Properties

Label 2720.2.l.b
Level $2720$
Weight $2$
Character orbit 2720.l
Analytic conductor $21.719$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(2481,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.2481"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 680)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q + 4 q^{3} + 36 q^{5} + 36 q^{9} + 8 q^{11} + 4 q^{15} + 36 q^{25} + 16 q^{27} - 8 q^{33} + 36 q^{45} - 20 q^{47} - 36 q^{49} + 8 q^{55} + 4 q^{75} + 44 q^{81} - 24 q^{87} + 56 q^{91} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2481.1 0 −3.03317 0 1.00000 0 1.14609i 0 6.20011 0
2481.2 0 −3.03317 0 1.00000 0 1.14609i 0 6.20011 0
2481.3 0 −2.68470 0 1.00000 0 4.42201i 0 4.20759 0
2481.4 0 −2.68470 0 1.00000 0 4.42201i 0 4.20759 0
2481.5 0 −2.54711 0 1.00000 0 0.654431i 0 3.48778 0
2481.6 0 −2.54711 0 1.00000 0 0.654431i 0 3.48778 0
2481.7 0 −2.32748 0 1.00000 0 1.14286i 0 2.41716 0
2481.8 0 −2.32748 0 1.00000 0 1.14286i 0 2.41716 0
2481.9 0 −1.52644 0 1.00000 0 2.26675i 0 −0.669989 0
2481.10 0 −1.52644 0 1.00000 0 2.26675i 0 −0.669989 0
2481.11 0 −1.30568 0 1.00000 0 5.06709i 0 −1.29519 0
2481.12 0 −1.30568 0 1.00000 0 5.06709i 0 −1.29519 0
2481.13 0 −0.904376 0 1.00000 0 1.75754i 0 −2.18210 0
2481.14 0 −0.904376 0 1.00000 0 1.75754i 0 −2.18210 0
2481.15 0 −0.228800 0 1.00000 0 3.99056i 0 −2.94765 0
2481.16 0 −0.228800 0 1.00000 0 3.99056i 0 −2.94765 0
2481.17 0 0.0722782 0 1.00000 0 0.600402i 0 −2.99478 0
2481.18 0 0.0722782 0 1.00000 0 0.600402i 0 −2.99478 0
2481.19 0 0.528085 0 1.00000 0 4.36555i 0 −2.72113 0
2481.20 0 0.528085 0 1.00000 0 4.36555i 0 −2.72113 0
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2481.36
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
136.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2720.2.l.b 36
4.b odd 2 1 680.2.l.a 36
8.b even 2 1 2720.2.l.a 36
8.d odd 2 1 680.2.l.b yes 36
17.b even 2 1 2720.2.l.a 36
68.d odd 2 1 680.2.l.b yes 36
136.e odd 2 1 680.2.l.a 36
136.h even 2 1 inner 2720.2.l.b 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
680.2.l.a 36 4.b odd 2 1
680.2.l.a 36 136.e odd 2 1
680.2.l.b yes 36 8.d odd 2 1
680.2.l.b yes 36 68.d odd 2 1
2720.2.l.a 36 8.b even 2 1
2720.2.l.a 36 17.b even 2 1
2720.2.l.b 36 1.a even 1 1 trivial
2720.2.l.b 36 136.h even 2 1 inner