.990142i
\(777\) 5.10755i 0.183232i
\(778\) 48.1119 + 16.4978i 1.72490 + 0.591475i
\(779\) −8.28746 −0.296929
\(780\) 1.54922 1.99335i 0.0554708 0.0713732i
\(781\) 22.5513i 0.806948i
\(782\) 0.251856 + 1.06840i 0.00900637 + 0.0382060i
\(783\) −8.52059 −0.304501
\(784\) 6.48916 + 25.4733i 0.231756 + 0.909762i
\(785\) 22.9114i 0.817744i
\(786\) −1.46592 + 4.27500i −0.0522875 + 0.152484i
\(787\) 42.3403 1.50927 0.754634 0.656146i \(-0.227814\pi\)
0.754634 + 0.656146i \(0.227814\pi\)
\(788\) 12.7007 + 9.87094i 0.452445 + 0.351638i
\(789\) −3.34166 −0.118966
\(790\) 5.46330 + 1.87339i 0.194375 + 0.0666522i
\(791\) −9.15436 −0.325492
\(792\) 19.1319 12.5285i 0.679822 0.445182i
\(793\) 1.76146i 0.0625511i
\(794\) 10.0330 29.2590i 0.356060 1.03836i
\(795\) 21.5978i 0.765994i
\(796\) −28.6041 + 36.8044i −1.01385 + 1.30450i
\(797\) 28.8219i 1.02092i −0.859900 0.510462i \(-0.829474\pi\)
0.859900 0.510462i \(-0.170526\pi\)
\(798\) −1.97084 + 5.74749i −0.0697670 + 0.203459i
\(799\) −7.53568 11.9705i −0.266593 0.423485i
\(800\) 5.63835 + 0.457151i 0.199346 + 0.0161627i
\(801\) 31.3338 1.10712
\(802\) −5.05724 1.73415i −0.178577 0.0612349i
\(803\) 8.51585i 0.300518i
\(804\) −27.0761 + 34.8383i −0.954901 + 1.22865i
\(805\) 0.123198 0.00434216
\(806\) 0.902427 2.63172i 0.0317866 0.0926982i
\(807\) 57.5043 2.02425
\(808\) −12.0193 18.3542i −0.422836 0.645699i
\(809\) 17.6944i 0.622103i 0.950393 + 0.311052i \(0.100681\pi\)
−0.950393 + 0.311052i \(0.899319\pi\)
\(810\) 3.34807 9.76385i 0.117639 0.343067i
\(811\) −17.0795 −0.599744 −0.299872 0.953979i \(-0.596944\pi\)
−0.299872 + 0.953979i \(0.596944\pi\)
\(812\) 5.50821 7.08731i 0.193300 0.248716i
\(813\) −18.4503 −0.647080
\(814\) −3.25838 + 9.50229i −0.114206 + 0.333055i
\(815\) −16.1246 −0.564819
\(816\) 28.9255 30.4630i 1.01259 1.06642i
\(817\) 9.16870 0.320772
\(818\) 10.8727 31.7077i 0.380155 1.10863i
\(819\) −1.13116 −0.0395260
\(820\) 3.94624 5.07755i 0.137809 0.177316i
\(821\) −15.3541 −0.535861 −0.267930 0.963438i \(-0.586340\pi\)
−0.267930 + 0.963438i \(0.586340\pi\)
\(822\) −18.5285 + 54.0340i −0.646256 + 1.88465i
\(823\) 33.9882i 1.18475i −0.805661 0.592377i \(-0.798189\pi\)
0.805661 0.592377i \(-0.201811\pi\)
\(824\) −13.6130 + 8.91448i −0.474232 + 0.310551i
\(825\) 5.90475 0.205577
\(826\) −0.129933 + 0.378920i −0.00452096 + 0.0131843i
\(827\) 35.0401 1.21846 0.609232 0.792992i \(-0.291478\pi\)
0.609232 + 0.792992i \(0.291478\pi\)
\(828\) 0.805828 1.03684i 0.0280044 0.0360328i
\(829\) 24.1097i 0.837366i −0.908132 0.418683i \(-0.862492\pi\)
0.908132 0.418683i \(-0.137508\pi\)
\(830\) −20.4895 7.02593i −0.711200 0.243874i
\(831\) −39.3546 −1.36520
\(832\) 3.63406 + 1.58484i 0.125989 + 0.0549446i
\(833\) 14.4353 + 22.9305i 0.500153 + 0.794496i
\(834\) 6.41577 18.7101i 0.222160 0.647877i
\(835\) 13.2324i 0.457925i
\(836\) 7.33326 9.43556i 0.253626 0.326336i
\(837\) 4.93208i 0.170477i
\(838\) 1.44448 4.21250i 0.0498989 0.145518i
\(839\) 23.0802i 0.796818i −0.917208 0.398409i \(-0.869562\pi\)
0.917208 0.398409i \(-0.130438\pi\)
\(840\) −2.58291 3.94427i −0.0891188 0.136090i
\(841\) 18.0313 0.621768
\(842\) 17.8426 + 6.11830i 0.614895 + 0.210850i
\(843\) 49.7350 1.71296
\(844\) −34.4659 26.7867i −1.18637 0.922036i
\(845\) −12.7544 −0.438765
\(846\) −5.48875 + 16.0067i −0.188707 + 0.550320i
\(847\) 3.68176i 0.126507i
\(848\) −32.8676 + 8.37279i −1.12868 + 0.287523i
\(849\) −54.8665 −1.88301
\(850\) 5.67539 1.33787i 0.194664 0.0458885i
\(851\) 0.576819i 0.0197731i
\(852\) −30.4102 + 39.1282i −1.04184 + 1.34051i
\(853\) −17.7132 −0.606490 −0.303245 0.952913i \(-0.598070\pi\)
−0.303245 + 0.952913i \(0.598070\pi\)
\(854\) 3.11172 + 1.06702i 0.106481 + 0.0365127i
\(855\) 8.98960i 0.307438i
\(856\) −26.8193 + 17.5626i −0.916666 + 0.600279i
\(857\) 21.2303i 0.725214i 0.931942 + 0.362607i \(0.118113\pi\)
−0.931942 + 0.362607i \(0.881887\pi\)
\(858\) 3.91460 + 1.34233i 0.133642 + 0.0458265i
\(859\) 55.6788i 1.89974i 0.312652 + 0.949868i \(0.398782\pi\)
−0.312652 + 0.949868i \(0.601218\pi\)
\(860\) −4.36586 + 5.61747i −0.148875 + 0.191554i
\(861\) −5.35973 −0.182659
\(862\) −9.55124 3.27516i −0.325316 0.111552i
\(863\) 30.0014 1.02126 0.510630 0.859801i \(-0.329412\pi\)
0.510630 + 0.859801i \(0.329412\pi\)
\(864\) −7.00533 0.567984i −0.238326 0.0193232i
\(865\) 21.3027 0.724313
\(866\) −5.53186 + 16.1324i −0.187980 + 0.548200i
\(867\) 18.7215 39.0445i 0.635816 1.32602i
\(868\) −4.10243 3.18838i −0.139245 0.108221i
\(869\) 9.46745i 0.321161i
\(870\) 8.01290 23.3677i 0.271663 0.792240i
\(871\) −4.29236 −0.145441
\(872\) −6.48127 + 4.24426i −0.219484 + 0.143729i
\(873\) 40.6559i 1.37599i
\(874\) 0.222576 0.649091i 0.00752875 0.0219558i
\(875\) 0.654431i 0.0221238i
\(876\) 11.4835 14.7756i 0.387993 0.499223i
\(877\) −24.9771 −0.843417 −0.421708 0.906732i \(-0.638569\pi\)
−0.421708 + 0.906732i \(0.638569\pi\)
\(878\) 22.7283 + 7.79363i 0.767042 + 0.263022i
\(879\) 54.1856i 1.82764i
\(880\) 2.28909 + 8.98587i 0.0771651 + 0.302914i
\(881\) 51.0071i 1.71847i −0.511580 0.859236i \(-0.670939\pi\)
0.511580 0.859236i \(-0.329061\pi\)
\(882\) 10.5142 30.6622i 0.354032 1.03245i
\(883\) 32.9436i 1.10864i 0.832304 + 0.554320i \(0.187022\pi\)
−0.832304 + 0.554320i \(0.812978\pi\)
\(884\) 4.06669 + 0.403243i 0.136777 + 0.0135625i
\(885\) 1.10244i 0.0370583i
\(886\) 8.14216 + 2.79198i 0.273541 + 0.0937985i
\(887\) 36.3257i 1.21970i −0.792518 0.609848i \(-0.791230\pi\)
0.792518 0.609848i \(-0.208770\pi\)
\(888\) 18.4673 12.0933i 0.619722 0.405825i
\(889\) 10.9448i 0.367077i
\(890\) −4.12108 + 12.0182i −0.138139 + 0.402850i
\(891\) 16.9200 0.566840
\(892\) 23.5472 + 18.3008i 0.788420 + 0.612755i
\(893\) 8.84233i 0.295897i
\(894\) 13.6053 + 4.66533i 0.455031 + 0.156032i
\(895\) 11.4748i 0.383560i
\(896\) 5.00110 5.45975i 0.167075 0.182398i
\(897\) 0.237628 0.00793418
\(898\) 21.0857 + 7.23039i 0.703640 + 0.241281i
\(899\) 27.2237i 0.907960i
\(900\) −5.50774 4.28058i −0.183591 0.142686i
\(901\) −29.5867 + 18.6255i −0.985675 + 0.620505i
\(902\) 9.97146 + 3.41926i 0.332013 + 0.113849i
\(903\) 5.92965 0.197326
\(904\) −21.6751 33.0993i −0.720903 1.10087i
\(905\) 8.44241 0.280635
\(906\) 7.50571 21.8886i 0.249360 0.727201i
\(907\) 5.38304 0.178741 0.0893704 0.995998i \(-0.471515\pi\)
0.0893704 + 0.995998i \(0.471515\pi\)
\(908\) −10.0486 7.80975i −0.333476 0.259176i
\(909\) 27.0540i 0.897323i
\(910\) 0.148773 0.433860i 0.00493176 0.0143823i
\(911\) 22.7399i 0.753405i −0.926334 0.376703i \(-0.877058\pi\)
0.926334 0.376703i \(-0.122942\pi\)
\(912\) −25.4475 + 6.48259i −0.842652 + 0.214660i
\(913\) 35.5066i 1.17510i
\(914\) 3.54174 10.3286i 0.117150 0.341641i
\(915\) 9.05334 0.299294
\(916\) −8.53656 + 10.9838i −0.282056 + 0.362916i
\(917\) 0.821063i 0.0271139i
\(918\) −7.05136 + 1.66223i −0.232729 + 0.0548616i
\(919\) −20.0866 −0.662595 −0.331298 0.943526i \(-0.607486\pi\)
−0.331298 + 0.943526i \(0.607486\pi\)
\(920\) 0.291700 + 0.445445i 0.00961706 + 0.0146859i
\(921\) 62.5811i 2.06212i
\(922\) 45.7621 + 15.6920i 1.50710 + 0.516790i
\(923\) −4.82090 −0.158682
\(924\) 4.74262 6.10224i 0.156021 0.200749i
\(925\) 3.06408 0.100746
\(926\) 1.27504 3.71834i 0.0419003 0.122192i
\(927\) 20.0655 0.659036
\(928\) 38.6675 + 3.13511i 1.26932 + 0.102915i
\(929\) 32.7749i 1.07531i −0.843165 0.537654i \(-0.819311\pi\)
0.843165 0.537654i \(-0.180689\pi\)
\(930\) −13.5262 4.63820i −0.443542 0.152093i
\(931\) 16.9383i 0.555130i
\(932\) 5.91875 7.61554i 0.193875 0.249455i
\(933\) 79.1504i 2.59127i
\(934\) −33.7813 11.5838i −1.10536 0.379032i
\(935\) 5.09213 + 8.08888i 0.166531 + 0.264535i
\(936\) −2.67829 4.08993i −0.0875426 0.133683i
\(937\) −16.6829 −0.545008 −0.272504 0.962155i \(-0.587852\pi\)
−0.272504 + 0.962155i \(0.587852\pi\)
\(938\) −2.60014 + 7.58271i −0.0848977 + 0.247584i
\(939\) 40.2322i 1.31293i
\(940\) −5.41751 4.21045i −0.176700 0.137330i
\(941\) 40.8872 1.33288 0.666442 0.745557i \(-0.267816\pi\)
0.666442 + 0.745557i \(0.267816\pi\)
\(942\) 78.0684 + 26.7700i 2.54361 + 0.872214i
\(943\) 0.605299 0.0197112
\(944\) −1.67770 + 0.427384i −0.0546046 + 0.0139101i
\(945\) 0.813094i 0.0264499i
\(946\) −11.0318 3.78284i −0.358674 0.122991i
\(947\) 38.9364 1.26526 0.632632 0.774452i \(-0.281975\pi\)
0.632632 + 0.774452i \(0.281975\pi\)
\(948\) 12.7668 16.4268i 0.414645 0.533516i
\(949\) 1.82048 0.0590952
\(950\) −3.44799 1.18233i −0.111868 0.0383599i
\(951\) −8.67731 −0.281381
\(952\) 3.17579 6.93977i 0.102928 0.224919i
\(953\) −9.09398 −0.294583 −0.147292 0.989093i \(-0.547056\pi\)
−0.147292 + 0.989093i \(0.547056\pi\)
\(954\) 39.5627 + 13.5662i 1.28089 + 0.439222i
\(955\) −26.7666 −0.866147
\(956\) −3.19985 2.48690i −0.103490 0.0804321i
\(957\) 40.4944 1.30900
\(958\) 22.6176 + 7.75569i 0.730743 + 0.250575i
\(959\) 10.3779i 0.335119i
\(960\) 8.14562 18.6780i 0.262899 0.602829i
\(961\) 15.2418 0.491671
\(962\) 2.03136 + 0.696561i 0.0654935 + 0.0224580i
\(963\) 39.5314 1.27388
\(964\) 6.90315 8.88215i 0.222336 0.286075i
\(965\) 19.5588i 0.629622i
\(966\) 0.143946 0.419785i 0.00463139 0.0135064i
\(967\) −12.8681 −0.413809 −0.206905 0.978361i \(-0.566339\pi\)
−0.206905 + 0.978361i \(0.566339\pi\)
\(968\) 13.3121 8.71742i 0.427867 0.280189i
\(969\) −22.9073 + 14.4207i −0.735889 + 0.463259i
\(970\) −15.5937 5.34714i −0.500683 0.171686i
\(971\) 24.8605i 0.797812i −0.916992 0.398906i \(-0.869390\pi\)
0.916992 0.398906i \(-0.130610\pi\)
\(972\) −35.2435 27.3910i −1.13043 0.878567i
\(973\) 3.59349i 0.115202i
\(974\) −38.9645 13.3611i −1.24850 0.428117i
\(975\) 1.26229i 0.0404256i
\(976\) 3.50970 + 13.7774i 0.112343 + 0.441004i
\(977\) −4.01155 −0.128341 −0.0641704 0.997939i \(-0.520440\pi\)
−0.0641704 + 0.997939i \(0.520440\pi\)
\(978\) −18.8401 + 54.9429i −0.602442 + 1.75688i
\(979\) −20.8265 −0.665618
\(980\) 10.3777 + 8.06552i 0.331505 + 0.257643i
\(981\) 9.55334 0.305015
\(982\) 31.7394 + 10.8836i 1.01284 + 0.347309i
\(983\) 47.3479i 1.51016i 0.655631 + 0.755081i \(0.272403\pi\)
−0.655631 + 0.755081i \(0.727597\pi\)
\(984\) −12.6904 19.3791i −0.404556 0.617783i
\(985\) 8.04276 0.256264
\(986\) 38.9215 9.17502i 1.23951 0.292192i
\(987\) 5.71858i 0.182024i
\(988\) −2.01709 1.56767i −0.0641722 0.0498742i
\(989\) −0.669663 −0.0212940
\(990\) 3.70895 10.8163i 0.117878 0.343764i
\(991\) 4.27944i 0.135941i 0.997687 + 0.0679704i \(0.0216524\pi\)
−0.997687 + 0.0679704i \(0.978348\pi\)
\(992\) 1.81473 22.3823i 0.0576179 0.710640i
\(993\) 43.9453i 1.39456i
\(994\) −2.92032 + 8.51641i −0.0926268 + 0.270124i
\(995\) 23.3064i 0.738864i
\(996\) −47.8803 + 61.6066i −1.51715 + 1.95208i
\(997\) 49.6717 1.57312 0.786559 0.617515i \(-0.211861\pi\)
0.786559 + 0.617515i \(0.211861\pi\)
\(998\) 1.62002 4.72442i 0.0512809 0.149549i
\(999\) −3.80695 −0.120446
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.b.101.21 yes 36
4.3 odd 2 2720.2.l.a.2481.32 36
8.3 odd 2 2720.2.l.b.2481.6 36
8.5 even 2 680.2.l.a.101.22 yes 36
17.16 even 2 680.2.l.a.101.21 36
68.67 odd 2 2720.2.l.b.2481.5 36
136.67 odd 2 2720.2.l.a.2481.31 36
136.101 even 2 inner 680.2.l.b.101.22 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.21 36 17.16 even 2
680.2.l.a.101.22 yes 36 8.5 even 2
680.2.l.b.101.21 yes 36 1.1 even 1 trivial
680.2.l.b.101.22 yes 36 136.101 even 2 inner
2720.2.l.a.2481.31 36 136.67 odd 2
2720.2.l.a.2481.32 36 4.3 odd 2
2720.2.l.b.2481.5 36 68.67 odd 2
2720.2.l.b.2481.6 36 8.3 odd 2