Properties

Label 2720.2.l.b.2481.5
Level $2720$
Weight $2$
Character 2720.2481
Analytic conductor $21.719$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(2481,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.2481"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 680)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2481.5
Character \(\chi\) \(=\) 2720.2481
Dual form 2720.2.l.b.2481.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.54711 q^{3} +1.00000 q^{5} +0.654431i q^{7} +3.48778 q^{9} -2.31821 q^{11} +0.495577i q^{13} -2.54711 q^{15} +(2.19658 - 3.48928i) q^{17} +2.57745i q^{19} -1.66691i q^{21} +0.188252i q^{23} +1.00000 q^{25} -1.24244 q^{27} -6.85794 q^{29} -3.96966i q^{31} +5.90475 q^{33} +0.654431i q^{35} -3.06408 q^{37} -1.26229i q^{39} +3.21537i q^{41} -3.55727i q^{43} +3.48778 q^{45} +3.43065 q^{47} +6.57172 q^{49} +(-5.59493 + 8.88758i) q^{51} +8.47932i q^{53} -2.31821 q^{55} -6.56507i q^{57} -0.432821i q^{59} -3.55435 q^{61} +2.28252i q^{63} +0.495577i q^{65} -8.66134i q^{67} -0.479499i q^{69} +9.72787i q^{71} +3.67345i q^{73} -2.54711 q^{75} -1.51711i q^{77} -4.08394i q^{79} -7.29871 q^{81} -15.3164i q^{83} +(2.19658 - 3.48928i) q^{85} +17.4679 q^{87} +8.98386 q^{89} -0.324321 q^{91} +10.1112i q^{93} +2.57745i q^{95} -11.6566i q^{97} -8.08543 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 4 q^{3} + 36 q^{5} + 36 q^{9} + 8 q^{11} + 4 q^{15} + 36 q^{25} + 16 q^{27} - 8 q^{33} + 36 q^{45} - 20 q^{47} - 36 q^{49} + 8 q^{55} + 4 q^{75} + 44 q^{81} - 24 q^{87} + 56 q^{91} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2720\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1601\) \(1701\) \(2177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.54711 −1.47058 −0.735288 0.677755i \(-0.762953\pi\)
−0.735288 + 0.677755i \(0.762953\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.654431i 0.247352i 0.992323 + 0.123676i \(0.0394683\pi\)
−0.992323 + 0.123676i \(0.960532\pi\)
\(8\) 0 0
\(9\) 3.48778 1.16259
\(10\) 0 0
\(11\) −2.31821 −0.698967 −0.349484 0.936942i \(-0.613643\pi\)
−0.349484 + 0.936942i \(0.613643\pi\)
\(12\) 0 0
\(13\) 0.495577i 0.137448i 0.997636 + 0.0687241i \(0.0218928\pi\)
−0.997636 + 0.0687241i \(0.978107\pi\)
\(14\) 0 0
\(15\) −2.54711 −0.657662
\(16\) 0 0
\(17\) 2.19658 3.48928i 0.532748 0.846274i
\(18\) 0 0
\(19\) 2.57745i 0.591308i 0.955295 + 0.295654i \(0.0955376\pi\)
−0.955295 + 0.295654i \(0.904462\pi\)
\(20\) 0 0
\(21\) 1.66691i 0.363750i
\(22\) 0 0
\(23\) 0.188252i 0.0392532i 0.999807 + 0.0196266i \(0.00624775\pi\)
−0.999807 + 0.0196266i \(0.993752\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.24244 −0.239108
\(28\) 0 0
\(29\) −6.85794 −1.27349 −0.636743 0.771076i \(-0.719719\pi\)
−0.636743 + 0.771076i \(0.719719\pi\)
\(30\) 0 0
\(31\) 3.96966i 0.712972i −0.934301 0.356486i \(-0.883975\pi\)
0.934301 0.356486i \(-0.116025\pi\)
\(32\) 0 0
\(33\) 5.90475 1.02789
\(34\) 0 0
\(35\) 0.654431i 0.110619i
\(36\) 0 0
\(37\) −3.06408 −0.503732 −0.251866 0.967762i \(-0.581044\pi\)
−0.251866 + 0.967762i \(0.581044\pi\)
\(38\) 0 0
\(39\) 1.26229i 0.202128i
\(40\) 0 0
\(41\) 3.21537i 0.502156i 0.967967 + 0.251078i \(0.0807851\pi\)
−0.967967 + 0.251078i \(0.919215\pi\)
\(42\) 0 0
\(43\) 3.55727i 0.542479i −0.962512 0.271239i \(-0.912566\pi\)
0.962512 0.271239i \(-0.0874335\pi\)
\(44\) 0 0
\(45\) 3.48778 0.519928
\(46\) 0 0
\(47\) 3.43065 0.500411 0.250206 0.968193i \(-0.419502\pi\)
0.250206 + 0.968193i \(0.419502\pi\)
\(48\) 0 0
\(49\) 6.57172 0.938817
\(50\) 0 0
\(51\) −5.59493 + 8.88758i −0.783447 + 1.24451i
\(52\) 0 0
\(53\) 8.47932i 1.16472i 0.812930 + 0.582362i \(0.197871\pi\)
−0.812930 + 0.582362i \(0.802129\pi\)
\(54\) 0 0
\(55\) −2.31821 −0.312588
\(56\) 0 0
\(57\) 6.56507i 0.869564i
\(58\) 0 0
\(59\) 0.432821i 0.0563485i −0.999603 0.0281743i \(-0.991031\pi\)
0.999603 0.0281743i \(-0.00896933\pi\)
\(60\) 0 0
\(61\) −3.55435 −0.455089 −0.227544 0.973768i \(-0.573070\pi\)
−0.227544 + 0.973768i \(0.573070\pi\)
\(62\) 0 0
\(63\) 2.28252i 0.287570i
\(64\) 0 0
\(65\) 0.495577i 0.0614687i
\(66\) 0 0
\(67\) 8.66134i 1.05815i −0.848575 0.529076i \(-0.822539\pi\)
0.848575 0.529076i \(-0.177461\pi\)
\(68\) 0 0
\(69\) 0.479499i 0.0577249i
\(70\) 0 0
\(71\) 9.72787i 1.15449i 0.816573 + 0.577243i \(0.195871\pi\)
−0.816573 + 0.577243i \(0.804129\pi\)
\(72\) 0 0
\(73\) 3.67345i 0.429945i 0.976620 + 0.214973i \(0.0689662\pi\)
−0.976620 + 0.214973i \(0.931034\pi\)
\(74\) 0 0
\(75\) −2.54711 −0.294115
\(76\) 0 0
\(77\) 1.51711i 0.172891i
\(78\) 0 0
\(79\) 4.08394i 0.459480i −0.973252 0.229740i \(-0.926212\pi\)
0.973252 0.229740i \(-0.0737875\pi\)
\(80\) 0 0
\(81\) −7.29871 −0.810968
\(82\) 0 0
\(83\) 15.3164i 1.68119i −0.541665 0.840595i \(-0.682206\pi\)
0.541665 0.840595i \(-0.317794\pi\)
\(84\) 0 0
\(85\) 2.19658 3.48928i 0.238252 0.378465i
\(86\) 0 0
\(87\) 17.4679 1.87276
\(88\) 0 0
\(89\) 8.98386 0.952287 0.476144 0.879368i \(-0.342034\pi\)
0.476144 + 0.879368i \(0.342034\pi\)
\(90\) 0 0
\(91\) −0.324321 −0.0339981
\(92\) 0 0
\(93\) 10.1112i 1.04848i
\(94\) 0 0
\(95\) 2.57745i 0.264441i
\(96\) 0 0
\(97\) 11.6566i 1.18355i −0.806102 0.591776i \(-0.798427\pi\)
0.806102 0.591776i \(-0.201573\pi\)
\(98\) 0 0
\(99\) −8.08543 −0.812616
\(100\) 0 0
\(101\) 7.75678i 0.771828i 0.922535 + 0.385914i \(0.126114\pi\)
−0.922535 + 0.385914i \(0.873886\pi\)
\(102\) 0 0
\(103\) −5.75307 −0.566866 −0.283433 0.958992i \(-0.591473\pi\)
−0.283433 + 0.958992i \(0.591473\pi\)
\(104\) 0 0
\(105\) 1.66691i 0.162674i
\(106\) 0 0
\(107\) 11.3343 1.09572 0.547862 0.836569i \(-0.315442\pi\)
0.547862 + 0.836569i \(0.315442\pi\)
\(108\) 0 0
\(109\) −2.73908 −0.262357 −0.131178 0.991359i \(-0.541876\pi\)
−0.131178 + 0.991359i \(0.541876\pi\)
\(110\) 0 0
\(111\) 7.80456 0.740776
\(112\) 0 0
\(113\) 13.9883i 1.31591i −0.753059 0.657953i \(-0.771423\pi\)
0.753059 0.657953i \(-0.228577\pi\)
\(114\) 0 0
\(115\) 0.188252i 0.0175546i
\(116\) 0 0
\(117\) 1.72846i 0.159797i
\(118\) 0 0
\(119\) 2.28349 + 1.43751i 0.209327 + 0.131776i
\(120\) 0 0
\(121\) −5.62589 −0.511445
\(122\) 0 0
\(123\) 8.18990i 0.738459i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 16.7241 1.48403 0.742013 0.670385i \(-0.233871\pi\)
0.742013 + 0.670385i \(0.233871\pi\)
\(128\) 0 0
\(129\) 9.06077i 0.797757i
\(130\) 0 0
\(131\) 1.25462 0.109617 0.0548084 0.998497i \(-0.482545\pi\)
0.0548084 + 0.998497i \(0.482545\pi\)
\(132\) 0 0
\(133\) −1.68677 −0.146261
\(134\) 0 0
\(135\) −1.24244 −0.106932
\(136\) 0 0
\(137\) 15.8578 1.35483 0.677413 0.735603i \(-0.263101\pi\)
0.677413 + 0.735603i \(0.263101\pi\)
\(138\) 0 0
\(139\) −5.49102 −0.465742 −0.232871 0.972508i \(-0.574812\pi\)
−0.232871 + 0.972508i \(0.574812\pi\)
\(140\) 0 0
\(141\) −8.73824 −0.735893
\(142\) 0 0
\(143\) 1.14885i 0.0960718i
\(144\) 0 0
\(145\) −6.85794 −0.569521
\(146\) 0 0
\(147\) −16.7389 −1.38060
\(148\) 0 0
\(149\) 3.99288i 0.327109i −0.986534 0.163555i \(-0.947704\pi\)
0.986534 0.163555i \(-0.0522960\pi\)
\(150\) 0 0
\(151\) 6.42385 0.522765 0.261383 0.965235i \(-0.415822\pi\)
0.261383 + 0.965235i \(0.415822\pi\)
\(152\) 0 0
\(153\) 7.66119 12.1698i 0.619370 0.983874i
\(154\) 0 0
\(155\) 3.96966i 0.318851i
\(156\) 0 0
\(157\) 22.9114i 1.82853i −0.405116 0.914265i \(-0.632769\pi\)
0.405116 0.914265i \(-0.367231\pi\)
\(158\) 0 0
\(159\) 21.5978i 1.71282i
\(160\) 0 0
\(161\) −0.123198 −0.00970936
\(162\) 0 0
\(163\) 16.1246 1.26297 0.631487 0.775387i \(-0.282445\pi\)
0.631487 + 0.775387i \(0.282445\pi\)
\(164\) 0 0
\(165\) 5.90475 0.459684
\(166\) 0 0
\(167\) 13.2324i 1.02395i −0.859000 0.511976i \(-0.828914\pi\)
0.859000 0.511976i \(-0.171086\pi\)
\(168\) 0 0
\(169\) 12.7544 0.981108
\(170\) 0 0
\(171\) 8.98960i 0.687452i
\(172\) 0 0
\(173\) 21.3027 1.61961 0.809806 0.586697i \(-0.199572\pi\)
0.809806 + 0.586697i \(0.199572\pi\)
\(174\) 0 0
\(175\) 0.654431i 0.0494704i
\(176\) 0 0
\(177\) 1.10244i 0.0828648i
\(178\) 0 0
\(179\) 11.4748i 0.857667i −0.903384 0.428833i \(-0.858925\pi\)
0.903384 0.428833i \(-0.141075\pi\)
\(180\) 0 0
\(181\) 8.44241 0.627519 0.313760 0.949502i \(-0.398411\pi\)
0.313760 + 0.949502i \(0.398411\pi\)
\(182\) 0 0
\(183\) 9.05334 0.669242
\(184\) 0 0
\(185\) −3.06408 −0.225276
\(186\) 0 0
\(187\) −5.09213 + 8.08888i −0.372374 + 0.591518i
\(188\) 0 0
\(189\) 0.813094i 0.0591439i
\(190\) 0 0
\(191\) −26.7666 −1.93676 −0.968382 0.249473i \(-0.919743\pi\)
−0.968382 + 0.249473i \(0.919743\pi\)
\(192\) 0 0
\(193\) 19.5588i 1.40788i −0.710261 0.703938i \(-0.751423\pi\)
0.710261 0.703938i \(-0.248577\pi\)
\(194\) 0 0
\(195\) 1.26229i 0.0903944i
\(196\) 0 0
\(197\) 8.04276 0.573023 0.286512 0.958077i \(-0.407504\pi\)
0.286512 + 0.958077i \(0.407504\pi\)
\(198\) 0 0
\(199\) 23.3064i 1.65215i −0.563561 0.826075i \(-0.690569\pi\)
0.563561 0.826075i \(-0.309431\pi\)
\(200\) 0 0
\(201\) 22.0614i 1.55609i
\(202\) 0 0
\(203\) 4.48805i 0.314999i
\(204\) 0 0
\(205\) 3.21537i 0.224571i
\(206\) 0 0
\(207\) 0.656582i 0.0456356i
\(208\) 0 0
\(209\) 5.97509i 0.413305i
\(210\) 0 0
\(211\) 21.8256 1.50254 0.751268 0.659998i \(-0.229443\pi\)
0.751268 + 0.659998i \(0.229443\pi\)
\(212\) 0 0
\(213\) 24.7780i 1.69776i
\(214\) 0 0
\(215\) 3.55727i 0.242604i
\(216\) 0 0
\(217\) 2.59787 0.176355
\(218\) 0 0
\(219\) 9.35670i 0.632267i
\(220\) 0 0
\(221\) 1.72920 + 1.08857i 0.116319 + 0.0732253i
\(222\) 0 0
\(223\) 14.9113 0.998536 0.499268 0.866448i \(-0.333602\pi\)
0.499268 + 0.866448i \(0.333602\pi\)
\(224\) 0 0
\(225\) 3.48778 0.232519
\(226\) 0 0
\(227\) 6.36332 0.422348 0.211174 0.977448i \(-0.432271\pi\)
0.211174 + 0.977448i \(0.432271\pi\)
\(228\) 0 0
\(229\) 6.95553i 0.459634i −0.973234 0.229817i \(-0.926187\pi\)
0.973234 0.229817i \(-0.0738128\pi\)
\(230\) 0 0
\(231\) 3.86425i 0.254249i
\(232\) 0 0
\(233\) 4.82255i 0.315936i −0.987444 0.157968i \(-0.949506\pi\)
0.987444 0.157968i \(-0.0504942\pi\)
\(234\) 0 0
\(235\) 3.43065 0.223791
\(236\) 0 0
\(237\) 10.4023i 0.675700i
\(238\) 0 0
\(239\) −2.02631 −0.131071 −0.0655355 0.997850i \(-0.520876\pi\)
−0.0655355 + 0.997850i \(0.520876\pi\)
\(240\) 0 0
\(241\) 5.62463i 0.362315i −0.983454 0.181157i \(-0.942016\pi\)
0.983454 0.181157i \(-0.0579843\pi\)
\(242\) 0 0
\(243\) 22.3180 1.43170
\(244\) 0 0
\(245\) 6.57172 0.419852
\(246\) 0 0
\(247\) −1.27733 −0.0812743
\(248\) 0 0
\(249\) 39.0125i 2.47232i
\(250\) 0 0
\(251\) 21.2370i 1.34047i −0.742151 0.670233i \(-0.766194\pi\)
0.742151 0.670233i \(-0.233806\pi\)
\(252\) 0 0
\(253\) 0.436408i 0.0274367i
\(254\) 0 0
\(255\) −5.59493 + 8.88758i −0.350368 + 0.556562i
\(256\) 0 0
\(257\) −3.56840 −0.222591 −0.111295 0.993787i \(-0.535500\pi\)
−0.111295 + 0.993787i \(0.535500\pi\)
\(258\) 0 0
\(259\) 2.00523i 0.124599i
\(260\) 0 0
\(261\) −23.9190 −1.48055
\(262\) 0 0
\(263\) −1.31194 −0.0808976 −0.0404488 0.999182i \(-0.512879\pi\)
−0.0404488 + 0.999182i \(0.512879\pi\)
\(264\) 0 0
\(265\) 8.47932i 0.520880i
\(266\) 0 0
\(267\) −22.8829 −1.40041
\(268\) 0 0
\(269\) 22.5763 1.37650 0.688249 0.725474i \(-0.258380\pi\)
0.688249 + 0.725474i \(0.258380\pi\)
\(270\) 0 0
\(271\) −7.24361 −0.440018 −0.220009 0.975498i \(-0.570609\pi\)
−0.220009 + 0.975498i \(0.570609\pi\)
\(272\) 0 0
\(273\) 0.826082 0.0499967
\(274\) 0 0
\(275\) −2.31821 −0.139793
\(276\) 0 0
\(277\) −15.4507 −0.928342 −0.464171 0.885746i \(-0.653648\pi\)
−0.464171 + 0.885746i \(0.653648\pi\)
\(278\) 0 0
\(279\) 13.8453i 0.828897i
\(280\) 0 0
\(281\) −19.5260 −1.16482 −0.582412 0.812894i \(-0.697891\pi\)
−0.582412 + 0.812894i \(0.697891\pi\)
\(282\) 0 0
\(283\) 21.5407 1.28046 0.640230 0.768183i \(-0.278839\pi\)
0.640230 + 0.768183i \(0.278839\pi\)
\(284\) 0 0
\(285\) 6.56507i 0.388881i
\(286\) 0 0
\(287\) −2.10424 −0.124209
\(288\) 0 0
\(289\) −7.35010 15.3289i −0.432359 0.901702i
\(290\) 0 0
\(291\) 29.6908i 1.74050i
\(292\) 0 0
\(293\) 21.2734i 1.24280i −0.783492 0.621401i \(-0.786564\pi\)
0.783492 0.621401i \(-0.213436\pi\)
\(294\) 0 0
\(295\) 0.432821i 0.0251998i
\(296\) 0 0
\(297\) 2.88025 0.167129
\(298\) 0 0
\(299\) −0.0932932 −0.00539529
\(300\) 0 0
\(301\) 2.32799 0.134183
\(302\) 0 0
\(303\) 19.7574i 1.13503i
\(304\) 0 0
\(305\) −3.55435 −0.203522
\(306\) 0 0
\(307\) 24.5694i 1.40225i 0.713037 + 0.701126i \(0.247319\pi\)
−0.713037 + 0.701126i \(0.752681\pi\)
\(308\) 0 0
\(309\) 14.6537 0.833620
\(310\) 0 0
\(311\) 31.0746i 1.76208i 0.473044 + 0.881039i \(0.343155\pi\)
−0.473044 + 0.881039i \(0.656845\pi\)
\(312\) 0 0
\(313\) 15.7952i 0.892798i 0.894834 + 0.446399i \(0.147294\pi\)
−0.894834 + 0.446399i \(0.852706\pi\)
\(314\) 0 0
\(315\) 2.28252i 0.128605i
\(316\) 0 0
\(317\) −3.40672 −0.191341 −0.0956704 0.995413i \(-0.530499\pi\)
−0.0956704 + 0.995413i \(0.530499\pi\)
\(318\) 0 0
\(319\) 15.8982 0.890126
\(320\) 0 0
\(321\) −28.8696 −1.61135
\(322\) 0 0
\(323\) 8.99345 + 5.66158i 0.500409 + 0.315018i
\(324\) 0 0
\(325\) 0.495577i 0.0274896i
\(326\) 0 0
\(327\) 6.97676 0.385816
\(328\) 0 0
\(329\) 2.24512i 0.123778i
\(330\) 0 0
\(331\) 17.2530i 0.948310i 0.880441 + 0.474155i \(0.157246\pi\)
−0.880441 + 0.474155i \(0.842754\pi\)
\(332\) 0 0
\(333\) −10.6869 −0.585636
\(334\) 0 0
\(335\) 8.66134i 0.473220i
\(336\) 0 0
\(337\) 13.8486i 0.754383i −0.926135 0.377192i \(-0.876890\pi\)
0.926135 0.377192i \(-0.123110\pi\)
\(338\) 0 0
\(339\) 35.6297i 1.93514i
\(340\) 0 0
\(341\) 9.20251i 0.498344i
\(342\) 0 0
\(343\) 8.88176i 0.479570i
\(344\) 0 0
\(345\) 0.479499i 0.0258154i
\(346\) 0 0
\(347\) −6.09457 −0.327174 −0.163587 0.986529i \(-0.552306\pi\)
−0.163587 + 0.986529i \(0.552306\pi\)
\(348\) 0 0
\(349\) 34.5283i 1.84826i −0.382080 0.924129i \(-0.624792\pi\)
0.382080 0.924129i \(-0.375208\pi\)
\(350\) 0 0
\(351\) 0.615726i 0.0328650i
\(352\) 0 0
\(353\) −33.5676 −1.78662 −0.893312 0.449437i \(-0.851625\pi\)
−0.893312 + 0.449437i \(0.851625\pi\)
\(354\) 0 0
\(355\) 9.72787i 0.516302i
\(356\) 0 0
\(357\) −5.81631 3.66150i −0.307832 0.193787i
\(358\) 0 0
\(359\) −9.02404 −0.476271 −0.238135 0.971232i \(-0.576536\pi\)
−0.238135 + 0.971232i \(0.576536\pi\)
\(360\) 0 0
\(361\) 12.3567 0.650354
\(362\) 0 0
\(363\) 14.3298 0.752118
\(364\) 0 0
\(365\) 3.67345i 0.192277i
\(366\) 0 0
\(367\) 35.2634i 1.84073i 0.391055 + 0.920367i \(0.372110\pi\)
−0.391055 + 0.920367i \(0.627890\pi\)
\(368\) 0 0
\(369\) 11.2145i 0.583804i
\(370\) 0 0
\(371\) −5.54913 −0.288097
\(372\) 0 0
\(373\) 28.7637i 1.48933i −0.667439 0.744664i \(-0.732610\pi\)
0.667439 0.744664i \(-0.267390\pi\)
\(374\) 0 0
\(375\) −2.54711 −0.131532
\(376\) 0 0
\(377\) 3.39863i 0.175038i
\(378\) 0 0
\(379\) −2.79911 −0.143780 −0.0718902 0.997413i \(-0.522903\pi\)
−0.0718902 + 0.997413i \(0.522903\pi\)
\(380\) 0 0
\(381\) −42.5982 −2.18237
\(382\) 0 0
\(383\) −4.68600 −0.239444 −0.119722 0.992807i \(-0.538200\pi\)
−0.119722 + 0.992807i \(0.538200\pi\)
\(384\) 0 0
\(385\) 1.51711i 0.0773191i
\(386\) 0 0
\(387\) 12.4070i 0.630683i
\(388\) 0 0
\(389\) 35.9648i 1.82349i 0.410758 + 0.911744i \(0.365264\pi\)
−0.410758 + 0.911744i \(0.634736\pi\)
\(390\) 0 0
\(391\) 0.656863 + 0.413510i 0.0332190 + 0.0209121i
\(392\) 0 0
\(393\) −3.19566 −0.161200
\(394\) 0 0
\(395\) 4.08394i 0.205486i
\(396\) 0 0
\(397\) −21.8718 −1.09772 −0.548858 0.835916i \(-0.684937\pi\)
−0.548858 + 0.835916i \(0.684937\pi\)
\(398\) 0 0
\(399\) 4.29638 0.215088
\(400\) 0 0
\(401\) 3.78040i 0.188784i 0.995535 + 0.0943922i \(0.0300908\pi\)
−0.995535 + 0.0943922i \(0.969909\pi\)
\(402\) 0 0
\(403\) 1.96727 0.0979967
\(404\) 0 0
\(405\) −7.29871 −0.362676
\(406\) 0 0
\(407\) 7.10319 0.352092
\(408\) 0 0
\(409\) 23.7023 1.17200 0.586001 0.810311i \(-0.300702\pi\)
0.586001 + 0.810311i \(0.300702\pi\)
\(410\) 0 0
\(411\) −40.3917 −1.99238
\(412\) 0 0
\(413\) 0.283252 0.0139379
\(414\) 0 0
\(415\) 15.3164i 0.751851i
\(416\) 0 0
\(417\) 13.9862 0.684909
\(418\) 0 0
\(419\) 3.14894 0.153836 0.0769180 0.997037i \(-0.475492\pi\)
0.0769180 + 0.997037i \(0.475492\pi\)
\(420\) 0 0
\(421\) 13.3377i 0.650042i 0.945707 + 0.325021i \(0.105371\pi\)
−0.945707 + 0.325021i \(0.894629\pi\)
\(422\) 0 0
\(423\) 11.9654 0.581775
\(424\) 0 0
\(425\) 2.19658 3.48928i 0.106550 0.169255i
\(426\) 0 0
\(427\) 2.32608i 0.112567i
\(428\) 0 0
\(429\) 2.92626i 0.141281i
\(430\) 0 0
\(431\) 7.13978i 0.343911i −0.985105 0.171955i \(-0.944991\pi\)
0.985105 0.171955i \(-0.0550085\pi\)
\(432\) 0 0
\(433\) −12.0593 −0.579534 −0.289767 0.957097i \(-0.593578\pi\)
−0.289767 + 0.957097i \(0.593578\pi\)
\(434\) 0 0
\(435\) 17.4679 0.837523
\(436\) 0 0
\(437\) −0.485211 −0.0232108
\(438\) 0 0
\(439\) 16.9899i 0.810885i 0.914121 + 0.405443i \(0.132883\pi\)
−0.914121 + 0.405443i \(0.867117\pi\)
\(440\) 0 0
\(441\) 22.9207 1.09146
\(442\) 0 0
\(443\) 6.08646i 0.289176i −0.989492 0.144588i \(-0.953814\pi\)
0.989492 0.144588i \(-0.0461857\pi\)
\(444\) 0 0
\(445\) 8.98386 0.425876
\(446\) 0 0
\(447\) 10.1703i 0.481039i
\(448\) 0 0
\(449\) 15.7621i 0.743859i −0.928261 0.371929i \(-0.878696\pi\)
0.928261 0.371929i \(-0.121304\pi\)
\(450\) 0 0
\(451\) 7.45391i 0.350991i
\(452\) 0 0
\(453\) −16.3623 −0.768766
\(454\) 0 0
\(455\) −0.324321 −0.0152044
\(456\) 0 0
\(457\) 7.72090 0.361169 0.180584 0.983560i \(-0.442201\pi\)
0.180584 + 0.983560i \(0.442201\pi\)
\(458\) 0 0
\(459\) −2.72912 + 4.33523i −0.127385 + 0.202351i
\(460\) 0 0
\(461\) 34.2083i 1.59324i 0.604481 + 0.796619i \(0.293380\pi\)
−0.604481 + 0.796619i \(0.706620\pi\)
\(462\) 0 0
\(463\) −2.77955 −0.129177 −0.0645883 0.997912i \(-0.520573\pi\)
−0.0645883 + 0.997912i \(0.520573\pi\)
\(464\) 0 0
\(465\) 10.1112i 0.468894i
\(466\) 0 0
\(467\) 25.2523i 1.16854i 0.811560 + 0.584269i \(0.198619\pi\)
−0.811560 + 0.584269i \(0.801381\pi\)
\(468\) 0 0
\(469\) 5.66825 0.261736
\(470\) 0 0
\(471\) 58.3580i 2.68899i
\(472\) 0 0
\(473\) 8.24651i 0.379175i
\(474\) 0 0
\(475\) 2.57745i 0.118262i
\(476\) 0 0
\(477\) 29.5740i 1.35410i
\(478\) 0 0
\(479\) 16.9072i 0.772511i 0.922392 + 0.386255i \(0.126232\pi\)
−0.922392 + 0.386255i \(0.873768\pi\)
\(480\) 0 0
\(481\) 1.51849i 0.0692370i
\(482\) 0 0
\(483\) 0.313799 0.0142784
\(484\) 0 0
\(485\) 11.6566i 0.529301i
\(486\) 0 0
\(487\) 29.1269i 1.31987i −0.751324 0.659933i \(-0.770585\pi\)
0.751324 0.659933i \(-0.229415\pi\)
\(488\) 0 0
\(489\) −41.0711 −1.85730
\(490\) 0 0
\(491\) 23.7259i 1.07074i −0.844619 0.535368i \(-0.820173\pi\)
0.844619 0.535368i \(-0.179827\pi\)
\(492\) 0 0
\(493\) −15.0640 + 23.9292i −0.678448 + 1.07772i
\(494\) 0 0
\(495\) −8.08543 −0.363413
\(496\) 0 0
\(497\) −6.36622 −0.285564
\(498\) 0 0
\(499\) 3.53161 0.158097 0.0790483 0.996871i \(-0.474812\pi\)
0.0790483 + 0.996871i \(0.474812\pi\)
\(500\) 0 0
\(501\) 33.7043i 1.50580i
\(502\) 0 0
\(503\) 27.6635i 1.23346i 0.787177 + 0.616728i \(0.211542\pi\)
−0.787177 + 0.616728i \(0.788458\pi\)
\(504\) 0 0
\(505\) 7.75678i 0.345172i
\(506\) 0 0
\(507\) −32.4869 −1.44279
\(508\) 0 0
\(509\) 10.4113i 0.461472i −0.973016 0.230736i \(-0.925887\pi\)
0.973016 0.230736i \(-0.0741134\pi\)
\(510\) 0 0
\(511\) −2.40402 −0.106348
\(512\) 0 0
\(513\) 3.20234i 0.141387i
\(514\) 0 0
\(515\) −5.75307 −0.253510
\(516\) 0 0
\(517\) −7.95297 −0.349771
\(518\) 0 0
\(519\) −54.2603 −2.38176
\(520\) 0 0
\(521\) 13.3749i 0.585965i 0.956118 + 0.292983i \(0.0946478\pi\)
−0.956118 + 0.292983i \(0.905352\pi\)
\(522\) 0 0
\(523\) 31.3021i 1.36875i −0.729132 0.684373i \(-0.760076\pi\)
0.729132 0.684373i \(-0.239924\pi\)
\(524\) 0 0
\(525\) 1.66691i 0.0727499i
\(526\) 0 0
\(527\) −13.8512 8.71966i −0.603369 0.379834i
\(528\) 0 0
\(529\) 22.9646 0.998459
\(530\) 0 0
\(531\) 1.50959i 0.0655105i
\(532\) 0 0
\(533\) −1.59346 −0.0690204
\(534\) 0 0
\(535\) 11.3343 0.490023
\(536\) 0 0
\(537\) 29.2276i 1.26126i
\(538\) 0 0
\(539\) −15.2346 −0.656203
\(540\) 0 0
\(541\) −12.3847 −0.532461 −0.266231 0.963909i \(-0.585778\pi\)
−0.266231 + 0.963909i \(0.585778\pi\)
\(542\) 0 0
\(543\) −21.5038 −0.922815
\(544\) 0 0
\(545\) −2.73908 −0.117329
\(546\) 0 0
\(547\) 7.06558 0.302102 0.151051 0.988526i \(-0.451734\pi\)
0.151051 + 0.988526i \(0.451734\pi\)
\(548\) 0 0
\(549\) −12.3968 −0.529084
\(550\) 0 0
\(551\) 17.6760i 0.753023i
\(552\) 0 0
\(553\) 2.67266 0.113653
\(554\) 0 0
\(555\) 7.80456 0.331285
\(556\) 0 0
\(557\) 7.14741i 0.302845i −0.988469 0.151423i \(-0.951615\pi\)
0.988469 0.151423i \(-0.0483855\pi\)
\(558\) 0 0
\(559\) 1.76290 0.0745627
\(560\) 0 0
\(561\) 12.9702 20.6033i 0.547604 0.869872i
\(562\) 0 0
\(563\) 40.7336i 1.71672i 0.513049 + 0.858359i \(0.328516\pi\)
−0.513049 + 0.858359i \(0.671484\pi\)
\(564\) 0 0
\(565\) 13.9883i 0.588491i
\(566\) 0 0
\(567\) 4.77651i 0.200594i
\(568\) 0 0
\(569\) 13.5629 0.568587 0.284293 0.958737i \(-0.408241\pi\)
0.284293 + 0.958737i \(0.408241\pi\)
\(570\) 0 0
\(571\) −12.9863 −0.543460 −0.271730 0.962374i \(-0.587596\pi\)
−0.271730 + 0.962374i \(0.587596\pi\)
\(572\) 0 0
\(573\) 68.1776 2.84816
\(574\) 0 0
\(575\) 0.188252i 0.00785065i
\(576\) 0 0
\(577\) −41.0167 −1.70755 −0.853773 0.520645i \(-0.825692\pi\)
−0.853773 + 0.520645i \(0.825692\pi\)
\(578\) 0 0
\(579\) 49.8186i 2.07039i
\(580\) 0 0
\(581\) 10.0235 0.415845
\(582\) 0 0
\(583\) 19.6569i 0.814104i
\(584\) 0 0
\(585\) 1.72846i 0.0714632i
\(586\) 0 0
\(587\) 34.8343i 1.43777i −0.695131 0.718884i \(-0.744653\pi\)
0.695131 0.718884i \(-0.255347\pi\)
\(588\) 0 0
\(589\) 10.2316 0.421586
\(590\) 0 0
\(591\) −20.4858 −0.842674
\(592\) 0 0
\(593\) −17.2670 −0.709072 −0.354536 0.935042i \(-0.615361\pi\)
−0.354536 + 0.935042i \(0.615361\pi\)
\(594\) 0 0
\(595\) 2.28349 + 1.43751i 0.0936140 + 0.0589321i
\(596\) 0 0
\(597\) 59.3641i 2.42961i
\(598\) 0 0
\(599\) −14.3306 −0.585531 −0.292766 0.956184i \(-0.594576\pi\)
−0.292766 + 0.956184i \(0.594576\pi\)
\(600\) 0 0
\(601\) 1.65416i 0.0674746i 0.999431 + 0.0337373i \(0.0107409\pi\)
−0.999431 + 0.0337373i \(0.989259\pi\)
\(602\) 0 0
\(603\) 30.2089i 1.23020i
\(604\) 0 0
\(605\) −5.62589 −0.228725
\(606\) 0 0
\(607\) 15.0062i 0.609082i 0.952499 + 0.304541i \(0.0985031\pi\)
−0.952499 + 0.304541i \(0.901497\pi\)
\(608\) 0 0
\(609\) 11.4316i 0.463230i
\(610\) 0 0
\(611\) 1.70015i 0.0687806i
\(612\) 0 0
\(613\) 17.7388i 0.716462i −0.933633 0.358231i \(-0.883380\pi\)
0.933633 0.358231i \(-0.116620\pi\)
\(614\) 0 0
\(615\) 8.18990i 0.330249i
\(616\) 0 0
\(617\) 43.1029i 1.73526i 0.497211 + 0.867629i \(0.334357\pi\)
−0.497211 + 0.867629i \(0.665643\pi\)
\(618\) 0 0
\(619\) −27.0444 −1.08700 −0.543502 0.839408i \(-0.682902\pi\)
−0.543502 + 0.839408i \(0.682902\pi\)
\(620\) 0 0
\(621\) 0.233892i 0.00938577i
\(622\) 0 0
\(623\) 5.87932i 0.235550i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 15.2192i 0.607797i
\(628\) 0 0
\(629\) −6.73049 + 10.6914i −0.268362 + 0.426295i
\(630\) 0 0
\(631\) 20.9950 0.835796 0.417898 0.908494i \(-0.362767\pi\)
0.417898 + 0.908494i \(0.362767\pi\)
\(632\) 0 0
\(633\) −55.5922 −2.20959
\(634\) 0 0
\(635\) 16.7241 0.663677
\(636\) 0 0
\(637\) 3.25679i 0.129039i
\(638\) 0 0
\(639\) 33.9287i 1.34220i
\(640\) 0 0
\(641\) 11.0768i 0.437509i −0.975780 0.218755i \(-0.929801\pi\)
0.975780 0.218755i \(-0.0701994\pi\)
\(642\) 0 0
\(643\) 24.9194 0.982725 0.491363 0.870955i \(-0.336499\pi\)
0.491363 + 0.870955i \(0.336499\pi\)
\(644\) 0 0
\(645\) 9.06077i 0.356768i
\(646\) 0 0
\(647\) −38.2146 −1.50237 −0.751185 0.660092i \(-0.770517\pi\)
−0.751185 + 0.660092i \(0.770517\pi\)
\(648\) 0 0
\(649\) 1.00337i 0.0393858i
\(650\) 0 0
\(651\) −6.61707 −0.259343
\(652\) 0 0
\(653\) 46.6416 1.82523 0.912613 0.408825i \(-0.134061\pi\)
0.912613 + 0.408825i \(0.134061\pi\)
\(654\) 0 0
\(655\) 1.25462 0.0490221
\(656\) 0 0
\(657\) 12.8122i 0.499852i
\(658\) 0 0
\(659\) 29.2111i 1.13790i −0.822371 0.568952i \(-0.807349\pi\)
0.822371 0.568952i \(-0.192651\pi\)
\(660\) 0 0
\(661\) 6.88515i 0.267801i 0.990995 + 0.133901i \(0.0427503\pi\)
−0.990995 + 0.133901i \(0.957250\pi\)
\(662\) 0 0
\(663\) −4.40448 2.77272i −0.171056 0.107683i
\(664\) 0 0
\(665\) −1.68677 −0.0654100
\(666\) 0 0
\(667\) 1.29102i 0.0499885i
\(668\) 0 0
\(669\) −37.9808 −1.46842
\(670\) 0 0
\(671\) 8.23975 0.318092
\(672\) 0 0
\(673\) 39.7685i 1.53296i −0.642267 0.766481i \(-0.722006\pi\)
0.642267 0.766481i \(-0.277994\pi\)
\(674\) 0 0
\(675\) −1.24244 −0.0478217
\(676\) 0 0
\(677\) 38.9268 1.49608 0.748039 0.663655i \(-0.230996\pi\)
0.748039 + 0.663655i \(0.230996\pi\)
\(678\) 0 0
\(679\) 7.62847 0.292754
\(680\) 0 0
\(681\) −16.2081 −0.621096
\(682\) 0 0
\(683\) −8.48371 −0.324620 −0.162310 0.986740i \(-0.551894\pi\)
−0.162310 + 0.986740i \(0.551894\pi\)
\(684\) 0 0
\(685\) 15.8578 0.605897
\(686\) 0 0
\(687\) 17.7165i 0.675927i
\(688\) 0 0
\(689\) −4.20215 −0.160089
\(690\) 0 0
\(691\) −46.3733 −1.76412 −0.882061 0.471136i \(-0.843844\pi\)
−0.882061 + 0.471136i \(0.843844\pi\)
\(692\) 0 0
\(693\) 5.29136i 0.201002i
\(694\) 0 0
\(695\) −5.49102 −0.208286
\(696\) 0 0
\(697\) 11.2193 + 7.06280i 0.424961 + 0.267523i
\(698\) 0 0
\(699\) 12.2836i 0.464608i
\(700\) 0 0
\(701\) 10.6927i 0.403858i −0.979400 0.201929i \(-0.935279\pi\)
0.979400 0.201929i \(-0.0647210\pi\)
\(702\) 0 0
\(703\) 7.89752i 0.297861i
\(704\) 0 0
\(705\) −8.73824 −0.329101
\(706\) 0 0
\(707\) −5.07628 −0.190913
\(708\) 0 0
\(709\) 30.9514 1.16240 0.581202 0.813759i \(-0.302582\pi\)
0.581202 + 0.813759i \(0.302582\pi\)
\(710\) 0 0
\(711\) 14.2439i 0.534189i
\(712\) 0 0
\(713\) 0.747296 0.0279865
\(714\) 0 0
\(715\) 1.14885i 0.0429646i
\(716\) 0 0
\(717\) 5.16123 0.192750
\(718\) 0 0
\(719\) 4.18798i 0.156185i 0.996946 + 0.0780927i \(0.0248830\pi\)
−0.996946 + 0.0780927i \(0.975117\pi\)
\(720\) 0 0
\(721\) 3.76499i 0.140215i
\(722\) 0 0
\(723\) 14.3266i 0.532811i
\(724\) 0 0
\(725\) −6.85794 −0.254697
\(726\) 0 0
\(727\) −26.6170 −0.987169 −0.493584 0.869698i \(-0.664314\pi\)
−0.493584 + 0.869698i \(0.664314\pi\)
\(728\) 0 0
\(729\) −34.9503 −1.29445
\(730\) 0 0
\(731\) −12.4123 7.81382i −0.459086 0.289005i
\(732\) 0 0
\(733\) 24.4994i 0.904905i 0.891788 + 0.452453i \(0.149451\pi\)
−0.891788 + 0.452453i \(0.850549\pi\)
\(734\) 0 0
\(735\) −16.7389 −0.617424
\(736\) 0 0
\(737\) 20.0788i 0.739613i
\(738\) 0 0
\(739\) 8.64956i 0.318179i 0.987264 + 0.159090i \(0.0508559\pi\)
−0.987264 + 0.159090i \(0.949144\pi\)
\(740\) 0 0
\(741\) 3.25349 0.119520
\(742\) 0 0
\(743\) 29.2437i 1.07285i 0.843949 + 0.536424i \(0.180225\pi\)
−0.843949 + 0.536424i \(0.819775\pi\)
\(744\) 0 0
\(745\) 3.99288i 0.146288i
\(746\) 0 0
\(747\) 53.4202i 1.95454i
\(748\) 0 0
\(749\) 7.41749i 0.271029i
\(750\) 0 0
\(751\) 11.4840i 0.419057i −0.977802 0.209529i \(-0.932807\pi\)
0.977802 0.209529i \(-0.0671930\pi\)
\(752\) 0 0
\(753\) 54.0930i 1.97126i
\(754\) 0 0
\(755\) 6.42385 0.233788
\(756\) 0 0
\(757\) 1.40306i 0.0509950i −0.999675 0.0254975i \(-0.991883\pi\)
0.999675 0.0254975i \(-0.00811699\pi\)
\(758\) 0 0
\(759\) 1.11158i 0.0403478i
\(760\) 0 0
\(761\) 29.1306 1.05598 0.527991 0.849250i \(-0.322945\pi\)
0.527991 + 0.849250i \(0.322945\pi\)
\(762\) 0 0
\(763\) 1.79254i 0.0648944i
\(764\) 0 0
\(765\) 7.66119 12.1698i 0.276991 0.440002i
\(766\) 0 0
\(767\) 0.214496 0.00774500
\(768\) 0 0
\(769\) 16.7407 0.603685 0.301842 0.953358i \(-0.402398\pi\)
0.301842 + 0.953358i \(0.402398\pi\)
\(770\) 0 0
\(771\) 9.08912 0.327337
\(772\) 0 0
\(773\) 15.9297i 0.572951i 0.958088 + 0.286475i \(0.0924836\pi\)
−0.958088 + 0.286475i \(0.907516\pi\)
\(774\) 0 0
\(775\) 3.96966i 0.142594i
\(776\) 0 0
\(777\) 5.10755i 0.183232i
\(778\) 0 0
\(779\) −8.28746 −0.296929
\(780\) 0 0
\(781\) 22.5513i 0.806948i
\(782\) 0 0
\(783\) 8.52059 0.304501
\(784\) 0 0
\(785\) 22.9114i 0.817744i
\(786\) 0 0
\(787\) 42.3403 1.50927 0.754634 0.656146i \(-0.227814\pi\)
0.754634 + 0.656146i \(0.227814\pi\)
\(788\) 0 0
\(789\) 3.34166 0.118966
\(790\) 0 0
\(791\) 9.15436 0.325492
\(792\) 0 0
\(793\) 1.76146i 0.0625511i
\(794\) 0 0
\(795\) 21.5978i 0.765994i
\(796\) 0 0
\(797\) 28.8219i 1.02092i −0.859900 0.510462i \(-0.829474\pi\)
0.859900 0.510462i \(-0.170526\pi\)
\(798\) 0 0
\(799\) 7.53568 11.9705i 0.266593 0.423485i
\(800\) 0 0
\(801\) 31.3338 1.10712
\(802\) 0 0
\(803\) 8.51585i 0.300518i
\(804\) 0 0
\(805\) −0.123198 −0.00434216
\(806\) 0 0
\(807\) −57.5043 −2.02425
\(808\) 0 0
\(809\) 17.6944i 0.622103i −0.950393 0.311052i \(-0.899319\pi\)
0.950393 0.311052i \(-0.100681\pi\)
\(810\) 0 0
\(811\) −17.0795 −0.599744 −0.299872 0.953979i \(-0.596944\pi\)
−0.299872 + 0.953979i \(0.596944\pi\)
\(812\) 0 0
\(813\) 18.4503 0.647080
\(814\) 0 0
\(815\) 16.1246 0.564819
\(816\) 0 0
\(817\) 9.16870 0.320772
\(818\) 0 0
\(819\) −1.13116 −0.0395260
\(820\) 0 0
\(821\) 15.3541 0.535861 0.267930 0.963438i \(-0.413660\pi\)
0.267930 + 0.963438i \(0.413660\pi\)
\(822\) 0 0
\(823\) 33.9882i 1.18475i −0.805661 0.592377i \(-0.798189\pi\)
0.805661 0.592377i \(-0.201811\pi\)
\(824\) 0 0
\(825\) 5.90475 0.205577
\(826\) 0 0
\(827\) 35.0401 1.21846 0.609232 0.792992i \(-0.291478\pi\)
0.609232 + 0.792992i \(0.291478\pi\)
\(828\) 0 0
\(829\) 24.1097i 0.837366i −0.908132 0.418683i \(-0.862492\pi\)
0.908132 0.418683i \(-0.137508\pi\)
\(830\) 0 0
\(831\) 39.3546 1.36520
\(832\) 0 0
\(833\) 14.4353 22.9305i 0.500153 0.794496i
\(834\) 0 0
\(835\) 13.2324i 0.457925i
\(836\) 0 0
\(837\) 4.93208i 0.170477i
\(838\) 0 0
\(839\) 23.0802i 0.796818i −0.917208 0.398409i \(-0.869562\pi\)
0.917208 0.398409i \(-0.130438\pi\)
\(840\) 0 0
\(841\) 18.0313 0.621768
\(842\) 0 0
\(843\) 49.7350 1.71296
\(844\) 0 0
\(845\) 12.7544 0.438765
\(846\) 0 0
\(847\) 3.68176i 0.126507i
\(848\) 0 0
\(849\) −54.8665 −1.88301
\(850\) 0 0
\(851\) 0.576819i 0.0197731i
\(852\) 0 0
\(853\) 17.7132 0.606490 0.303245 0.952913i \(-0.401930\pi\)
0.303245 + 0.952913i \(0.401930\pi\)
\(854\) 0 0
\(855\) 8.98960i 0.307438i
\(856\) 0 0
\(857\) 21.2303i 0.725214i −0.931942 0.362607i \(-0.881887\pi\)
0.931942 0.362607i \(-0.118113\pi\)
\(858\) 0 0
\(859\) 55.6788i 1.89974i −0.312652 0.949868i \(-0.601218\pi\)
0.312652 0.949868i \(-0.398782\pi\)
\(860\) 0 0
\(861\) 5.35973 0.182659
\(862\) 0 0
\(863\) −30.0014 −1.02126 −0.510630 0.859801i \(-0.670588\pi\)
−0.510630 + 0.859801i \(0.670588\pi\)
\(864\) 0 0
\(865\) 21.3027 0.724313
\(866\) 0 0
\(867\) 18.7215 + 39.0445i 0.635816 + 1.32602i
\(868\) 0 0
\(869\) 9.46745i 0.321161i
\(870\) 0 0
\(871\) 4.29236 0.145441
\(872\) 0 0
\(873\) 40.6559i 1.37599i
\(874\) 0 0
\(875\) 0.654431i 0.0221238i
\(876\) 0 0
\(877\) 24.9771 0.843417 0.421708 0.906732i \(-0.361431\pi\)
0.421708 + 0.906732i \(0.361431\pi\)
\(878\) 0 0
\(879\) 54.1856i 1.82764i
\(880\) 0 0
\(881\) 51.0071i 1.71847i 0.511580 + 0.859236i \(0.329061\pi\)
−0.511580 + 0.859236i \(0.670939\pi\)
\(882\) 0 0
\(883\) 32.9436i 1.10864i −0.832304 0.554320i \(-0.812978\pi\)
0.832304 0.554320i \(-0.187022\pi\)
\(884\) 0 0
\(885\) 1.10244i 0.0370583i
\(886\) 0 0
\(887\) 36.3257i 1.21970i −0.792518 0.609848i \(-0.791230\pi\)
0.792518 0.609848i \(-0.208770\pi\)
\(888\) 0 0
\(889\) 10.9448i 0.367077i
\(890\) 0 0
\(891\) 16.9200 0.566840
\(892\) 0 0
\(893\) 8.84233i 0.295897i
\(894\) 0 0
\(895\) 11.4748i 0.383560i
\(896\) 0 0
\(897\) 0.237628 0.00793418
\(898\) 0 0
\(899\) 27.2237i 0.907960i
\(900\) 0 0
\(901\) 29.5867 + 18.6255i 0.985675 + 0.620505i
\(902\) 0 0
\(903\) −5.92965 −0.197326
\(904\) 0 0
\(905\) 8.44241 0.280635
\(906\) 0 0
\(907\) 5.38304 0.178741 0.0893704 0.995998i \(-0.471515\pi\)
0.0893704 + 0.995998i \(0.471515\pi\)
\(908\) 0 0
\(909\) 27.0540i 0.897323i
\(910\) 0 0
\(911\) 22.7399i 0.753405i −0.926334 0.376703i \(-0.877058\pi\)
0.926334 0.376703i \(-0.122942\pi\)
\(912\) 0 0
\(913\) 35.5066i 1.17510i
\(914\) 0 0
\(915\) 9.05334 0.299294
\(916\) 0 0
\(917\) 0.821063i 0.0271139i
\(918\) 0 0
\(919\) 20.0866 0.662595 0.331298 0.943526i \(-0.392514\pi\)
0.331298 + 0.943526i \(0.392514\pi\)
\(920\) 0 0
\(921\) 62.5811i 2.06212i
\(922\) 0 0
\(923\) −4.82090 −0.158682
\(924\) 0 0
\(925\) −3.06408 −0.100746
\(926\) 0 0
\(927\) −20.0655 −0.659036
\(928\) 0 0
\(929\) 32.7749i 1.07531i 0.843165 + 0.537654i \(0.180689\pi\)
−0.843165 + 0.537654i \(0.819311\pi\)
\(930\) 0 0
\(931\) 16.9383i 0.555130i
\(932\) 0 0
\(933\) 79.1504i 2.59127i
\(934\) 0 0
\(935\) −5.09213 + 8.08888i −0.166531 + 0.264535i
\(936\) 0 0
\(937\) −16.6829 −0.545008 −0.272504 0.962155i \(-0.587852\pi\)
−0.272504 + 0.962155i \(0.587852\pi\)
\(938\) 0 0
\(939\) 40.2322i 1.31293i
\(940\) 0 0
\(941\) −40.8872 −1.33288 −0.666442 0.745557i \(-0.732184\pi\)
−0.666442 + 0.745557i \(0.732184\pi\)
\(942\) 0 0
\(943\) −0.605299 −0.0197112
\(944\) 0 0
\(945\) 0.813094i 0.0264499i
\(946\) 0 0
\(947\) 38.9364 1.26526 0.632632 0.774452i \(-0.281975\pi\)
0.632632 + 0.774452i \(0.281975\pi\)
\(948\) 0 0
\(949\) −1.82048 −0.0590952
\(950\) 0 0
\(951\) 8.67731 0.281381
\(952\) 0 0
\(953\) −9.09398 −0.294583 −0.147292 0.989093i \(-0.547056\pi\)
−0.147292 + 0.989093i \(0.547056\pi\)
\(954\) 0 0
\(955\) −26.7666 −0.866147
\(956\) 0 0
\(957\) −40.4944 −1.30900
\(958\) 0 0
\(959\) 10.3779i 0.335119i
\(960\) 0 0
\(961\) 15.2418 0.491671
\(962\) 0 0
\(963\) 39.5314 1.27388
\(964\) 0 0
\(965\) 19.5588i 0.629622i
\(966\) 0 0
\(967\) 12.8681 0.413809 0.206905 0.978361i \(-0.433661\pi\)
0.206905 + 0.978361i \(0.433661\pi\)
\(968\) 0 0
\(969\) −22.9073 14.4207i −0.735889 0.463259i
\(970\) 0 0
\(971\) 24.8605i 0.797812i 0.916992 + 0.398906i \(0.130610\pi\)
−0.916992 + 0.398906i \(0.869390\pi\)
\(972\) 0 0
\(973\) 3.59349i 0.115202i
\(974\) 0 0
\(975\) 1.26229i 0.0404256i
\(976\) 0 0
\(977\) −4.01155 −0.128341 −0.0641704 0.997939i \(-0.520440\pi\)
−0.0641704 + 0.997939i \(0.520440\pi\)
\(978\) 0 0
\(979\) −20.8265 −0.665618
\(980\) 0 0
\(981\) −9.55334 −0.305015
\(982\) 0 0
\(983\) 47.3479i 1.51016i 0.655631 + 0.755081i \(0.272403\pi\)
−0.655631 + 0.755081i \(0.727597\pi\)
\(984\) 0 0
\(985\) 8.04276 0.256264
\(986\) 0 0
\(987\) 5.71858i 0.182024i
\(988\) 0 0
\(989\) 0.669663 0.0212940
\(990\) 0 0
\(991\) 4.27944i 0.135941i 0.997687 + 0.0679704i \(0.0216524\pi\)
−0.997687 + 0.0679704i \(0.978348\pi\)
\(992\) 0 0
\(993\) 43.9453i 1.39456i
\(994\) 0 0
\(995\) 23.3064i 0.738864i
\(996\) 0 0
\(997\) −49.6717 −1.57312 −0.786559 0.617515i \(-0.788139\pi\)
−0.786559 + 0.617515i \(0.788139\pi\)
\(998\) 0 0
\(999\) 3.80695 0.120446
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2720.2.l.b.2481.5 36
4.3 odd 2 680.2.l.a.101.21 36
8.3 odd 2 680.2.l.b.101.22 yes 36
8.5 even 2 2720.2.l.a.2481.31 36
17.16 even 2 2720.2.l.a.2481.32 36
68.67 odd 2 680.2.l.b.101.21 yes 36
136.67 odd 2 680.2.l.a.101.22 yes 36
136.101 even 2 inner 2720.2.l.b.2481.6 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.21 36 4.3 odd 2
680.2.l.a.101.22 yes 36 136.67 odd 2
680.2.l.b.101.21 yes 36 68.67 odd 2
680.2.l.b.101.22 yes 36 8.3 odd 2
2720.2.l.a.2481.31 36 8.5 even 2
2720.2.l.a.2481.32 36 17.16 even 2
2720.2.l.b.2481.5 36 1.1 even 1 trivial
2720.2.l.b.2481.6 36 136.101 even 2 inner