Properties

Label 680.2.l.b.101.10
Level $680$
Weight $2$
Character 680.101
Analytic conductor $5.430$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(101,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.10
Character \(\chi\) \(=\) 680.101
Dual form 680.2.l.b.101.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.985753 + 1.01405i) q^{2} +1.46409 q^{3} +(-0.0565822 - 1.99920i) q^{4} -1.00000 q^{5} +(-1.44323 + 1.48466i) q^{6} +1.02762i q^{7} +(2.08306 + 1.91334i) q^{8} -0.856436 q^{9} +(0.985753 - 1.01405i) q^{10} +0.737326 q^{11} +(-0.0828415 - 2.92701i) q^{12} +4.98026i q^{13} +(-1.04205 - 1.01298i) q^{14} -1.46409 q^{15} +(-3.99360 + 0.226238i) q^{16} +(3.59849 + 2.01268i) q^{17} +(0.844234 - 0.868466i) q^{18} -2.82434i q^{19} +(0.0565822 + 1.99920i) q^{20} +1.50452i q^{21} +(-0.726822 + 0.747684i) q^{22} +4.95563i q^{23} +(3.04979 + 2.80130i) q^{24} +1.00000 q^{25} +(-5.05022 - 4.90931i) q^{26} -5.64618 q^{27} +(2.05441 - 0.0581448i) q^{28} +4.86957 q^{29} +(1.44323 - 1.48466i) q^{30} +7.67421i q^{31} +(3.70728 - 4.27271i) q^{32} +1.07951 q^{33} +(-5.58817 + 1.66503i) q^{34} -1.02762i q^{35} +(0.0484591 + 1.71219i) q^{36} -3.22579 q^{37} +(2.86402 + 2.78410i) q^{38} +7.29156i q^{39} +(-2.08306 - 1.91334i) q^{40} +4.45258i q^{41} +(-1.52566 - 1.48309i) q^{42} +5.96478i q^{43} +(-0.0417196 - 1.47406i) q^{44} +0.856436 q^{45} +(-5.02524 - 4.88502i) q^{46} +11.3771 q^{47} +(-5.84699 + 0.331234i) q^{48} +5.94401 q^{49} +(-0.985753 + 1.01405i) q^{50} +(5.26852 + 2.94675i) q^{51} +(9.95654 - 0.281794i) q^{52} +0.0517813i q^{53} +(5.56573 - 5.72549i) q^{54} -0.737326 q^{55} +(-1.96618 + 2.14058i) q^{56} -4.13510i q^{57} +(-4.80019 + 4.93797i) q^{58} -6.48292i q^{59} +(0.0828415 + 2.92701i) q^{60} -14.4629 q^{61} +(-7.78201 - 7.56487i) q^{62} -0.880087i q^{63} +(0.678262 + 7.97120i) q^{64} -4.98026i q^{65} +(-1.06413 + 1.09468i) q^{66} -4.56989i q^{67} +(3.82013 - 7.30798i) q^{68} +7.25549i q^{69} +(1.04205 + 1.01298i) q^{70} +12.9933i q^{71} +(-1.78401 - 1.63865i) q^{72} -0.800933i q^{73} +(3.17983 - 3.27110i) q^{74} +1.46409 q^{75} +(-5.64642 + 0.159808i) q^{76} +0.757688i q^{77} +(-7.39399 - 7.18768i) q^{78} -7.83068i q^{79} +(3.99360 - 0.226238i) q^{80} -5.69721 q^{81} +(-4.51512 - 4.38914i) q^{82} -10.7517i q^{83} +(3.00784 - 0.0851293i) q^{84} +(-3.59849 - 2.01268i) q^{85} +(-6.04856 - 5.87980i) q^{86} +7.12949 q^{87} +(1.53589 + 1.41076i) q^{88} -6.70231 q^{89} +(-0.844234 + 0.868466i) q^{90} -5.11780 q^{91} +(9.90729 - 0.280400i) q^{92} +11.2357i q^{93} +(-11.2150 + 11.5369i) q^{94} +2.82434i q^{95} +(5.42780 - 6.25564i) q^{96} +7.53723i q^{97} +(-5.85932 + 6.02750i) q^{98} -0.631473 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 4 q^{3} + 2 q^{4} - 36 q^{5} + 36 q^{9} + 8 q^{11} + 2 q^{12} - 2 q^{14} - 4 q^{15} + 6 q^{16} - 10 q^{18} - 2 q^{20} - 26 q^{24} + 36 q^{25} + 6 q^{26} + 16 q^{27} - 14 q^{28} - 10 q^{32} - 8 q^{33}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.985753 + 1.01405i −0.697033 + 0.717039i
\(3\) 1.46409 0.845294 0.422647 0.906294i \(-0.361101\pi\)
0.422647 + 0.906294i \(0.361101\pi\)
\(4\) −0.0565822 1.99920i −0.0282911 0.999600i
\(5\) −1.00000 −0.447214
\(6\) −1.44323 + 1.48466i −0.589197 + 0.606109i
\(7\) 1.02762i 0.388402i 0.980962 + 0.194201i \(0.0622114\pi\)
−0.980962 + 0.194201i \(0.937789\pi\)
\(8\) 2.08306 + 1.91334i 0.736472 + 0.676468i
\(9\) −0.856436 −0.285479
\(10\) 0.985753 1.01405i 0.311722 0.320670i
\(11\) 0.737326 0.222312 0.111156 0.993803i \(-0.464545\pi\)
0.111156 + 0.993803i \(0.464545\pi\)
\(12\) −0.0828415 2.92701i −0.0239143 0.844955i
\(13\) 4.98026i 1.38128i 0.723200 + 0.690638i \(0.242670\pi\)
−0.723200 + 0.690638i \(0.757330\pi\)
\(14\) −1.04205 1.01298i −0.278500 0.270729i
\(15\) −1.46409 −0.378027
\(16\) −3.99360 + 0.226238i −0.998399 + 0.0565596i
\(17\) 3.59849 + 2.01268i 0.872762 + 0.488146i
\(18\) 0.844234 0.868466i 0.198988 0.204699i
\(19\) 2.82434i 0.647949i −0.946066 0.323974i \(-0.894981\pi\)
0.946066 0.323974i \(-0.105019\pi\)
\(20\) 0.0565822 + 1.99920i 0.0126522 + 0.447035i
\(21\) 1.50452i 0.328314i
\(22\) −0.726822 + 0.747684i −0.154959 + 0.159407i
\(23\) 4.95563i 1.03332i 0.856191 + 0.516660i \(0.172825\pi\)
−0.856191 + 0.516660i \(0.827175\pi\)
\(24\) 3.04979 + 2.80130i 0.622535 + 0.571814i
\(25\) 1.00000 0.200000
\(26\) −5.05022 4.90931i −0.990430 0.962795i
\(27\) −5.64618 −1.08661
\(28\) 2.05441 0.0581448i 0.388247 0.0109883i
\(29\) 4.86957 0.904256 0.452128 0.891953i \(-0.350665\pi\)
0.452128 + 0.891953i \(0.350665\pi\)
\(30\) 1.44323 1.48466i 0.263497 0.271060i
\(31\) 7.67421i 1.37833i 0.724605 + 0.689164i \(0.242022\pi\)
−0.724605 + 0.689164i \(0.757978\pi\)
\(32\) 3.70728 4.27271i 0.655361 0.755315i
\(33\) 1.07951 0.187919
\(34\) −5.58817 + 1.66503i −0.958364 + 0.285551i
\(35\) 1.02762i 0.173699i
\(36\) 0.0484591 + 1.71219i 0.00807651 + 0.285364i
\(37\) −3.22579 −0.530316 −0.265158 0.964205i \(-0.585424\pi\)
−0.265158 + 0.964205i \(0.585424\pi\)
\(38\) 2.86402 + 2.78410i 0.464605 + 0.451641i
\(39\) 7.29156i 1.16758i
\(40\) −2.08306 1.91334i −0.329360 0.302526i
\(41\) 4.45258i 0.695376i 0.937610 + 0.347688i \(0.113033\pi\)
−0.937610 + 0.347688i \(0.886967\pi\)
\(42\) −1.52566 1.48309i −0.235414 0.228846i
\(43\) 5.96478i 0.909620i 0.890588 + 0.454810i \(0.150293\pi\)
−0.890588 + 0.454810i \(0.849707\pi\)
\(44\) −0.0417196 1.47406i −0.00628946 0.222223i
\(45\) 0.856436 0.127670
\(46\) −5.02524 4.88502i −0.740931 0.720258i
\(47\) 11.3771 1.65952 0.829761 0.558119i \(-0.188477\pi\)
0.829761 + 0.558119i \(0.188477\pi\)
\(48\) −5.84699 + 0.331234i −0.843940 + 0.0478094i
\(49\) 5.94401 0.849144
\(50\) −0.985753 + 1.01405i −0.139407 + 0.143408i
\(51\) 5.26852 + 2.94675i 0.737740 + 0.412627i
\(52\) 9.95654 0.281794i 1.38072 0.0390778i
\(53\) 0.0517813i 0.00711271i 0.999994 + 0.00355636i \(0.00113203\pi\)
−0.999994 + 0.00355636i \(0.998868\pi\)
\(54\) 5.56573 5.72549i 0.757400 0.779140i
\(55\) −0.737326 −0.0994211
\(56\) −1.96618 + 2.14058i −0.262742 + 0.286047i
\(57\) 4.13510i 0.547707i
\(58\) −4.80019 + 4.93797i −0.630296 + 0.648387i
\(59\) 6.48292i 0.844005i −0.906595 0.422002i \(-0.861327\pi\)
0.906595 0.422002i \(-0.138673\pi\)
\(60\) 0.0828415 + 2.92701i 0.0106948 + 0.377875i
\(61\) −14.4629 −1.85178 −0.925890 0.377792i \(-0.876683\pi\)
−0.925890 + 0.377792i \(0.876683\pi\)
\(62\) −7.78201 7.56487i −0.988316 0.960740i
\(63\) 0.880087i 0.110881i
\(64\) 0.678262 + 7.97120i 0.0847827 + 0.996399i
\(65\) 4.98026i 0.617726i
\(66\) −1.06413 + 1.09468i −0.130986 + 0.134745i
\(67\) 4.56989i 0.558301i −0.960247 0.279150i \(-0.909947\pi\)
0.960247 0.279150i \(-0.0900528\pi\)
\(68\) 3.82013 7.30798i 0.463259 0.886223i
\(69\) 7.25549i 0.873459i
\(70\) 1.04205 + 1.01298i 0.124549 + 0.121074i
\(71\) 12.9933i 1.54202i 0.636822 + 0.771010i \(0.280248\pi\)
−0.636822 + 0.771010i \(0.719752\pi\)
\(72\) −1.78401 1.63865i −0.210247 0.193117i
\(73\) 0.800933i 0.0937421i −0.998901 0.0468710i \(-0.985075\pi\)
0.998901 0.0468710i \(-0.0149250\pi\)
\(74\) 3.17983 3.27110i 0.369648 0.380258i
\(75\) 1.46409 0.169059
\(76\) −5.64642 + 0.159808i −0.647689 + 0.0183312i
\(77\) 0.757688i 0.0863466i
\(78\) −7.39399 7.18768i −0.837204 0.813844i
\(79\) 7.83068i 0.881020i −0.897748 0.440510i \(-0.854798\pi\)
0.897748 0.440510i \(-0.145202\pi\)
\(80\) 3.99360 0.226238i 0.446498 0.0252942i
\(81\) −5.69721 −0.633023
\(82\) −4.51512 4.38914i −0.498612 0.484700i
\(83\) 10.7517i 1.18016i −0.807346 0.590078i \(-0.799097\pi\)
0.807346 0.590078i \(-0.200903\pi\)
\(84\) 3.00784 0.0851293i 0.328183 0.00928836i
\(85\) −3.59849 2.01268i −0.390311 0.218306i
\(86\) −6.04856 5.87980i −0.652233 0.634035i
\(87\) 7.12949 0.764362
\(88\) 1.53589 + 1.41076i 0.163727 + 0.150387i
\(89\) −6.70231 −0.710443 −0.355222 0.934782i \(-0.615595\pi\)
−0.355222 + 0.934782i \(0.615595\pi\)
\(90\) −0.844234 + 0.868466i −0.0889901 + 0.0915444i
\(91\) −5.11780 −0.536491
\(92\) 9.90729 0.280400i 1.03291 0.0292338i
\(93\) 11.2357i 1.16509i
\(94\) −11.2150 + 11.5369i −1.15674 + 1.18994i
\(95\) 2.82434i 0.289771i
\(96\) 5.42780 6.25564i 0.553973 0.638463i
\(97\) 7.53723i 0.765289i 0.923896 + 0.382645i \(0.124987\pi\)
−0.923896 + 0.382645i \(0.875013\pi\)
\(98\) −5.85932 + 6.02750i −0.591881 + 0.608870i
\(99\) −0.631473 −0.0634654
\(100\) −0.0565822 1.99920i −0.00565822 0.199920i
\(101\) 1.99652i 0.198662i −0.995054 0.0993308i \(-0.968330\pi\)
0.995054 0.0993308i \(-0.0316702\pi\)
\(102\) −8.18159 + 2.43776i −0.810099 + 0.241374i
\(103\) 1.44810 0.142685 0.0713426 0.997452i \(-0.477272\pi\)
0.0713426 + 0.997452i \(0.477272\pi\)
\(104\) −9.52894 + 10.3742i −0.934389 + 1.01727i
\(105\) 1.50452i 0.146826i
\(106\) −0.0525087 0.0510436i −0.00510010 0.00495779i
\(107\) 4.74210 0.458436 0.229218 0.973375i \(-0.426383\pi\)
0.229218 + 0.973375i \(0.426383\pi\)
\(108\) 0.319473 + 11.2878i 0.0307413 + 1.08617i
\(109\) −18.6027 −1.78182 −0.890910 0.454180i \(-0.849932\pi\)
−0.890910 + 0.454180i \(0.849932\pi\)
\(110\) 0.726822 0.747684i 0.0692997 0.0712888i
\(111\) −4.72285 −0.448273
\(112\) −0.232486 4.10388i −0.0219679 0.387781i
\(113\) 13.6404i 1.28319i −0.767046 0.641593i \(-0.778274\pi\)
0.767046 0.641593i \(-0.221726\pi\)
\(114\) 4.19318 + 4.07618i 0.392727 + 0.381769i
\(115\) 4.95563i 0.462115i
\(116\) −0.275531 9.73524i −0.0255824 0.903894i
\(117\) 4.26528i 0.394325i
\(118\) 6.57399 + 6.39056i 0.605185 + 0.588299i
\(119\) −2.06826 + 3.69786i −0.189597 + 0.338983i
\(120\) −3.04979 2.80130i −0.278406 0.255723i
\(121\) −10.4563 −0.950577
\(122\) 14.2568 14.6660i 1.29075 1.32780i
\(123\) 6.51898i 0.587797i
\(124\) 15.3423 0.434224i 1.37778 0.0389944i
\(125\) −1.00000 −0.0894427
\(126\) 0.892450 + 0.867549i 0.0795057 + 0.0772874i
\(127\) −3.25854 −0.289149 −0.144574 0.989494i \(-0.546181\pi\)
−0.144574 + 0.989494i \(0.546181\pi\)
\(128\) −8.75176 7.16984i −0.773554 0.633730i
\(129\) 8.73298i 0.768896i
\(130\) 5.05022 + 4.90931i 0.442934 + 0.430575i
\(131\) 19.1586 1.67390 0.836949 0.547282i \(-0.184337\pi\)
0.836949 + 0.547282i \(0.184337\pi\)
\(132\) −0.0610813 2.15816i −0.00531644 0.187844i
\(133\) 2.90234 0.251665
\(134\) 4.63408 + 4.50478i 0.400324 + 0.389154i
\(135\) 5.64618 0.485945
\(136\) 3.64493 + 11.0777i 0.312550 + 0.949901i
\(137\) 12.0129 1.02633 0.513164 0.858291i \(-0.328473\pi\)
0.513164 + 0.858291i \(0.328473\pi\)
\(138\) −7.35741 7.15212i −0.626304 0.608829i
\(139\) 8.85801 0.751326 0.375663 0.926756i \(-0.377415\pi\)
0.375663 + 0.926756i \(0.377415\pi\)
\(140\) −2.05441 + 0.0581448i −0.173629 + 0.00491413i
\(141\) 16.6571 1.40278
\(142\) −13.1758 12.8082i −1.10569 1.07484i
\(143\) 3.67208i 0.307075i
\(144\) 3.42026 0.193759i 0.285022 0.0161466i
\(145\) −4.86957 −0.404396
\(146\) 0.812183 + 0.789522i 0.0672168 + 0.0653413i
\(147\) 8.70257 0.717776
\(148\) 0.182522 + 6.44899i 0.0150032 + 0.530104i
\(149\) 22.3957i 1.83472i −0.398055 0.917362i \(-0.630315\pi\)
0.398055 0.917362i \(-0.369685\pi\)
\(150\) −1.44323 + 1.48466i −0.117839 + 0.121222i
\(151\) 15.4701 1.25894 0.629469 0.777025i \(-0.283272\pi\)
0.629469 + 0.777025i \(0.283272\pi\)
\(152\) 5.40393 5.88327i 0.438316 0.477196i
\(153\) −3.08188 1.72373i −0.249155 0.139355i
\(154\) −0.768331 0.746893i −0.0619139 0.0601864i
\(155\) 7.67421i 0.616407i
\(156\) 14.5773 0.412573i 1.16712 0.0330323i
\(157\) 11.0348i 0.880670i −0.897833 0.440335i \(-0.854860\pi\)
0.897833 0.440335i \(-0.145140\pi\)
\(158\) 7.94068 + 7.71912i 0.631726 + 0.614100i
\(159\) 0.0758126i 0.00601233i
\(160\) −3.70728 + 4.27271i −0.293087 + 0.337787i
\(161\) −5.09248 −0.401344
\(162\) 5.61604 5.77724i 0.441238 0.453903i
\(163\) 0.320808 0.0251276 0.0125638 0.999921i \(-0.496001\pi\)
0.0125638 + 0.999921i \(0.496001\pi\)
\(164\) 8.90159 0.251937i 0.695098 0.0196730i
\(165\) −1.07951 −0.0840400
\(166\) 10.9028 + 10.5986i 0.846219 + 0.822607i
\(167\) 14.3206i 1.10816i −0.832463 0.554080i \(-0.813070\pi\)
0.832463 0.554080i \(-0.186930\pi\)
\(168\) −2.87866 + 3.13401i −0.222094 + 0.241794i
\(169\) −11.8030 −0.907925
\(170\) 5.58817 1.66503i 0.428593 0.127702i
\(171\) 2.41887i 0.184976i
\(172\) 11.9248 0.337500i 0.909256 0.0257342i
\(173\) 17.4844 1.32932 0.664658 0.747148i \(-0.268577\pi\)
0.664658 + 0.747148i \(0.268577\pi\)
\(174\) −7.02792 + 7.22964i −0.532785 + 0.548078i
\(175\) 1.02762i 0.0776805i
\(176\) −2.94458 + 0.166811i −0.221956 + 0.0125739i
\(177\) 9.49159i 0.713432i
\(178\) 6.60682 6.79645i 0.495202 0.509416i
\(179\) 10.0384i 0.750308i 0.926962 + 0.375154i \(0.122410\pi\)
−0.926962 + 0.375154i \(0.877590\pi\)
\(180\) −0.0484591 1.71219i −0.00361192 0.127619i
\(181\) −7.21688 −0.536427 −0.268213 0.963360i \(-0.586433\pi\)
−0.268213 + 0.963360i \(0.586433\pi\)
\(182\) 5.04488 5.18969i 0.373952 0.384685i
\(183\) −21.1750 −1.56530
\(184\) −9.48180 + 10.3229i −0.699008 + 0.761011i
\(185\) 3.22579 0.237165
\(186\) −11.3936 11.0757i −0.835417 0.812107i
\(187\) 2.65326 + 1.48400i 0.194026 + 0.108521i
\(188\) −0.643742 22.7451i −0.0469497 1.65886i
\(189\) 5.80210i 0.422041i
\(190\) −2.86402 2.78410i −0.207778 0.201980i
\(191\) 16.2281 1.17423 0.587113 0.809505i \(-0.300264\pi\)
0.587113 + 0.809505i \(0.300264\pi\)
\(192\) 0.993038 + 11.6706i 0.0716663 + 0.842250i
\(193\) 18.4087i 1.32509i −0.749022 0.662545i \(-0.769476\pi\)
0.749022 0.662545i \(-0.230524\pi\)
\(194\) −7.64310 7.42984i −0.548743 0.533432i
\(195\) 7.29156i 0.522160i
\(196\) −0.336325 11.8833i −0.0240232 0.848804i
\(197\) −1.17821 −0.0839438 −0.0419719 0.999119i \(-0.513364\pi\)
−0.0419719 + 0.999119i \(0.513364\pi\)
\(198\) 0.622476 0.640343i 0.0442375 0.0455072i
\(199\) 4.78744i 0.339373i 0.985498 + 0.169686i \(0.0542755\pi\)
−0.985498 + 0.169686i \(0.945725\pi\)
\(200\) 2.08306 + 1.91334i 0.147294 + 0.135294i
\(201\) 6.69073i 0.471928i
\(202\) 2.02457 + 1.96808i 0.142448 + 0.138474i
\(203\) 5.00405i 0.351215i
\(204\) 5.59303 10.6996i 0.391590 0.749118i
\(205\) 4.45258i 0.310982i
\(206\) −1.42747 + 1.46844i −0.0994563 + 0.102311i
\(207\) 4.24418i 0.294991i
\(208\) −1.12673 19.8892i −0.0781244 1.37907i
\(209\) 2.08246i 0.144047i
\(210\) 1.52566 + 1.48309i 0.105280 + 0.102343i
\(211\) 15.1007 1.03958 0.519788 0.854295i \(-0.326011\pi\)
0.519788 + 0.854295i \(0.326011\pi\)
\(212\) 0.103521 0.00292990i 0.00710987 0.000201227i
\(213\) 19.0234i 1.30346i
\(214\) −4.67454 + 4.80871i −0.319545 + 0.328717i
\(215\) 5.96478i 0.406794i
\(216\) −11.7613 10.8031i −0.800256 0.735055i
\(217\) −7.88614 −0.535346
\(218\) 18.3377 18.8641i 1.24199 1.27763i
\(219\) 1.17264i 0.0792396i
\(220\) 0.0417196 + 1.47406i 0.00281273 + 0.0993813i
\(221\) −10.0237 + 17.9214i −0.674265 + 1.20553i
\(222\) 4.65556 4.78919i 0.312461 0.321429i
\(223\) −9.12247 −0.610886 −0.305443 0.952210i \(-0.598805\pi\)
−0.305443 + 0.952210i \(0.598805\pi\)
\(224\) 4.39070 + 3.80966i 0.293366 + 0.254544i
\(225\) −0.856436 −0.0570957
\(226\) 13.8321 + 13.4461i 0.920094 + 0.894422i
\(227\) −5.42890 −0.360328 −0.180164 0.983637i \(-0.557663\pi\)
−0.180164 + 0.983637i \(0.557663\pi\)
\(228\) −8.26688 + 0.233973i −0.547488 + 0.0154952i
\(229\) 5.57938i 0.368696i 0.982861 + 0.184348i \(0.0590173\pi\)
−0.982861 + 0.184348i \(0.940983\pi\)
\(230\) 5.02524 + 4.88502i 0.331354 + 0.322109i
\(231\) 1.10932i 0.0729882i
\(232\) 10.1436 + 9.31714i 0.665960 + 0.611700i
\(233\) 19.6266i 1.28578i 0.765959 + 0.642889i \(0.222264\pi\)
−0.765959 + 0.642889i \(0.777736\pi\)
\(234\) 4.32519 + 4.20451i 0.282747 + 0.274857i
\(235\) −11.3771 −0.742161
\(236\) −12.9607 + 0.366818i −0.843667 + 0.0238778i
\(237\) 11.4648i 0.744721i
\(238\) −1.71101 5.74249i −0.110909 0.372231i
\(239\) −1.63097 −0.105499 −0.0527494 0.998608i \(-0.516798\pi\)
−0.0527494 + 0.998608i \(0.516798\pi\)
\(240\) 5.84699 0.331234i 0.377422 0.0213810i
\(241\) 20.9878i 1.35194i −0.736927 0.675972i \(-0.763724\pi\)
0.736927 0.675972i \(-0.236276\pi\)
\(242\) 10.3074 10.6032i 0.662583 0.681601i
\(243\) 8.59729 0.551516
\(244\) 0.818341 + 28.9142i 0.0523889 + 1.85104i
\(245\) −5.94401 −0.379749
\(246\) −6.61055 6.42611i −0.421473 0.409714i
\(247\) 14.0660 0.894996
\(248\) −14.6834 + 15.9858i −0.932395 + 1.01510i
\(249\) 15.7415i 0.997579i
\(250\) 0.985753 1.01405i 0.0623445 0.0641340i
\(251\) 7.63860i 0.482144i 0.970507 + 0.241072i \(0.0774990\pi\)
−0.970507 + 0.241072i \(0.922501\pi\)
\(252\) −1.75947 + 0.0497973i −0.110836 + 0.00313693i
\(253\) 3.65392i 0.229720i
\(254\) 3.21211 3.30431i 0.201546 0.207331i
\(255\) −5.26852 2.94675i −0.329927 0.184532i
\(256\) 15.8976 1.80701i 0.993602 0.112938i
\(257\) 1.38861 0.0866189 0.0433095 0.999062i \(-0.486210\pi\)
0.0433095 + 0.999062i \(0.486210\pi\)
\(258\) −8.85565 8.60856i −0.551329 0.535946i
\(259\) 3.31487i 0.205976i
\(260\) −9.95654 + 0.281794i −0.617478 + 0.0174761i
\(261\) −4.17048 −0.258146
\(262\) −18.8857 + 19.4277i −1.16676 + 1.20025i
\(263\) −12.1867 −0.751464 −0.375732 0.926728i \(-0.622609\pi\)
−0.375732 + 0.926728i \(0.622609\pi\)
\(264\) 2.24869 + 2.06548i 0.138397 + 0.127121i
\(265\) 0.0517813i 0.00318090i
\(266\) −2.86099 + 2.94311i −0.175418 + 0.180453i
\(267\) −9.81279 −0.600533
\(268\) −9.13612 + 0.258574i −0.558077 + 0.0157949i
\(269\) −8.53409 −0.520333 −0.260166 0.965564i \(-0.583777\pi\)
−0.260166 + 0.965564i \(0.583777\pi\)
\(270\) −5.56573 + 5.72549i −0.338720 + 0.348442i
\(271\) 19.0473 1.15704 0.578522 0.815667i \(-0.303630\pi\)
0.578522 + 0.815667i \(0.303630\pi\)
\(272\) −14.8263 7.22371i −0.898974 0.438002i
\(273\) −7.49292 −0.453492
\(274\) −11.8417 + 12.1816i −0.715384 + 0.735918i
\(275\) 0.737326 0.0444625
\(276\) 14.5052 0.410532i 0.873109 0.0247111i
\(277\) −3.11221 −0.186994 −0.0934972 0.995620i \(-0.529805\pi\)
−0.0934972 + 0.995620i \(0.529805\pi\)
\(278\) −8.73180 + 8.98243i −0.523699 + 0.538731i
\(279\) 6.57247i 0.393483i
\(280\) 1.96618 2.14058i 0.117502 0.127924i
\(281\) −28.7935 −1.71767 −0.858837 0.512249i \(-0.828813\pi\)
−0.858837 + 0.512249i \(0.828813\pi\)
\(282\) −16.4198 + 16.8911i −0.977786 + 1.00585i
\(283\) 19.7867 1.17620 0.588100 0.808788i \(-0.299876\pi\)
0.588100 + 0.808788i \(0.299876\pi\)
\(284\) 25.9762 0.735190i 1.54140 0.0436255i
\(285\) 4.13510i 0.244942i
\(286\) −3.72366 3.61976i −0.220185 0.214041i
\(287\) −4.57554 −0.270086
\(288\) −3.17505 + 3.65930i −0.187092 + 0.215626i
\(289\) 8.89825 + 14.4852i 0.523427 + 0.852071i
\(290\) 4.80019 4.93797i 0.281877 0.289968i
\(291\) 11.0352i 0.646894i
\(292\) −1.60122 + 0.0453186i −0.0937046 + 0.00265207i
\(293\) 11.3185i 0.661232i 0.943765 + 0.330616i \(0.107256\pi\)
−0.943765 + 0.330616i \(0.892744\pi\)
\(294\) −8.57858 + 8.82481i −0.500313 + 0.514674i
\(295\) 6.48292i 0.377450i
\(296\) −6.71950 6.17203i −0.390563 0.358742i
\(297\) −4.16307 −0.241566
\(298\) 22.7102 + 22.0766i 1.31557 + 1.27886i
\(299\) −24.6803 −1.42730
\(300\) −0.0828415 2.92701i −0.00478286 0.168991i
\(301\) −6.12950 −0.353298
\(302\) −15.2497 + 15.6874i −0.877521 + 0.902709i
\(303\) 2.92309i 0.167927i
\(304\) 0.638974 + 11.2793i 0.0366477 + 0.646911i
\(305\) 14.4629 0.828142
\(306\) 4.78591 1.42599i 0.273592 0.0815187i
\(307\) 34.8808i 1.99075i 0.0960443 + 0.995377i \(0.469381\pi\)
−0.0960443 + 0.995377i \(0.530619\pi\)
\(308\) 1.51477 0.0428717i 0.0863120 0.00244284i
\(309\) 2.12015 0.120611
\(310\) 7.78201 + 7.56487i 0.441988 + 0.429656i
\(311\) 28.9283i 1.64037i −0.572096 0.820186i \(-0.693870\pi\)
0.572096 0.820186i \(-0.306130\pi\)
\(312\) −13.9512 + 15.1887i −0.789833 + 0.859893i
\(313\) 5.33643i 0.301633i −0.988562 0.150816i \(-0.951810\pi\)
0.988562 0.150816i \(-0.0481902\pi\)
\(314\) 11.1898 + 10.8776i 0.631475 + 0.613856i
\(315\) 0.880087i 0.0495873i
\(316\) −15.6551 + 0.443077i −0.880668 + 0.0249250i
\(317\) 15.5468 0.873195 0.436598 0.899657i \(-0.356183\pi\)
0.436598 + 0.899657i \(0.356183\pi\)
\(318\) −0.0768776 0.0747325i −0.00431108 0.00419079i
\(319\) 3.59046 0.201027
\(320\) −0.678262 7.97120i −0.0379160 0.445603i
\(321\) 6.94286 0.387513
\(322\) 5.01993 5.16401i 0.279750 0.287779i
\(323\) 5.68449 10.1634i 0.316294 0.565505i
\(324\) 0.322361 + 11.3899i 0.0179089 + 0.632770i
\(325\) 4.98026i 0.276255i
\(326\) −0.316237 + 0.325314i −0.0175148 + 0.0180175i
\(327\) −27.2361 −1.50616
\(328\) −8.51929 + 9.27498i −0.470399 + 0.512125i
\(329\) 11.6913i 0.644562i
\(330\) 1.06413 1.09468i 0.0585786 0.0602600i
\(331\) 0.824032i 0.0452929i −0.999744 0.0226465i \(-0.992791\pi\)
0.999744 0.0226465i \(-0.00720921\pi\)
\(332\) −21.4949 + 0.608357i −1.17968 + 0.0333879i
\(333\) 2.76268 0.151394
\(334\) 14.5217 + 14.1166i 0.794595 + 0.772424i
\(335\) 4.56989i 0.249680i
\(336\) −0.340381 6.00846i −0.0185693 0.327788i
\(337\) 10.3903i 0.565998i −0.959120 0.282999i \(-0.908671\pi\)
0.959120 0.282999i \(-0.0913294\pi\)
\(338\) 11.6349 11.9688i 0.632853 0.651018i
\(339\) 19.9709i 1.08467i
\(340\) −3.82013 + 7.30798i −0.207176 + 0.396331i
\(341\) 5.65840i 0.306419i
\(342\) −2.45285 2.38441i −0.132635 0.128934i
\(343\) 13.3015i 0.718212i
\(344\) −11.4126 + 12.4250i −0.615329 + 0.669910i
\(345\) 7.25549i 0.390623i
\(346\) −17.2353 + 17.7300i −0.926576 + 0.953172i
\(347\) −8.82570 −0.473789 −0.236894 0.971535i \(-0.576129\pi\)
−0.236894 + 0.971535i \(0.576129\pi\)
\(348\) −0.403403 14.2533i −0.0216246 0.764056i
\(349\) 7.74760i 0.414720i −0.978265 0.207360i \(-0.933513\pi\)
0.978265 0.207360i \(-0.0664871\pi\)
\(350\) −1.04205 1.01298i −0.0556999 0.0541458i
\(351\) 28.1194i 1.50090i
\(352\) 2.73348 3.15038i 0.145695 0.167916i
\(353\) 7.97452 0.424441 0.212221 0.977222i \(-0.431930\pi\)
0.212221 + 0.977222i \(0.431930\pi\)
\(354\) 9.62492 + 9.35636i 0.511559 + 0.497285i
\(355\) 12.9933i 0.689613i
\(356\) 0.379231 + 13.3992i 0.0200992 + 0.710159i
\(357\) −3.02812 + 5.41401i −0.160265 + 0.286540i
\(358\) −10.1794 9.89542i −0.538001 0.522989i
\(359\) −19.2883 −1.01800 −0.508998 0.860767i \(-0.669984\pi\)
−0.508998 + 0.860767i \(0.669984\pi\)
\(360\) 1.78401 + 1.63865i 0.0940254 + 0.0863646i
\(361\) 11.0231 0.580163
\(362\) 7.11407 7.31826i 0.373907 0.384639i
\(363\) −15.3091 −0.803517
\(364\) 0.289576 + 10.2315i 0.0151779 + 0.536276i
\(365\) 0.800933i 0.0419227i
\(366\) 20.8733 21.4724i 1.09106 1.12238i
\(367\) 15.8068i 0.825109i 0.910933 + 0.412555i \(0.135363\pi\)
−0.910933 + 0.412555i \(0.864637\pi\)
\(368\) −1.12115 19.7908i −0.0584441 1.03167i
\(369\) 3.81335i 0.198515i
\(370\) −3.17983 + 3.27110i −0.165311 + 0.170056i
\(371\) −0.0532113 −0.00276259
\(372\) 22.4625 0.635743i 1.16463 0.0329617i
\(373\) 23.2547i 1.20408i 0.798466 + 0.602040i \(0.205645\pi\)
−0.798466 + 0.602040i \(0.794355\pi\)
\(374\) −4.12031 + 1.22767i −0.213056 + 0.0634815i
\(375\) −1.46409 −0.0756054
\(376\) 23.6992 + 21.7683i 1.22219 + 1.12261i
\(377\) 24.2517i 1.24903i
\(378\) 5.88360 + 5.71944i 0.302620 + 0.294176i
\(379\) −26.7603 −1.37458 −0.687292 0.726381i \(-0.741201\pi\)
−0.687292 + 0.726381i \(0.741201\pi\)
\(380\) 5.64642 0.159808i 0.289655 0.00819795i
\(381\) −4.77080 −0.244415
\(382\) −15.9969 + 16.4561i −0.818474 + 0.841966i
\(383\) 8.46688 0.432638 0.216319 0.976323i \(-0.430595\pi\)
0.216319 + 0.976323i \(0.430595\pi\)
\(384\) −12.8134 10.4973i −0.653880 0.535688i
\(385\) 0.757688i 0.0386154i
\(386\) 18.6673 + 18.1465i 0.950141 + 0.923631i
\(387\) 5.10845i 0.259677i
\(388\) 15.0684 0.426473i 0.764983 0.0216509i
\(389\) 25.9652i 1.31649i −0.752804 0.658245i \(-0.771299\pi\)
0.752804 0.658245i \(-0.228701\pi\)
\(390\) 7.39399 + 7.18768i 0.374409 + 0.363962i
\(391\) −9.97408 + 17.8328i −0.504411 + 0.901842i
\(392\) 12.3817 + 11.3729i 0.625371 + 0.574418i
\(393\) 28.0500 1.41493
\(394\) 1.16142 1.19476i 0.0585116 0.0601910i
\(395\) 7.83068i 0.394004i
\(396\) 0.0357301 + 1.26244i 0.00179551 + 0.0634400i
\(397\) −22.6930 −1.13893 −0.569466 0.822015i \(-0.692850\pi\)
−0.569466 + 0.822015i \(0.692850\pi\)
\(398\) −4.85469 4.71923i −0.243344 0.236554i
\(399\) 4.24929 0.212731
\(400\) −3.99360 + 0.226238i −0.199680 + 0.0113119i
\(401\) 32.7100i 1.63346i 0.577019 + 0.816731i \(0.304216\pi\)
−0.577019 + 0.816731i \(0.695784\pi\)
\(402\) 6.78472 + 6.59541i 0.338391 + 0.328949i
\(403\) −38.2196 −1.90385
\(404\) −3.99145 + 0.112968i −0.198582 + 0.00562035i
\(405\) 5.69721 0.283097
\(406\) −5.07434 4.93275i −0.251835 0.244808i
\(407\) −2.37846 −0.117896
\(408\) 5.33650 + 16.2187i 0.264196 + 0.802946i
\(409\) −25.3481 −1.25338 −0.626691 0.779268i \(-0.715591\pi\)
−0.626691 + 0.779268i \(0.715591\pi\)
\(410\) 4.51512 + 4.38914i 0.222986 + 0.216764i
\(411\) 17.5879 0.867549
\(412\) −0.0819366 2.89504i −0.00403672 0.142628i
\(413\) 6.66195 0.327813
\(414\) 4.30380 + 4.18371i 0.211520 + 0.205618i
\(415\) 10.7517i 0.527782i
\(416\) 21.2792 + 18.4633i 1.04330 + 0.905235i
\(417\) 12.9689 0.635091
\(418\) 2.11171 + 2.05279i 0.103287 + 0.100405i
\(419\) 2.11612 0.103379 0.0516897 0.998663i \(-0.483539\pi\)
0.0516897 + 0.998663i \(0.483539\pi\)
\(420\) −3.00784 + 0.0851293i −0.146768 + 0.00415388i
\(421\) 33.1164i 1.61399i −0.590556 0.806996i \(-0.701092\pi\)
0.590556 0.806996i \(-0.298908\pi\)
\(422\) −14.8856 + 15.3128i −0.724619 + 0.745417i
\(423\) −9.74377 −0.473758
\(424\) −0.0990753 + 0.107864i −0.00481152 + 0.00523832i
\(425\) 3.59849 + 2.01268i 0.174552 + 0.0976292i
\(426\) −19.2906 18.7524i −0.934633 0.908554i
\(427\) 14.8623i 0.719236i
\(428\) −0.268318 9.48040i −0.0129697 0.458252i
\(429\) 5.37626i 0.259568i
\(430\) 6.04856 + 5.87980i 0.291688 + 0.283549i
\(431\) 9.16433i 0.441430i 0.975338 + 0.220715i \(0.0708391\pi\)
−0.975338 + 0.220715i \(0.929161\pi\)
\(432\) 22.5485 1.27738i 1.08487 0.0614580i
\(433\) 28.6734 1.37796 0.688978 0.724783i \(-0.258060\pi\)
0.688978 + 0.724783i \(0.258060\pi\)
\(434\) 7.77378 7.99691i 0.373154 0.383864i
\(435\) −7.12949 −0.341833
\(436\) 1.05258 + 37.1906i 0.0504096 + 1.78111i
\(437\) 13.9964 0.669538
\(438\) 1.18911 + 1.15593i 0.0568179 + 0.0552326i
\(439\) 25.2376i 1.20452i −0.798299 0.602261i \(-0.794266\pi\)
0.798299 0.602261i \(-0.205734\pi\)
\(440\) −1.53589 1.41076i −0.0732209 0.0672551i
\(441\) −5.09066 −0.242412
\(442\) −8.29231 27.8306i −0.394425 1.32377i
\(443\) 7.07363i 0.336078i 0.985780 + 0.168039i \(0.0537435\pi\)
−0.985780 + 0.168039i \(0.946257\pi\)
\(444\) 0.267229 + 9.44192i 0.0126821 + 0.448094i
\(445\) 6.70231 0.317720
\(446\) 8.99251 9.25062i 0.425807 0.438029i
\(447\) 32.7893i 1.55088i
\(448\) −8.19133 + 0.696993i −0.387004 + 0.0329298i
\(449\) 14.5442i 0.686382i −0.939266 0.343191i \(-0.888492\pi\)
0.939266 0.343191i \(-0.111508\pi\)
\(450\) 0.844234 0.868466i 0.0397976 0.0409399i
\(451\) 3.28300i 0.154591i
\(452\) −27.2700 + 0.771807i −1.28267 + 0.0363027i
\(453\) 22.6496 1.06417
\(454\) 5.35155 5.50515i 0.251161 0.258370i
\(455\) 5.11780 0.239926
\(456\) 7.91184 8.61364i 0.370506 0.403371i
\(457\) −36.1784 −1.69236 −0.846178 0.532901i \(-0.821102\pi\)
−0.846178 + 0.532901i \(0.821102\pi\)
\(458\) −5.65775 5.49989i −0.264369 0.256993i
\(459\) −20.3177 11.3639i −0.948349 0.530423i
\(460\) −9.90729 + 0.280400i −0.461930 + 0.0130737i
\(461\) 2.76009i 0.128550i 0.997932 + 0.0642751i \(0.0204735\pi\)
−0.997932 + 0.0642751i \(0.979526\pi\)
\(462\) −1.12491 1.09352i −0.0523354 0.0508752i
\(463\) 8.26733 0.384216 0.192108 0.981374i \(-0.438468\pi\)
0.192108 + 0.981374i \(0.438468\pi\)
\(464\) −19.4471 + 1.10168i −0.902809 + 0.0511443i
\(465\) 11.2357i 0.521045i
\(466\) −19.9023 19.3469i −0.921954 0.896230i
\(467\) 14.7543i 0.682748i −0.939928 0.341374i \(-0.889108\pi\)
0.939928 0.341374i \(-0.110892\pi\)
\(468\) −8.52714 + 0.241339i −0.394167 + 0.0111559i
\(469\) 4.69609 0.216845
\(470\) 11.2150 11.5369i 0.517310 0.532159i
\(471\) 16.1559i 0.744425i
\(472\) 12.4040 13.5043i 0.570942 0.621586i
\(473\) 4.39799i 0.202220i
\(474\) 11.6259 + 11.3015i 0.533994 + 0.519095i
\(475\) 2.82434i 0.129590i
\(476\) 7.50980 + 3.92563i 0.344211 + 0.179931i
\(477\) 0.0443474i 0.00203053i
\(478\) 1.60774 1.65388i 0.0735361 0.0756468i
\(479\) 22.2732i 1.01769i 0.860859 + 0.508843i \(0.169927\pi\)
−0.860859 + 0.508843i \(0.830073\pi\)
\(480\) −5.42780 + 6.25564i −0.247744 + 0.285529i
\(481\) 16.0653i 0.732514i
\(482\) 21.2826 + 20.6888i 0.969398 + 0.942350i
\(483\) −7.45586 −0.339253
\(484\) 0.591643 + 20.9043i 0.0268929 + 0.950197i
\(485\) 7.53723i 0.342248i
\(486\) −8.47481 + 8.71806i −0.384425 + 0.395459i
\(487\) 16.9274i 0.767055i −0.923529 0.383528i \(-0.874709\pi\)
0.923529 0.383528i \(-0.125291\pi\)
\(488\) −30.1270 27.6724i −1.36379 1.25267i
\(489\) 0.469692 0.0212402
\(490\) 5.85932 6.02750i 0.264697 0.272295i
\(491\) 10.4958i 0.473668i 0.971550 + 0.236834i \(0.0761098\pi\)
−0.971550 + 0.236834i \(0.923890\pi\)
\(492\) 13.0327 0.368858i 0.587562 0.0166294i
\(493\) 17.5231 + 9.80088i 0.789200 + 0.441409i
\(494\) −13.8656 + 14.2636i −0.623842 + 0.641748i
\(495\) 0.631473 0.0283826
\(496\) −1.73620 30.6477i −0.0779577 1.37612i
\(497\) −13.3521 −0.598924
\(498\) 15.9626 + 15.5173i 0.715303 + 0.695345i
\(499\) 23.9095 1.07034 0.535168 0.844746i \(-0.320248\pi\)
0.535168 + 0.844746i \(0.320248\pi\)
\(500\) 0.0565822 + 1.99920i 0.00253043 + 0.0894069i
\(501\) 20.9666i 0.936721i
\(502\) −7.74590 7.52977i −0.345716 0.336070i
\(503\) 1.84621i 0.0823184i −0.999153 0.0411592i \(-0.986895\pi\)
0.999153 0.0411592i \(-0.0131051\pi\)
\(504\) 1.68391 1.83327i 0.0750071 0.0816605i
\(505\) 1.99652i 0.0888441i
\(506\) −3.70524 3.60186i −0.164718 0.160122i
\(507\) −17.2807 −0.767463
\(508\) 0.184375 + 6.51447i 0.00818033 + 0.289033i
\(509\) 21.9087i 0.971086i −0.874213 0.485543i \(-0.838622\pi\)
0.874213 0.485543i \(-0.161378\pi\)
\(510\) 8.18159 2.43776i 0.362287 0.107946i
\(511\) 0.823051 0.0364096
\(512\) −13.8387 + 17.9022i −0.611592 + 0.791173i
\(513\) 15.9467i 0.704065i
\(514\) −1.36882 + 1.40811i −0.0603762 + 0.0621092i
\(515\) −1.44810 −0.0638108
\(516\) 17.4590 0.494131i 0.768588 0.0217529i
\(517\) 8.38865 0.368932
\(518\) 3.36143 + 3.26764i 0.147693 + 0.143572i
\(519\) 25.5988 1.12366
\(520\) 9.52894 10.3742i 0.417872 0.454938i
\(521\) 1.41157i 0.0618421i −0.999522 0.0309211i \(-0.990156\pi\)
0.999522 0.0309211i \(-0.00984405\pi\)
\(522\) 4.11106 4.22906i 0.179936 0.185101i
\(523\) 20.7749i 0.908421i 0.890894 + 0.454211i \(0.150079\pi\)
−0.890894 + 0.454211i \(0.849921\pi\)
\(524\) −1.08404 38.3019i −0.0473564 1.67323i
\(525\) 1.50452i 0.0656628i
\(526\) 12.0131 12.3579i 0.523795 0.538829i
\(527\) −15.4457 + 27.6156i −0.672826 + 1.20295i
\(528\) −4.31114 + 0.244227i −0.187618 + 0.0106286i
\(529\) −1.55824 −0.0677498
\(530\) 0.0525087 + 0.0510436i 0.00228083 + 0.00221719i
\(531\) 5.55221i 0.240945i
\(532\) −0.164221 5.80235i −0.00711987 0.251564i
\(533\) −22.1750 −0.960506
\(534\) 9.67299 9.95063i 0.418591 0.430606i
\(535\) −4.74210 −0.205019
\(536\) 8.74375 9.51934i 0.377672 0.411173i
\(537\) 14.6972i 0.634231i
\(538\) 8.41250 8.65397i 0.362689 0.373099i
\(539\) 4.38267 0.188775
\(540\) −0.319473 11.2878i −0.0137479 0.485751i
\(541\) 4.03830 0.173620 0.0868101 0.996225i \(-0.472333\pi\)
0.0868101 + 0.996225i \(0.472333\pi\)
\(542\) −18.7760 + 19.3149i −0.806497 + 0.829646i
\(543\) −10.5662 −0.453438
\(544\) 21.9402 7.91373i 0.940679 0.339298i
\(545\) 18.6027 0.796854
\(546\) 7.38617 7.59818i 0.316099 0.325172i
\(547\) 41.2053 1.76181 0.880906 0.473290i \(-0.156934\pi\)
0.880906 + 0.473290i \(0.156934\pi\)
\(548\) −0.679714 24.0161i −0.0290360 1.02592i
\(549\) 12.3865 0.528644
\(550\) −0.726822 + 0.747684i −0.0309918 + 0.0318813i
\(551\) 13.7533i 0.585912i
\(552\) −13.8822 + 15.1136i −0.590867 + 0.643278i
\(553\) 8.04693 0.342190
\(554\) 3.06787 3.15592i 0.130341 0.134082i
\(555\) 4.72285 0.200474
\(556\) −0.501206 17.7089i −0.0212558 0.751025i
\(557\) 13.9646i 0.591699i −0.955235 0.295849i \(-0.904397\pi\)
0.955235 0.295849i \(-0.0956027\pi\)
\(558\) 6.66479 + 6.47883i 0.282143 + 0.274271i
\(559\) −29.7062 −1.25644
\(560\) 0.232486 + 4.10388i 0.00982433 + 0.173421i
\(561\) 3.88462 + 2.17271i 0.164009 + 0.0917320i
\(562\) 28.3832 29.1979i 1.19727 1.23164i
\(563\) 39.0610i 1.64622i −0.567880 0.823111i \(-0.692236\pi\)
0.567880 0.823111i \(-0.307764\pi\)
\(564\) −0.942497 33.3009i −0.0396863 1.40222i
\(565\) 13.6404i 0.573858i
\(566\) −19.5048 + 20.0647i −0.819850 + 0.843382i
\(567\) 5.85454i 0.245868i
\(568\) −24.8606 + 27.0658i −1.04313 + 1.13566i
\(569\) 40.3237 1.69046 0.845228 0.534405i \(-0.179464\pi\)
0.845228 + 0.534405i \(0.179464\pi\)
\(570\) −4.19318 4.07618i −0.175633 0.170732i
\(571\) −27.1177 −1.13484 −0.567421 0.823428i \(-0.692059\pi\)
−0.567421 + 0.823428i \(0.692059\pi\)
\(572\) 7.34122 0.207774i 0.306952 0.00868748i
\(573\) 23.7595 0.992566
\(574\) 4.51035 4.63981i 0.188258 0.193662i
\(575\) 4.95563i 0.206664i
\(576\) −0.580888 6.82682i −0.0242037 0.284451i
\(577\) −7.77551 −0.323699 −0.161849 0.986815i \(-0.551746\pi\)
−0.161849 + 0.986815i \(0.551746\pi\)
\(578\) −23.4602 5.25559i −0.975814 0.218604i
\(579\) 26.9521i 1.12009i
\(580\) 0.275531 + 9.73524i 0.0114408 + 0.404234i
\(581\) 11.0487 0.458375
\(582\) −11.1902 10.8780i −0.463849 0.450906i
\(583\) 0.0381798i 0.00158124i
\(584\) 1.53246 1.66839i 0.0634135 0.0690385i
\(585\) 4.26528i 0.176348i
\(586\) −11.4775 11.1572i −0.474129 0.460900i
\(587\) 35.6192i 1.47016i 0.677980 + 0.735080i \(0.262855\pi\)
−0.677980 + 0.735080i \(0.737145\pi\)
\(588\) −0.492411 17.3982i −0.0203067 0.717488i
\(589\) 21.6746 0.893086
\(590\) −6.57399 6.39056i −0.270647 0.263095i
\(591\) −1.72500 −0.0709572
\(592\) 12.8825 0.729797i 0.529467 0.0299945i
\(593\) 35.3602 1.45207 0.726035 0.687658i \(-0.241361\pi\)
0.726035 + 0.687658i \(0.241361\pi\)
\(594\) 4.10376 4.22155i 0.168379 0.173212i
\(595\) 2.06826 3.69786i 0.0847904 0.151598i
\(596\) −44.7734 + 1.26720i −1.83399 + 0.0519064i
\(597\) 7.00925i 0.286870i
\(598\) 24.3287 25.0270i 0.994875 1.02343i
\(599\) 25.3800 1.03700 0.518500 0.855078i \(-0.326491\pi\)
0.518500 + 0.855078i \(0.326491\pi\)
\(600\) 3.04979 + 2.80130i 0.124507 + 0.114363i
\(601\) 0.940741i 0.0383736i 0.999816 + 0.0191868i \(0.00610773\pi\)
−0.999816 + 0.0191868i \(0.993892\pi\)
\(602\) 6.04217 6.21560i 0.246261 0.253329i
\(603\) 3.91382i 0.159383i
\(604\) −0.875332 30.9278i −0.0356168 1.25843i
\(605\) 10.4563 0.425111
\(606\) 2.96415 + 2.88145i 0.120410 + 0.117051i
\(607\) 9.70858i 0.394059i −0.980398 0.197030i \(-0.936871\pi\)
0.980398 0.197030i \(-0.0631295\pi\)
\(608\) −12.0676 10.4706i −0.489406 0.424640i
\(609\) 7.32638i 0.296880i
\(610\) −14.2568 + 14.6660i −0.577242 + 0.593810i
\(611\) 56.6610i 2.29226i
\(612\) −3.27170 + 6.25882i −0.132251 + 0.252998i
\(613\) 30.1125i 1.21623i 0.793848 + 0.608116i \(0.208075\pi\)
−0.793848 + 0.608116i \(0.791925\pi\)
\(614\) −35.3708 34.3839i −1.42745 1.38762i
\(615\) 6.51898i 0.262871i
\(616\) −1.44972 + 1.57831i −0.0584107 + 0.0635919i
\(617\) 33.4173i 1.34533i 0.739947 + 0.672665i \(0.234850\pi\)
−0.739947 + 0.672665i \(0.765150\pi\)
\(618\) −2.08994 + 2.14993i −0.0840698 + 0.0864828i
\(619\) −5.48862 −0.220606 −0.110303 0.993898i \(-0.535182\pi\)
−0.110303 + 0.993898i \(0.535182\pi\)
\(620\) −15.3423 + 0.434224i −0.616160 + 0.0174388i
\(621\) 27.9803i 1.12281i
\(622\) 29.3346 + 28.5161i 1.17621 + 1.14339i
\(623\) 6.88740i 0.275938i
\(624\) −1.64963 29.1196i −0.0660381 1.16572i
\(625\) 1.00000 0.0400000
\(626\) 5.41139 + 5.26040i 0.216282 + 0.210248i
\(627\) 3.04892i 0.121762i
\(628\) −22.0607 + 0.624372i −0.880318 + 0.0249151i
\(629\) −11.6080 6.49247i −0.462840 0.258872i
\(630\) −0.892450 0.867549i −0.0355560 0.0345640i
\(631\) 0.444706 0.0177035 0.00885173 0.999961i \(-0.497182\pi\)
0.00885173 + 0.999961i \(0.497182\pi\)
\(632\) 14.9828 16.3118i 0.595982 0.648847i
\(633\) 22.1088 0.878747
\(634\) −15.3253 + 15.7652i −0.608646 + 0.626116i
\(635\) 3.25854 0.129311
\(636\) 0.151565 0.00428965i 0.00600993 0.000170096i
\(637\) 29.6027i 1.17290i
\(638\) −3.53931 + 3.64090i −0.140123 + 0.144144i
\(639\) 11.1279i 0.440214i
\(640\) 8.75176 + 7.16984i 0.345944 + 0.283413i
\(641\) 24.5740i 0.970616i 0.874343 + 0.485308i \(0.161292\pi\)
−0.874343 + 0.485308i \(0.838708\pi\)
\(642\) −6.84395 + 7.04039i −0.270109 + 0.277862i
\(643\) 37.3639 1.47349 0.736743 0.676173i \(-0.236363\pi\)
0.736743 + 0.676173i \(0.236363\pi\)
\(644\) 0.288144 + 10.1809i 0.0113545 + 0.401183i
\(645\) 8.73298i 0.343861i
\(646\) 4.70262 + 15.7829i 0.185022 + 0.620970i
\(647\) −1.14820 −0.0451405 −0.0225703 0.999745i \(-0.507185\pi\)
−0.0225703 + 0.999745i \(0.507185\pi\)
\(648\) −11.8676 10.9007i −0.466204 0.428220i
\(649\) 4.78003i 0.187633i
\(650\) −5.05022 4.90931i −0.198086 0.192559i
\(651\) −11.5460 −0.452524
\(652\) −0.0181520 0.641359i −0.000710888 0.0251175i
\(653\) −4.48681 −0.175582 −0.0877912 0.996139i \(-0.527981\pi\)
−0.0877912 + 0.996139i \(0.527981\pi\)
\(654\) 26.8481 27.6187i 1.04984 1.07998i
\(655\) −19.1586 −0.748590
\(656\) −1.00734 17.7818i −0.0393302 0.694263i
\(657\) 0.685948i 0.0267614i
\(658\) −11.8555 11.5247i −0.462177 0.449281i
\(659\) 0.209907i 0.00817683i −0.999992 0.00408841i \(-0.998699\pi\)
0.999992 0.00408841i \(-0.00130139\pi\)
\(660\) 0.0610813 + 2.15816i 0.00237758 + 0.0840064i
\(661\) 0.915250i 0.0355991i −0.999842 0.0177996i \(-0.994334\pi\)
0.999842 0.0177996i \(-0.00566607\pi\)
\(662\) 0.835608 + 0.812292i 0.0324768 + 0.0315706i
\(663\) −14.6756 + 26.2386i −0.569952 + 1.01902i
\(664\) 20.5717 22.3965i 0.798338 0.869152i
\(665\) −2.90234 −0.112548
\(666\) −2.72332 + 2.80149i −0.105527 + 0.108555i
\(667\) 24.1318i 0.934386i
\(668\) −28.6297 + 0.810291i −1.10772 + 0.0313511i
\(669\) −13.3561 −0.516378
\(670\) −4.63408 4.50478i −0.179030 0.174035i
\(671\) −10.6639 −0.411674
\(672\) 6.42839 + 5.57770i 0.247981 + 0.215164i
\(673\) 28.6506i 1.10440i 0.833712 + 0.552199i \(0.186211\pi\)
−0.833712 + 0.552199i \(0.813789\pi\)
\(674\) 10.5363 + 10.2423i 0.405843 + 0.394519i
\(675\) −5.64618 −0.217321
\(676\) 0.667841 + 23.5966i 0.0256862 + 0.907562i
\(677\) 27.5070 1.05718 0.528590 0.848877i \(-0.322721\pi\)
0.528590 + 0.848877i \(0.322721\pi\)
\(678\) 20.2514 + 19.6863i 0.777750 + 0.756049i
\(679\) −7.74537 −0.297240
\(680\) −3.64493 11.0777i −0.139777 0.424809i
\(681\) −7.94840 −0.304583
\(682\) −5.73788 5.57778i −0.219715 0.213584i
\(683\) −28.8188 −1.10272 −0.551361 0.834267i \(-0.685891\pi\)
−0.551361 + 0.834267i \(0.685891\pi\)
\(684\) 4.83580 0.136865i 0.184901 0.00523316i
\(685\) −12.0129 −0.458988
\(686\) −13.4883 13.1120i −0.514986 0.500617i
\(687\) 8.16872i 0.311656i
\(688\) −1.34946 23.8209i −0.0514477 0.908164i
\(689\) −0.257885 −0.00982463
\(690\) 7.35741 + 7.15212i 0.280092 + 0.272277i
\(691\) 30.2174 1.14952 0.574761 0.818321i \(-0.305095\pi\)
0.574761 + 0.818321i \(0.305095\pi\)
\(692\) −0.989307 34.9548i −0.0376078 1.32878i
\(693\) 0.648912i 0.0246501i
\(694\) 8.69996 8.94968i 0.330246 0.339725i
\(695\) −8.85801 −0.336003
\(696\) 14.8512 + 13.6411i 0.562931 + 0.517066i
\(697\) −8.96161 + 16.0226i −0.339445 + 0.606898i
\(698\) 7.85643 + 7.63722i 0.297370 + 0.289073i
\(699\) 28.7351i 1.08686i
\(700\) 2.05441 0.0581448i 0.0776494 0.00219767i
\(701\) 15.1682i 0.572893i −0.958096 0.286447i \(-0.907526\pi\)
0.958096 0.286447i \(-0.0924741\pi\)
\(702\) 28.5144 + 27.7188i 1.07621 + 1.04618i
\(703\) 9.11073i 0.343618i
\(704\) 0.500100 + 5.87737i 0.0188482 + 0.221512i
\(705\) −16.6571 −0.627344
\(706\) −7.86091 + 8.08654i −0.295849 + 0.304341i
\(707\) 2.05166 0.0771606
\(708\) −18.9756 + 0.537055i −0.713146 + 0.0201838i
\(709\) 1.02190 0.0383782 0.0191891 0.999816i \(-0.493892\pi\)
0.0191891 + 0.999816i \(0.493892\pi\)
\(710\) 13.1758 + 12.8082i 0.494480 + 0.480683i
\(711\) 6.70648i 0.251513i
\(712\) −13.9613 12.8238i −0.523222 0.480592i
\(713\) −38.0305 −1.42425
\(714\) −2.50508 8.40754i −0.0937503 0.314644i
\(715\) 3.67208i 0.137328i
\(716\) 20.0688 0.567997i 0.750008 0.0212270i
\(717\) −2.38789 −0.0891775
\(718\) 19.0135 19.5592i 0.709577 0.729944i
\(719\) 46.2539i 1.72498i −0.506073 0.862491i \(-0.668903\pi\)
0.506073 0.862491i \(-0.331097\pi\)
\(720\) −3.42026 + 0.193759i −0.127466 + 0.00722096i
\(721\) 1.48809i 0.0554193i
\(722\) −10.8660 + 11.1779i −0.404392 + 0.416000i
\(723\) 30.7281i 1.14279i
\(724\) 0.408347 + 14.4280i 0.0151761 + 0.536212i
\(725\) 4.86957 0.180851
\(726\) 15.0909 15.5241i 0.560077 0.576153i
\(727\) 43.5602 1.61556 0.807779 0.589485i \(-0.200669\pi\)
0.807779 + 0.589485i \(0.200669\pi\)
\(728\) −10.6607 9.79209i −0.395111 0.362919i
\(729\) 29.6788 1.09922
\(730\) −0.812183 0.789522i −0.0300603 0.0292215i
\(731\) −12.0052 + 21.4642i −0.444028 + 0.793882i
\(732\) 1.19813 + 42.3330i 0.0442840 + 1.56467i
\(733\) 5.12531i 0.189308i −0.995510 0.0946538i \(-0.969826\pi\)
0.995510 0.0946538i \(-0.0301744\pi\)
\(734\) −16.0289 15.5816i −0.591636 0.575128i
\(735\) −8.70257 −0.320999
\(736\) 21.1740 + 18.3719i 0.780482 + 0.677198i
\(737\) 3.36950i 0.124117i
\(738\) 3.86691 + 3.75902i 0.142343 + 0.138371i
\(739\) 15.8626i 0.583514i −0.956493 0.291757i \(-0.905760\pi\)
0.956493 0.291757i \(-0.0942398\pi\)
\(740\) −0.182522 6.44899i −0.00670965 0.237070i
\(741\) 20.5939 0.756535
\(742\) 0.0524532 0.0539588i 0.00192562 0.00198089i
\(743\) 28.3848i 1.04134i 0.853759 + 0.520668i \(0.174317\pi\)
−0.853759 + 0.520668i \(0.825683\pi\)
\(744\) −21.4978 + 23.4047i −0.788147 + 0.858058i
\(745\) 22.3957i 0.820513i
\(746\) −23.5813 22.9233i −0.863373 0.839283i
\(747\) 9.20817i 0.336909i
\(748\) 2.81669 5.38837i 0.102988 0.197018i
\(749\) 4.87305i 0.178058i
\(750\) 1.44323 1.48466i 0.0526994 0.0542120i
\(751\) 31.5903i 1.15275i −0.817187 0.576373i \(-0.804467\pi\)
0.817187 0.576373i \(-0.195533\pi\)
\(752\) −45.4356 + 2.57394i −1.65687 + 0.0938619i
\(753\) 11.1836i 0.407553i
\(754\) −24.5924 23.9062i −0.895602 0.870613i
\(755\) −15.4701 −0.563014
\(756\) −11.5996 + 0.328296i −0.421872 + 0.0119400i
\(757\) 15.9749i 0.580619i −0.956933 0.290309i \(-0.906242\pi\)
0.956933 0.290309i \(-0.0937582\pi\)
\(758\) 26.3790 27.1362i 0.958130 0.985631i
\(759\) 5.34967i 0.194181i
\(760\) −5.40393 + 5.88327i −0.196021 + 0.213409i
\(761\) −0.0742013 −0.00268979 −0.00134490 0.999999i \(-0.500428\pi\)
−0.00134490 + 0.999999i \(0.500428\pi\)
\(762\) 4.70283 4.83781i 0.170366 0.175256i
\(763\) 19.1165i 0.692063i
\(764\) −0.918223 32.4433i −0.0332202 1.17376i
\(765\) 3.08188 + 1.72373i 0.111425 + 0.0623216i
\(766\) −8.34626 + 8.58582i −0.301562 + 0.310218i
\(767\) 32.2867 1.16580
\(768\) 23.2756 2.64563i 0.839885 0.0954658i
\(769\) −37.0122 −1.33470 −0.667348 0.744746i \(-0.732571\pi\)
−0.667348 + 0.744746i \(0.732571\pi\)
\(770\) 0.768331 + 0.746893i 0.0276887 + 0.0269162i
\(771\) 2.03305 0.0732184
\(772\) −36.8027 + 1.04161i −1.32456 + 0.0374882i
\(773\) 22.3692i 0.804563i 0.915516 + 0.402282i \(0.131783\pi\)
−0.915516 + 0.402282i \(0.868217\pi\)
\(774\) 5.18021 + 5.03567i 0.186199 + 0.181003i
\(775\) 7.67421i 0.275666i
\(776\) −14.4213 + 15.7005i −0.517694 + 0.563614i
\(777\) 4.85327i 0.174110i
\(778\) 26.3300 + 25.5953i 0.943975 + 0.917636i
\(779\) 12.5756 0.450568
\(780\) −14.5773 + 0.412573i −0.521951 + 0.0147725i
\(781\) 9.58030i 0.342810i
\(782\) −8.25129 27.6929i −0.295065 0.990296i
\(783\) −27.4944 −0.982571
\(784\) −23.7380 + 1.34476i −0.847784 + 0.0480272i
\(785\) 11.0348i 0.393848i
\(786\) −27.6504 + 28.4440i −0.986256 + 1.01456i
\(787\) −10.9625 −0.390769 −0.195385 0.980727i \(-0.562596\pi\)
−0.195385 + 0.980727i \(0.562596\pi\)
\(788\) 0.0666656 + 2.35547i 0.00237486 + 0.0839102i
\(789\) −17.8424 −0.635208
\(790\) −7.94068 7.71912i −0.282517 0.274634i
\(791\) 14.0171 0.498392
\(792\) −1.31539 1.20822i −0.0467405 0.0429323i
\(793\) 72.0289i 2.55782i
\(794\) 22.3697 23.0118i 0.793872 0.816658i
\(795\) 0.0758126i 0.00268880i
\(796\) 9.57105 0.270884i 0.339237 0.00960123i
\(797\) 39.0009i 1.38148i 0.723102 + 0.690741i \(0.242716\pi\)
−0.723102 + 0.690741i \(0.757284\pi\)
\(798\) −4.18875 + 4.30898i −0.148280 + 0.152536i
\(799\) 40.9404 + 22.8985i 1.44837 + 0.810090i
\(800\) 3.70728 4.27271i 0.131072 0.151063i
\(801\) 5.74010 0.202816
\(802\) −33.1695 32.2440i −1.17126 1.13858i
\(803\) 0.590549i 0.0208400i
\(804\) −13.3761 + 0.378577i −0.471739 + 0.0133514i
\(805\) 5.09248 0.179486
\(806\) 37.6751 38.7564i 1.32705 1.36514i
\(807\) −12.4947 −0.439834
\(808\) 3.82003 4.15887i 0.134388 0.146309i
\(809\) 39.1418i 1.37615i 0.725638 + 0.688077i \(0.241545\pi\)
−0.725638 + 0.688077i \(0.758455\pi\)
\(810\) −5.61604 + 5.77724i −0.197328 + 0.202991i
\(811\) −18.0496 −0.633809 −0.316904 0.948458i \(-0.602643\pi\)
−0.316904 + 0.948458i \(0.602643\pi\)
\(812\) 10.0041 0.283140i 0.351075 0.00993627i
\(813\) 27.8871 0.978042
\(814\) 2.34457 2.41187i 0.0821772 0.0845360i
\(815\) −0.320808 −0.0112374
\(816\) −21.7070 10.5762i −0.759897 0.370240i
\(817\) 16.8466 0.589387
\(818\) 24.9869 25.7041i 0.873648 0.898724i
\(819\) 4.38307 0.153157
\(820\) −8.90159 + 0.251937i −0.310857 + 0.00879801i
\(821\) 4.04733 0.141253 0.0706263 0.997503i \(-0.477500\pi\)
0.0706263 + 0.997503i \(0.477500\pi\)
\(822\) −17.3374 + 17.8350i −0.604710 + 0.622067i
\(823\) 10.4958i 0.365862i 0.983126 + 0.182931i \(0.0585585\pi\)
−0.983126 + 0.182931i \(0.941441\pi\)
\(824\) 3.01647 + 2.77070i 0.105084 + 0.0965220i
\(825\) 1.07951 0.0375838
\(826\) −6.56704 + 6.75553i −0.228497 + 0.235055i
\(827\) −35.2909 −1.22719 −0.613593 0.789623i \(-0.710276\pi\)
−0.613593 + 0.789623i \(0.710276\pi\)
\(828\) −8.48496 + 0.240145i −0.294873 + 0.00834562i
\(829\) 30.4113i 1.05623i −0.849173 0.528114i \(-0.822899\pi\)
0.849173 0.528114i \(-0.177101\pi\)
\(830\) −10.9028 10.5986i −0.378440 0.367881i
\(831\) −4.55656 −0.158065
\(832\) −39.6987 + 3.37792i −1.37630 + 0.117108i
\(833\) 21.3894 + 11.9634i 0.741100 + 0.414506i
\(834\) −12.7842 + 13.1511i −0.442679 + 0.455385i
\(835\) 14.3206i 0.495584i
\(836\) −4.16326 + 0.117830i −0.143989 + 0.00407525i
\(837\) 43.3299i 1.49770i
\(838\) −2.08597 + 2.14585i −0.0720588 + 0.0741271i
\(839\) 28.3278i 0.977985i −0.872288 0.488992i \(-0.837365\pi\)
0.872288 0.488992i \(-0.162635\pi\)
\(840\) 2.87866 3.13401i 0.0993234 0.108134i
\(841\) −5.28730 −0.182321
\(842\) 33.5815 + 32.6446i 1.15730 + 1.12501i
\(843\) −42.1563 −1.45194
\(844\) −0.854432 30.1893i −0.0294108 1.03916i
\(845\) 11.8030 0.406036
\(846\) 9.60495 9.88064i 0.330225 0.339703i
\(847\) 10.7451i 0.369206i
\(848\) −0.0117149 0.206794i −0.000402292 0.00710133i
\(849\) 28.9696 0.994234
\(850\) −5.58817 + 1.66503i −0.191673 + 0.0571102i
\(851\) 15.9858i 0.547986i
\(852\) 38.0315 1.07638i 1.30294 0.0368763i
\(853\) −49.3618 −1.69011 −0.845057 0.534676i \(-0.820434\pi\)
−0.845057 + 0.534676i \(0.820434\pi\)
\(854\) 15.0710 + 14.6505i 0.515720 + 0.501331i
\(855\) 2.41887i 0.0827236i
\(856\) 9.87806 + 9.07324i 0.337625 + 0.310117i
\(857\) 56.3068i 1.92340i −0.274099 0.961701i \(-0.588380\pi\)
0.274099 0.961701i \(-0.411620\pi\)
\(858\) −5.45178 5.29967i −0.186121 0.180928i
\(859\) 4.79059i 0.163453i 0.996655 + 0.0817264i \(0.0260434\pi\)
−0.996655 + 0.0817264i \(0.973957\pi\)
\(860\) −11.9248 + 0.337500i −0.406632 + 0.0115087i
\(861\) −6.69901 −0.228302
\(862\) −9.29306 9.03376i −0.316523 0.307691i
\(863\) 21.3707 0.727469 0.363734 0.931503i \(-0.381502\pi\)
0.363734 + 0.931503i \(0.381502\pi\)
\(864\) −20.9320 + 24.1245i −0.712120 + 0.820731i
\(865\) −17.4844 −0.594488
\(866\) −28.2649 + 29.0762i −0.960480 + 0.988048i
\(867\) 13.0279 + 21.2077i 0.442449 + 0.720250i
\(868\) 0.446215 + 15.7660i 0.0151455 + 0.535132i
\(869\) 5.77377i 0.195862i
\(870\) 7.02792 7.22964i 0.238269 0.245108i
\(871\) 22.7592 0.771168
\(872\) −38.7506 35.5934i −1.31226 1.20534i
\(873\) 6.45515i 0.218474i
\(874\) −13.7970 + 14.1930i −0.466690 + 0.480085i
\(875\) 1.02762i 0.0347398i
\(876\) −2.34434 + 0.0663505i −0.0792079 + 0.00224178i
\(877\) −13.8064 −0.466208 −0.233104 0.972452i \(-0.574888\pi\)
−0.233104 + 0.972452i \(0.574888\pi\)
\(878\) 25.5921 + 24.8780i 0.863690 + 0.839592i
\(879\) 16.5713i 0.558935i
\(880\) 2.94458 0.166811i 0.0992619 0.00562321i
\(881\) 53.3373i 1.79698i 0.438996 + 0.898489i \(0.355334\pi\)
−0.438996 + 0.898489i \(0.644666\pi\)
\(882\) 5.01813 5.16217i 0.168969 0.173819i
\(883\) 17.6643i 0.594452i −0.954807 0.297226i \(-0.903939\pi\)
0.954807 0.297226i \(-0.0960614\pi\)
\(884\) 36.3957 + 19.0253i 1.22412 + 0.639889i
\(885\) 9.49159i 0.319056i
\(886\) −7.17299 6.97285i −0.240981 0.234257i
\(887\) 54.2478i 1.82146i 0.413001 + 0.910731i \(0.364481\pi\)
−0.413001 + 0.910731i \(0.635519\pi\)
\(888\) −9.83797 9.03641i −0.330141 0.303242i
\(889\) 3.34853i 0.112306i
\(890\) −6.60682 + 6.79645i −0.221461 + 0.227818i
\(891\) −4.20070 −0.140729
\(892\) 0.516170 + 18.2376i 0.0172826 + 0.610642i
\(893\) 32.1329i 1.07529i
\(894\) 33.2499 + 32.3221i 1.11204 + 1.08101i
\(895\) 10.0384i 0.335548i
\(896\) 7.36784 8.99345i 0.246142 0.300450i
\(897\) −36.1343 −1.20649
\(898\) 14.7485 + 14.3370i 0.492163 + 0.478431i
\(899\) 37.3701i 1.24636i
\(900\) 0.0484591 + 1.71219i 0.00161530 + 0.0570729i
\(901\) −0.104219 + 0.186335i −0.00347204 + 0.00620771i
\(902\) −3.32912 3.23623i −0.110848 0.107755i
\(903\) −8.97415 −0.298641
\(904\) 26.0988 28.4138i 0.868033 0.945030i
\(905\) 7.21688 0.239897
\(906\) −22.3269 + 22.9678i −0.741763 + 0.763054i
\(907\) 53.1016 1.76321 0.881605 0.471989i \(-0.156464\pi\)
0.881605 + 0.471989i \(0.156464\pi\)
\(908\) 0.307179 + 10.8534i 0.0101941 + 0.360184i
\(909\) 1.70989i 0.0567136i
\(910\) −5.04488 + 5.18969i −0.167236 + 0.172036i
\(911\) 22.4664i 0.744344i 0.928164 + 0.372172i \(0.121387\pi\)
−0.928164 + 0.372172i \(0.878613\pi\)
\(912\) 0.935517 + 16.5139i 0.0309781 + 0.546830i
\(913\) 7.92754i 0.262363i
\(914\) 35.6630 36.6866i 1.17963 1.21349i
\(915\) 21.1750 0.700023
\(916\) 11.1543 0.315694i 0.368548 0.0104308i
\(917\) 19.6877i 0.650145i
\(918\) 31.5518 9.40107i 1.04136 0.310282i
\(919\) 17.5340 0.578393 0.289197 0.957270i \(-0.406612\pi\)
0.289197 + 0.957270i \(0.406612\pi\)
\(920\) 9.48180 10.3229i 0.312606 0.340335i
\(921\) 51.0687i 1.68277i
\(922\) −2.79886 2.72077i −0.0921756 0.0896037i
\(923\) −64.7101 −2.12996
\(924\) 2.21776 0.0627681i 0.0729590 0.00206492i
\(925\) −3.22579 −0.106063
\(926\) −8.14955 + 8.38346i −0.267811 + 0.275498i
\(927\) −1.24020 −0.0407336
\(928\) 18.0529 20.8063i 0.592615 0.682999i
\(929\) 11.8068i 0.387369i −0.981064 0.193684i \(-0.937956\pi\)
0.981064 0.193684i \(-0.0620438\pi\)
\(930\) 11.3936 + 11.0757i 0.373610 + 0.363185i
\(931\) 16.7879i 0.550201i
\(932\) 39.2374 1.11051i 1.28526 0.0363761i
\(933\) 42.3537i 1.38660i
\(934\) 14.9616 + 14.5441i 0.489557 + 0.475898i
\(935\) −2.65326 1.48400i −0.0867709 0.0485320i
\(936\) 8.16093 8.88482i 0.266748 0.290409i
\(937\) 42.2046 1.37876 0.689381 0.724398i \(-0.257882\pi\)
0.689381 + 0.724398i \(0.257882\pi\)
\(938\) −4.62918 + 4.76205i −0.151148 + 0.155487i
\(939\) 7.81302i 0.254968i
\(940\) 0.643742 + 22.7451i 0.0209966 + 0.741864i
\(941\) −42.9773 −1.40102 −0.700510 0.713643i \(-0.747044\pi\)
−0.700510 + 0.713643i \(0.747044\pi\)
\(942\) 16.3828 + 15.9257i 0.533782 + 0.518889i
\(943\) −22.0653 −0.718546
\(944\) 1.46668 + 25.8902i 0.0477365 + 0.842653i
\(945\) 5.80210i 0.188742i
\(946\) −4.45977 4.33533i −0.144999 0.140954i
\(947\) 23.7141 0.770605 0.385302 0.922790i \(-0.374097\pi\)
0.385302 + 0.922790i \(0.374097\pi\)
\(948\) −22.9205 + 0.648706i −0.744423 + 0.0210690i
\(949\) 3.98886 0.129484
\(950\) 2.86402 + 2.78410i 0.0929209 + 0.0903283i
\(951\) 22.7619 0.738106
\(952\) −11.3836 + 3.74558i −0.368944 + 0.121395i
\(953\) 25.3815 0.822186 0.411093 0.911593i \(-0.365147\pi\)
0.411093 + 0.911593i \(0.365147\pi\)
\(954\) 0.0449704 + 0.0437156i 0.00145597 + 0.00141534i
\(955\) −16.2281 −0.525130
\(956\) 0.0922840 + 3.26064i 0.00298468 + 0.105457i
\(957\) 5.25676 0.169927
\(958\) −22.5860 21.9558i −0.729721 0.709361i
\(959\) 12.3446i 0.398628i
\(960\) −0.993038 11.6706i −0.0320501 0.376666i
\(961\) −27.8935 −0.899789
\(962\) 16.2909 + 15.8364i 0.525241 + 0.510586i
\(963\) −4.06130 −0.130874
\(964\) −41.9589 + 1.18754i −1.35140 + 0.0382480i
\(965\) 18.4087i 0.592598i
\(966\) 7.34963 7.56059i 0.236471 0.243258i
\(967\) −9.84890 −0.316719 −0.158360 0.987382i \(-0.550621\pi\)
−0.158360 + 0.987382i \(0.550621\pi\)
\(968\) −21.7812 20.0065i −0.700074 0.643035i
\(969\) 8.32262 14.8801i 0.267361 0.478018i
\(970\) 7.64310 + 7.42984i 0.245405 + 0.238558i
\(971\) 15.5359i 0.498572i −0.968430 0.249286i \(-0.919804\pi\)
0.968430 0.249286i \(-0.0801959\pi\)
\(972\) −0.486454 17.1877i −0.0156030 0.551296i
\(973\) 9.10263i 0.291817i
\(974\) 17.1652 + 16.6863i 0.550009 + 0.534662i
\(975\) 7.29156i 0.233517i
\(976\) 57.7589 3.27205i 1.84882 0.104736i
\(977\) −11.3011 −0.361556 −0.180778 0.983524i \(-0.557861\pi\)
−0.180778 + 0.983524i \(0.557861\pi\)
\(978\) −0.463000 + 0.476290i −0.0148051 + 0.0152301i
\(979\) −4.94179 −0.157940
\(980\) 0.336325 + 11.8833i 0.0107435 + 0.379597i
\(981\) 15.9321 0.508672
\(982\) −10.6432 10.3463i −0.339639 0.330162i
\(983\) 44.2735i 1.41210i −0.708160 0.706052i \(-0.750474\pi\)
0.708160 0.706052i \(-0.249526\pi\)
\(984\) −12.4730 + 13.5794i −0.397626 + 0.432896i
\(985\) 1.17821 0.0375408
\(986\) −27.2120 + 8.10800i −0.866606 + 0.258211i
\(987\) 17.1171i 0.544844i
\(988\) −0.795884 28.1207i −0.0253204 0.894638i
\(989\) −29.5592 −0.939928
\(990\) −0.622476 + 0.640343i −0.0197836 + 0.0203514i
\(991\) 52.0174i 1.65239i −0.563386 0.826194i \(-0.690502\pi\)
0.563386 0.826194i \(-0.309498\pi\)
\(992\) 32.7897 + 28.4505i 1.04107 + 0.903303i
\(993\) 1.20646i 0.0382858i
\(994\) 13.1619 13.5397i 0.417470 0.429452i
\(995\) 4.78744i 0.151772i
\(996\) −31.4704 + 0.890690i −0.997179 + 0.0282226i
\(997\) −5.37281 −0.170159 −0.0850793 0.996374i \(-0.527114\pi\)
−0.0850793 + 0.996374i \(0.527114\pi\)
\(998\) −23.5689 + 24.2454i −0.746059 + 0.767473i
\(999\) 18.2134 0.576245
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.l.b.101.10 yes 36
4.3 odd 2 2720.2.l.a.2481.11 36
8.3 odd 2 2720.2.l.b.2481.25 36
8.5 even 2 680.2.l.a.101.9 36
17.16 even 2 680.2.l.a.101.10 yes 36
68.67 odd 2 2720.2.l.b.2481.26 36
136.67 odd 2 2720.2.l.a.2481.12 36
136.101 even 2 inner 680.2.l.b.101.9 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.9 36 8.5 even 2
680.2.l.a.101.10 yes 36 17.16 even 2
680.2.l.b.101.9 yes 36 136.101 even 2 inner
680.2.l.b.101.10 yes 36 1.1 even 1 trivial
2720.2.l.a.2481.11 36 4.3 odd 2
2720.2.l.a.2481.12 36 136.67 odd 2
2720.2.l.b.2481.25 36 8.3 odd 2
2720.2.l.b.2481.26 36 68.67 odd 2