Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.l (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 | −1.40871 | − | 0.124621i | −0.904376 | 1.96894 | + | 0.351110i | −1.00000 | 1.27400 | + | 0.112704i | − | 1.75754i | −2.72991 | − | 0.739983i | −2.18210 | 1.40871 | + | 0.124621i | |||||||
101.2 | −1.40871 | + | 0.124621i | −0.904376 | 1.96894 | − | 0.351110i | −1.00000 | 1.27400 | − | 0.112704i | 1.75754i | −2.72991 | + | 0.739983i | −2.18210 | 1.40871 | − | 0.124621i | ||||||||
101.3 | −1.38575 | − | 0.282316i | 2.78895 | 1.84059 | + | 0.782439i | −1.00000 | −3.86478 | − | 0.787366i | − | 3.69706i | −2.32971 | − | 1.60389i | 4.77824 | 1.38575 | + | 0.282316i | |||||||
101.4 | −1.38575 | + | 0.282316i | 2.78895 | 1.84059 | − | 0.782439i | −1.00000 | −3.86478 | + | 0.787366i | 3.69706i | −2.32971 | + | 1.60389i | 4.77824 | 1.38575 | − | 0.282316i | ||||||||
101.5 | −1.27109 | − | 0.619947i | −3.03317 | 1.23133 | + | 1.57602i | −1.00000 | 3.85542 | + | 1.88040i | 1.14609i | −0.588085 | − | 2.76661i | 6.20011 | 1.27109 | + | 0.619947i | ||||||||
101.6 | −1.27109 | + | 0.619947i | −3.03317 | 1.23133 | − | 1.57602i | −1.00000 | 3.85542 | − | 1.88040i | − | 1.14609i | −0.588085 | + | 2.76661i | 6.20011 | 1.27109 | − | 0.619947i | |||||||
101.7 | −1.26408 | − | 0.634112i | 1.91553 | 1.19580 | + | 1.60314i | −1.00000 | −2.42138 | − | 1.21466i | 3.32813i | −0.495023 | − | 2.78477i | 0.669252 | 1.26408 | + | 0.634112i | ||||||||
101.8 | −1.26408 | + | 0.634112i | 1.91553 | 1.19580 | − | 1.60314i | −1.00000 | −2.42138 | + | 1.21466i | − | 3.32813i | −0.495023 | + | 2.78477i | 0.669252 | 1.26408 | − | 0.634112i | |||||||
101.9 | −0.985753 | − | 1.01405i | 1.46409 | −0.0565822 | + | 1.99920i | −1.00000 | −1.44323 | − | 1.48466i | − | 1.02762i | 2.08306 | − | 1.91334i | −0.856436 | 0.985753 | + | 1.01405i | |||||||
101.10 | −0.985753 | + | 1.01405i | 1.46409 | −0.0565822 | − | 1.99920i | −1.00000 | −1.44323 | + | 1.48466i | 1.02762i | 2.08306 | + | 1.91334i | −0.856436 | 0.985753 | − | 1.01405i | ||||||||
101.11 | −0.775550 | − | 1.18259i | 0.0722782 | −0.797044 | + | 1.83432i | −1.00000 | −0.0560554 | − | 0.0854756i | − | 0.600402i | 2.78740 | − | 0.480027i | −2.99478 | 0.775550 | + | 1.18259i | |||||||
101.12 | −0.775550 | + | 1.18259i | 0.0722782 | −0.797044 | − | 1.83432i | −1.00000 | −0.0560554 | + | 0.0854756i | 0.600402i | 2.78740 | + | 0.480027i | −2.99478 | 0.775550 | − | 1.18259i | ||||||||
101.13 | −0.615521 | − | 1.27324i | −2.68470 | −1.24227 | + | 1.56741i | −1.00000 | 1.65249 | + | 3.41825i | − | 4.42201i | 2.76033 | + | 0.616927i | 4.20759 | 0.615521 | + | 1.27324i | |||||||
101.14 | −0.615521 | + | 1.27324i | −2.68470 | −1.24227 | − | 1.56741i | −1.00000 | 1.65249 | − | 3.41825i | 4.42201i | 2.76033 | − | 0.616927i | 4.20759 | 0.615521 | − | 1.27324i | ||||||||
101.15 | −0.353091 | − | 1.36943i | −1.30568 | −1.75065 | + | 0.967065i | −1.00000 | 0.461025 | + | 1.78803i | 5.06709i | 1.94246 | + | 2.05593i | −1.29519 | 0.353091 | + | 1.36943i | ||||||||
101.16 | −0.353091 | + | 1.36943i | −1.30568 | −1.75065 | − | 0.967065i | −1.00000 | 0.461025 | − | 1.78803i | − | 5.06709i | 1.94246 | − | 2.05593i | −1.29519 | 0.353091 | − | 1.36943i | |||||||
101.17 | −0.0976378 | − | 1.41084i | 0.700054 | −1.98093 | + | 0.275503i | −1.00000 | −0.0683518 | − | 0.987663i | − | 0.472369i | 0.582104 | + | 2.76788i | −2.50992 | 0.0976378 | + | 1.41084i | |||||||
101.18 | −0.0976378 | + | 1.41084i | 0.700054 | −1.98093 | − | 0.275503i | −1.00000 | −0.0683518 | + | 0.987663i | 0.472369i | 0.582104 | − | 2.76788i | −2.50992 | 0.0976378 | − | 1.41084i | ||||||||
101.19 | −0.0399866 | − | 1.41365i | 2.61668 | −1.99680 | + | 0.113054i | −1.00000 | −0.104632 | − | 3.69906i | 3.54885i | 0.239664 | + | 2.81825i | 3.84701 | 0.0399866 | + | 1.41365i | ||||||||
101.20 | −0.0399866 | + | 1.41365i | 2.61668 | −1.99680 | − | 0.113054i | −1.00000 | −0.104632 | + | 3.69906i | − | 3.54885i | 0.239664 | − | 2.81825i | 3.84701 | 0.0399866 | − | 1.41365i | |||||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
136.h | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.l.b | yes | 36 |
4.b | odd | 2 | 1 | 2720.2.l.a | 36 | ||
8.b | even | 2 | 1 | 680.2.l.a | ✓ | 36 | |
8.d | odd | 2 | 1 | 2720.2.l.b | 36 | ||
17.b | even | 2 | 1 | 680.2.l.a | ✓ | 36 | |
68.d | odd | 2 | 1 | 2720.2.l.b | 36 | ||
136.e | odd | 2 | 1 | 2720.2.l.a | 36 | ||
136.h | even | 2 | 1 | inner | 680.2.l.b | yes | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.l.a | ✓ | 36 | 8.b | even | 2 | 1 | |
680.2.l.a | ✓ | 36 | 17.b | even | 2 | 1 | |
680.2.l.b | yes | 36 | 1.a | even | 1 | 1 | trivial |
680.2.l.b | yes | 36 | 136.h | even | 2 | 1 | inner |
2720.2.l.a | 36 | 4.b | odd | 2 | 1 | ||
2720.2.l.a | 36 | 136.e | odd | 2 | 1 | ||
2720.2.l.b | 36 | 8.d | odd | 2 | 1 | ||
2720.2.l.b | 36 | 68.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{18} - 2 T_{3}^{17} - 34 T_{3}^{16} + 64 T_{3}^{15} + 463 T_{3}^{14} - 822 T_{3}^{13} - 3226 T_{3}^{12} + \cdots + 64 \)
acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\).