Properties

Label 2720.2
Level 2720
Weight 2
Dimension 112356
Nonzero newspaces 84
Sturm bound 884736
Trace bound 77

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 84 \)
Sturm bound: \(884736\)
Trace bound: \(77\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2720))\).

Total New Old
Modular forms 225280 114156 111124
Cusp forms 217089 112356 104733
Eisenstein series 8191 1800 6391

Trace form

\( 112356 q - 112 q^{2} - 88 q^{3} - 112 q^{4} - 172 q^{5} - 336 q^{6} - 88 q^{7} - 112 q^{8} - 172 q^{9} - 152 q^{10} - 256 q^{11} - 48 q^{12} - 88 q^{13} - 48 q^{14} - 120 q^{15} - 256 q^{16} - 52 q^{17}+ \cdots + 224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2720))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2720.2.a \(\chi_{2720}(1, \cdot)\) 2720.2.a.a 1 1
2720.2.a.b 1
2720.2.a.c 1
2720.2.a.d 1
2720.2.a.e 1
2720.2.a.f 1
2720.2.a.g 2
2720.2.a.h 2
2720.2.a.i 2
2720.2.a.j 4
2720.2.a.k 4
2720.2.a.l 4
2720.2.a.m 4
2720.2.a.n 4
2720.2.a.o 4
2720.2.a.p 4
2720.2.a.q 4
2720.2.a.r 4
2720.2.a.s 5
2720.2.a.t 5
2720.2.a.u 6
2720.2.c \(\chi_{2720}(1121, \cdot)\) 2720.2.c.a 2 1
2720.2.c.b 2
2720.2.c.c 4
2720.2.c.d 12
2720.2.c.e 16
2720.2.c.f 16
2720.2.c.g 20
2720.2.e \(\chi_{2720}(1089, \cdot)\) 2720.2.e.a 2 1
2720.2.e.b 2
2720.2.e.c 4
2720.2.e.d 8
2720.2.e.e 8
2720.2.e.f 22
2720.2.e.g 22
2720.2.e.h 28
2720.2.f \(\chi_{2720}(1361, \cdot)\) 2720.2.f.a 2 1
2720.2.f.b 2
2720.2.f.c 6
2720.2.f.d 24
2720.2.f.e 30
2720.2.h \(\chi_{2720}(849, \cdot)\) n/a 104 1
2720.2.j \(\chi_{2720}(2449, \cdot)\) 2720.2.j.a 2 1
2720.2.j.b 2
2720.2.j.c 4
2720.2.j.d 4
2720.2.j.e 84
2720.2.l \(\chi_{2720}(2481, \cdot)\) 2720.2.l.a 36 1
2720.2.l.b 36
2720.2.o \(\chi_{2720}(2209, \cdot)\) n/a 108 1
2720.2.q \(\chi_{2720}(1407, \cdot)\) n/a 216 2
2720.2.s \(\chi_{2720}(1721, \cdot)\) None 0 2
2720.2.v \(\chi_{2720}(1767, \cdot)\) None 0 2
2720.2.x \(\chi_{2720}(103, \cdot)\) None 0 2
2720.2.z \(\chi_{2720}(1449, \cdot)\) None 0 2
2720.2.bb \(\chi_{2720}(1007, \cdot)\) n/a 208 2
2720.2.bc \(\chi_{2720}(1543, \cdot)\) None 0 2
2720.2.bf \(\chi_{2720}(169, \cdot)\) None 0 2
2720.2.bg \(\chi_{2720}(681, \cdot)\) None 0 2
2720.2.bj \(\chi_{2720}(183, \cdot)\) None 0 2
2720.2.bk \(\chi_{2720}(1903, \cdot)\) n/a 208 2
2720.2.bn \(\chi_{2720}(2143, \cdot)\) n/a 192 2
2720.2.bp \(\chi_{2720}(769, \cdot)\) n/a 216 2
2720.2.bq \(\chi_{2720}(81, \cdot)\) n/a 144 2
2720.2.bt \(\chi_{2720}(1441, \cdot)\) n/a 144 2
2720.2.bu \(\chi_{2720}(1169, \cdot)\) n/a 208 2
2720.2.bw \(\chi_{2720}(783, \cdot)\) n/a 192 2
2720.2.bz \(\chi_{2720}(543, \cdot)\) n/a 216 2
2720.2.ca \(\chi_{2720}(1143, \cdot)\) None 0 2
2720.2.cd \(\chi_{2720}(441, \cdot)\) None 0 2
2720.2.ce \(\chi_{2720}(409, \cdot)\) None 0 2
2720.2.ch \(\chi_{2720}(727, \cdot)\) None 0 2
2720.2.cj \(\chi_{2720}(47, \cdot)\) n/a 208 2
2720.2.ck \(\chi_{2720}(89, \cdot)\) None 0 2
2720.2.cm \(\chi_{2720}(647, \cdot)\) None 0 2
2720.2.co \(\chi_{2720}(407, \cdot)\) None 0 2
2720.2.cr \(\chi_{2720}(361, \cdot)\) None 0 2
2720.2.cs \(\chi_{2720}(863, \cdot)\) n/a 216 2
2720.2.cv \(\chi_{2720}(461, \cdot)\) n/a 1152 4
2720.2.cw \(\chi_{2720}(467, \cdot)\) n/a 1712 4
2720.2.cz \(\chi_{2720}(723, \cdot)\) n/a 1712 4
2720.2.da \(\chi_{2720}(189, \cdot)\) n/a 1712 4
2720.2.dd \(\chi_{2720}(307, \cdot)\) n/a 1536 4
2720.2.df \(\chi_{2720}(747, \cdot)\) n/a 1712 4
2720.2.dg \(\chi_{2720}(149, \cdot)\) n/a 1712 4
2720.2.dj \(\chi_{2720}(21, \cdot)\) n/a 1152 4
2720.2.dm \(\chi_{2720}(43, \cdot)\) n/a 1712 4
2720.2.dn \(\chi_{2720}(83, \cdot)\) n/a 1712 4
2720.2.do \(\chi_{2720}(869, \cdot)\) n/a 1712 4
2720.2.dq \(\chi_{2720}(349, \cdot)\) n/a 1712 4
2720.2.dt \(\chi_{2720}(1141, \cdot)\) n/a 1152 4
2720.2.dv \(\chi_{2720}(621, \cdot)\) n/a 1152 4
2720.2.dw \(\chi_{2720}(563, \cdot)\) n/a 1712 4
2720.2.dx \(\chi_{2720}(1107, \cdot)\) n/a 1712 4
2720.2.eb \(\chi_{2720}(87, \cdot)\) None 0 4
2720.2.ec \(\chi_{2720}(161, \cdot)\) n/a 288 4
2720.2.ef \(\chi_{2720}(49, \cdot)\) n/a 416 4
2720.2.eh \(\chi_{2720}(247, \cdot)\) None 0 4
2720.2.ej \(\chi_{2720}(569, \cdot)\) None 0 4
2720.2.ek \(\chi_{2720}(281, \cdot)\) None 0 4
2720.2.em \(\chi_{2720}(127, \cdot)\) n/a 432 4
2720.2.ep \(\chi_{2720}(287, \cdot)\) n/a 432 4
2720.2.er \(\chi_{2720}(509, \cdot)\) n/a 1712 4
2720.2.es \(\chi_{2720}(101, \cdot)\) n/a 1152 4
2720.2.eu \(\chi_{2720}(803, \cdot)\) n/a 1712 4
2720.2.ev \(\chi_{2720}(523, \cdot)\) n/a 1712 4
2720.2.fa \(\chi_{2720}(123, \cdot)\) n/a 1712 4
2720.2.fb \(\chi_{2720}(667, \cdot)\) n/a 1712 4
2720.2.fd \(\chi_{2720}(69, \cdot)\) n/a 1536 4
2720.2.fe \(\chi_{2720}(341, \cdot)\) n/a 1024 4
2720.2.fg \(\chi_{2720}(943, \cdot)\) n/a 416 4
2720.2.fj \(\chi_{2720}(1103, \cdot)\) n/a 416 4
2720.2.fl \(\chi_{2720}(9, \cdot)\) None 0 4
2720.2.fm \(\chi_{2720}(121, \cdot)\) None 0 4
2720.2.fo \(\chi_{2720}(807, \cdot)\) None 0 4
2720.2.fr \(\chi_{2720}(1249, \cdot)\) n/a 432 4
2720.2.fs \(\chi_{2720}(1521, \cdot)\) n/a 288 4
2720.2.fu \(\chi_{2720}(967, \cdot)\) None 0 4
2720.2.fx \(\chi_{2720}(829, \cdot)\) n/a 1712 4
2720.2.fy \(\chi_{2720}(421, \cdot)\) n/a 1152 4
2720.2.ga \(\chi_{2720}(987, \cdot)\) n/a 1536 4
2720.2.gc \(\chi_{2720}(67, \cdot)\) n/a 1712 4
2720.2.gf \(\chi_{2720}(1029, \cdot)\) n/a 1712 4
2720.2.gh \(\chi_{2720}(427, \cdot)\) n/a 1712 4
2720.2.gi \(\chi_{2720}(1243, \cdot)\) n/a 1712 4
2720.2.gk \(\chi_{2720}(1301, \cdot)\) n/a 1152 4
2720.2.gn \(\chi_{2720}(231, \cdot)\) None 0 8
2720.2.gp \(\chi_{2720}(113, \cdot)\) n/a 832 8
2720.2.gq \(\chi_{2720}(513, \cdot)\) n/a 864 8
2720.2.gs \(\chi_{2720}(39, \cdot)\) None 0 8
2720.2.gv \(\chi_{2720}(91, \cdot)\) n/a 2304 8
2720.2.gx \(\chi_{2720}(173, \cdot)\) n/a 3424 8
2720.2.gy \(\chi_{2720}(453, \cdot)\) n/a 3424 8
2720.2.ha \(\chi_{2720}(299, \cdot)\) n/a 3424 8
2720.2.hd \(\chi_{2720}(313, \cdot)\) None 0 8
2720.2.he \(\chi_{2720}(57, \cdot)\) None 0 8
2720.2.hg \(\chi_{2720}(411, \cdot)\) n/a 2304 8
2720.2.hi \(\chi_{2720}(431, \cdot)\) n/a 576 8
2720.2.hl \(\chi_{2720}(31, \cdot)\) n/a 576 8
2720.2.hn \(\chi_{2720}(211, \cdot)\) n/a 2304 8
2720.2.ho \(\chi_{2720}(317, \cdot)\) n/a 3424 8
2720.2.hr \(\chi_{2720}(37, \cdot)\) n/a 3424 8
2720.2.hs \(\chi_{2720}(133, \cdot)\) n/a 3424 8
2720.2.hv \(\chi_{2720}(333, \cdot)\) n/a 3424 8
2720.2.hx \(\chi_{2720}(139, \cdot)\) n/a 3424 8
2720.2.hz \(\chi_{2720}(159, \cdot)\) n/a 864 8
2720.2.ia \(\chi_{2720}(79, \cdot)\) n/a 832 8
2720.2.ic \(\chi_{2720}(499, \cdot)\) n/a 3424 8
2720.2.if \(\chi_{2720}(377, \cdot)\) None 0 8
2720.2.ig \(\chi_{2720}(473, \cdot)\) None 0 8
2720.2.ij \(\chi_{2720}(11, \cdot)\) n/a 2304 8
2720.2.il \(\chi_{2720}(197, \cdot)\) n/a 3424 8
2720.2.im \(\chi_{2720}(533, \cdot)\) n/a 3424 8
2720.2.io \(\chi_{2720}(99, \cdot)\) n/a 3424 8
2720.2.iq \(\chi_{2720}(439, \cdot)\) None 0 8
2720.2.is \(\chi_{2720}(97, \cdot)\) n/a 864 8
2720.2.iv \(\chi_{2720}(177, \cdot)\) n/a 832 8
2720.2.ix \(\chi_{2720}(71, \cdot)\) None 0 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2720))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2720)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(34))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(68))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(85))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(136))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(160))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(170))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(272))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(340))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(544))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(680))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1360))\)\(^{\oplus 2}\)