Properties

Label 2720.2.l.b.2481.25
Level $2720$
Weight $2$
Character 2720.2481
Analytic conductor $21.719$
Analytic rank $0$
Dimension $36$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(2481,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.2481"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [36,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(36\)
Twist minimal: no (minimal twist has level 680)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2481.25
Character \(\chi\) \(=\) 2720.2481
Dual form 2720.2.l.b.2481.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.46409 q^{3} +1.00000 q^{5} -1.02762i q^{7} -0.856436 q^{9} +0.737326 q^{11} -4.98026i q^{13} +1.46409 q^{15} +(3.59849 + 2.01268i) q^{17} -2.82434i q^{19} -1.50452i q^{21} -4.95563i q^{23} +1.00000 q^{25} -5.64618 q^{27} -4.86957 q^{29} -7.67421i q^{31} +1.07951 q^{33} -1.02762i q^{35} +3.22579 q^{37} -7.29156i q^{39} +4.45258i q^{41} +5.96478i q^{43} -0.856436 q^{45} -11.3771 q^{47} +5.94401 q^{49} +(5.26852 + 2.94675i) q^{51} -0.0517813i q^{53} +0.737326 q^{55} -4.13510i q^{57} -6.48292i q^{59} +14.4629 q^{61} +0.880087i q^{63} -4.98026i q^{65} -4.56989i q^{67} -7.25549i q^{69} -12.9933i q^{71} -0.800933i q^{73} +1.46409 q^{75} -0.757688i q^{77} +7.83068i q^{79} -5.69721 q^{81} -10.7517i q^{83} +(3.59849 + 2.01268i) q^{85} -7.12949 q^{87} -6.70231 q^{89} -5.11780 q^{91} -11.2357i q^{93} -2.82434i q^{95} +7.53723i q^{97} -0.631473 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 4 q^{3} + 36 q^{5} + 36 q^{9} + 8 q^{11} + 4 q^{15} + 36 q^{25} + 16 q^{27} - 8 q^{33} + 36 q^{45} - 20 q^{47} - 36 q^{49} + 8 q^{55} + 4 q^{75} + 44 q^{81} - 24 q^{87} + 56 q^{91} + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2720\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1601\) \(1701\) \(2177\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.46409 0.845294 0.422647 0.906294i \(-0.361101\pi\)
0.422647 + 0.906294i \(0.361101\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 1.02762i 0.388402i −0.980962 0.194201i \(-0.937789\pi\)
0.980962 0.194201i \(-0.0622114\pi\)
\(8\) 0 0
\(9\) −0.856436 −0.285479
\(10\) 0 0
\(11\) 0.737326 0.222312 0.111156 0.993803i \(-0.464545\pi\)
0.111156 + 0.993803i \(0.464545\pi\)
\(12\) 0 0
\(13\) 4.98026i 1.38128i −0.723200 0.690638i \(-0.757330\pi\)
0.723200 0.690638i \(-0.242670\pi\)
\(14\) 0 0
\(15\) 1.46409 0.378027
\(16\) 0 0
\(17\) 3.59849 + 2.01268i 0.872762 + 0.488146i
\(18\) 0 0
\(19\) 2.82434i 0.647949i −0.946066 0.323974i \(-0.894981\pi\)
0.946066 0.323974i \(-0.105019\pi\)
\(20\) 0 0
\(21\) 1.50452i 0.328314i
\(22\) 0 0
\(23\) 4.95563i 1.03332i −0.856191 0.516660i \(-0.827175\pi\)
0.856191 0.516660i \(-0.172825\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.64618 −1.08661
\(28\) 0 0
\(29\) −4.86957 −0.904256 −0.452128 0.891953i \(-0.649335\pi\)
−0.452128 + 0.891953i \(0.649335\pi\)
\(30\) 0 0
\(31\) 7.67421i 1.37833i −0.724605 0.689164i \(-0.757978\pi\)
0.724605 0.689164i \(-0.242022\pi\)
\(32\) 0 0
\(33\) 1.07951 0.187919
\(34\) 0 0
\(35\) 1.02762i 0.173699i
\(36\) 0 0
\(37\) 3.22579 0.530316 0.265158 0.964205i \(-0.414576\pi\)
0.265158 + 0.964205i \(0.414576\pi\)
\(38\) 0 0
\(39\) 7.29156i 1.16758i
\(40\) 0 0
\(41\) 4.45258i 0.695376i 0.937610 + 0.347688i \(0.113033\pi\)
−0.937610 + 0.347688i \(0.886967\pi\)
\(42\) 0 0
\(43\) 5.96478i 0.909620i 0.890588 + 0.454810i \(0.150293\pi\)
−0.890588 + 0.454810i \(0.849707\pi\)
\(44\) 0 0
\(45\) −0.856436 −0.127670
\(46\) 0 0
\(47\) −11.3771 −1.65952 −0.829761 0.558119i \(-0.811523\pi\)
−0.829761 + 0.558119i \(0.811523\pi\)
\(48\) 0 0
\(49\) 5.94401 0.849144
\(50\) 0 0
\(51\) 5.26852 + 2.94675i 0.737740 + 0.412627i
\(52\) 0 0
\(53\) 0.0517813i 0.00711271i −0.999994 0.00355636i \(-0.998868\pi\)
0.999994 0.00355636i \(-0.00113203\pi\)
\(54\) 0 0
\(55\) 0.737326 0.0994211
\(56\) 0 0
\(57\) 4.13510i 0.547707i
\(58\) 0 0
\(59\) 6.48292i 0.844005i −0.906595 0.422002i \(-0.861327\pi\)
0.906595 0.422002i \(-0.138673\pi\)
\(60\) 0 0
\(61\) 14.4629 1.85178 0.925890 0.377792i \(-0.123317\pi\)
0.925890 + 0.377792i \(0.123317\pi\)
\(62\) 0 0
\(63\) 0.880087i 0.110881i
\(64\) 0 0
\(65\) 4.98026i 0.617726i
\(66\) 0 0
\(67\) 4.56989i 0.558301i −0.960247 0.279150i \(-0.909947\pi\)
0.960247 0.279150i \(-0.0900528\pi\)
\(68\) 0 0
\(69\) 7.25549i 0.873459i
\(70\) 0 0
\(71\) 12.9933i 1.54202i −0.636822 0.771010i \(-0.719752\pi\)
0.636822 0.771010i \(-0.280248\pi\)
\(72\) 0 0
\(73\) 0.800933i 0.0937421i −0.998901 0.0468710i \(-0.985075\pi\)
0.998901 0.0468710i \(-0.0149250\pi\)
\(74\) 0 0
\(75\) 1.46409 0.169059
\(76\) 0 0
\(77\) 0.757688i 0.0863466i
\(78\) 0 0
\(79\) 7.83068i 0.881020i 0.897748 + 0.440510i \(0.145202\pi\)
−0.897748 + 0.440510i \(0.854798\pi\)
\(80\) 0 0
\(81\) −5.69721 −0.633023
\(82\) 0 0
\(83\) 10.7517i 1.18016i −0.807346 0.590078i \(-0.799097\pi\)
0.807346 0.590078i \(-0.200903\pi\)
\(84\) 0 0
\(85\) 3.59849 + 2.01268i 0.390311 + 0.218306i
\(86\) 0 0
\(87\) −7.12949 −0.764362
\(88\) 0 0
\(89\) −6.70231 −0.710443 −0.355222 0.934782i \(-0.615595\pi\)
−0.355222 + 0.934782i \(0.615595\pi\)
\(90\) 0 0
\(91\) −5.11780 −0.536491
\(92\) 0 0
\(93\) 11.2357i 1.16509i
\(94\) 0 0
\(95\) 2.82434i 0.289771i
\(96\) 0 0
\(97\) 7.53723i 0.765289i 0.923896 + 0.382645i \(0.124987\pi\)
−0.923896 + 0.382645i \(0.875013\pi\)
\(98\) 0 0
\(99\) −0.631473 −0.0634654
\(100\) 0 0
\(101\) 1.99652i 0.198662i 0.995054 + 0.0993308i \(0.0316702\pi\)
−0.995054 + 0.0993308i \(0.968330\pi\)
\(102\) 0 0
\(103\) −1.44810 −0.142685 −0.0713426 0.997452i \(-0.522728\pi\)
−0.0713426 + 0.997452i \(0.522728\pi\)
\(104\) 0 0
\(105\) 1.50452i 0.146826i
\(106\) 0 0
\(107\) 4.74210 0.458436 0.229218 0.973375i \(-0.426383\pi\)
0.229218 + 0.973375i \(0.426383\pi\)
\(108\) 0 0
\(109\) 18.6027 1.78182 0.890910 0.454180i \(-0.150068\pi\)
0.890910 + 0.454180i \(0.150068\pi\)
\(110\) 0 0
\(111\) 4.72285 0.448273
\(112\) 0 0
\(113\) 13.6404i 1.28319i −0.767046 0.641593i \(-0.778274\pi\)
0.767046 0.641593i \(-0.221726\pi\)
\(114\) 0 0
\(115\) 4.95563i 0.462115i
\(116\) 0 0
\(117\) 4.26528i 0.394325i
\(118\) 0 0
\(119\) 2.06826 3.69786i 0.189597 0.338983i
\(120\) 0 0
\(121\) −10.4563 −0.950577
\(122\) 0 0
\(123\) 6.51898i 0.587797i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 3.25854 0.289149 0.144574 0.989494i \(-0.453819\pi\)
0.144574 + 0.989494i \(0.453819\pi\)
\(128\) 0 0
\(129\) 8.73298i 0.768896i
\(130\) 0 0
\(131\) 19.1586 1.67390 0.836949 0.547282i \(-0.184337\pi\)
0.836949 + 0.547282i \(0.184337\pi\)
\(132\) 0 0
\(133\) −2.90234 −0.251665
\(134\) 0 0
\(135\) −5.64618 −0.485945
\(136\) 0 0
\(137\) 12.0129 1.02633 0.513164 0.858291i \(-0.328473\pi\)
0.513164 + 0.858291i \(0.328473\pi\)
\(138\) 0 0
\(139\) 8.85801 0.751326 0.375663 0.926756i \(-0.377415\pi\)
0.375663 + 0.926756i \(0.377415\pi\)
\(140\) 0 0
\(141\) −16.6571 −1.40278
\(142\) 0 0
\(143\) 3.67208i 0.307075i
\(144\) 0 0
\(145\) −4.86957 −0.404396
\(146\) 0 0
\(147\) 8.70257 0.717776
\(148\) 0 0
\(149\) 22.3957i 1.83472i 0.398055 + 0.917362i \(0.369685\pi\)
−0.398055 + 0.917362i \(0.630315\pi\)
\(150\) 0 0
\(151\) −15.4701 −1.25894 −0.629469 0.777025i \(-0.716728\pi\)
−0.629469 + 0.777025i \(0.716728\pi\)
\(152\) 0 0
\(153\) −3.08188 1.72373i −0.249155 0.139355i
\(154\) 0 0
\(155\) 7.67421i 0.616407i
\(156\) 0 0
\(157\) 11.0348i 0.880670i 0.897833 + 0.440335i \(0.145140\pi\)
−0.897833 + 0.440335i \(0.854860\pi\)
\(158\) 0 0
\(159\) 0.0758126i 0.00601233i
\(160\) 0 0
\(161\) −5.09248 −0.401344
\(162\) 0 0
\(163\) 0.320808 0.0251276 0.0125638 0.999921i \(-0.496001\pi\)
0.0125638 + 0.999921i \(0.496001\pi\)
\(164\) 0 0
\(165\) 1.07951 0.0840400
\(166\) 0 0
\(167\) 14.3206i 1.10816i 0.832463 + 0.554080i \(0.186930\pi\)
−0.832463 + 0.554080i \(0.813070\pi\)
\(168\) 0 0
\(169\) −11.8030 −0.907925
\(170\) 0 0
\(171\) 2.41887i 0.184976i
\(172\) 0 0
\(173\) −17.4844 −1.32932 −0.664658 0.747148i \(-0.731423\pi\)
−0.664658 + 0.747148i \(0.731423\pi\)
\(174\) 0 0
\(175\) 1.02762i 0.0776805i
\(176\) 0 0
\(177\) 9.49159i 0.713432i
\(178\) 0 0
\(179\) 10.0384i 0.750308i 0.926962 + 0.375154i \(0.122410\pi\)
−0.926962 + 0.375154i \(0.877590\pi\)
\(180\) 0 0
\(181\) 7.21688 0.536427 0.268213 0.963360i \(-0.413567\pi\)
0.268213 + 0.963360i \(0.413567\pi\)
\(182\) 0 0
\(183\) 21.1750 1.56530
\(184\) 0 0
\(185\) 3.22579 0.237165
\(186\) 0 0
\(187\) 2.65326 + 1.48400i 0.194026 + 0.108521i
\(188\) 0 0
\(189\) 5.80210i 0.422041i
\(190\) 0 0
\(191\) −16.2281 −1.17423 −0.587113 0.809505i \(-0.699736\pi\)
−0.587113 + 0.809505i \(0.699736\pi\)
\(192\) 0 0
\(193\) 18.4087i 1.32509i −0.749022 0.662545i \(-0.769476\pi\)
0.749022 0.662545i \(-0.230524\pi\)
\(194\) 0 0
\(195\) 7.29156i 0.522160i
\(196\) 0 0
\(197\) 1.17821 0.0839438 0.0419719 0.999119i \(-0.486636\pi\)
0.0419719 + 0.999119i \(0.486636\pi\)
\(198\) 0 0
\(199\) 4.78744i 0.339373i −0.985498 0.169686i \(-0.945725\pi\)
0.985498 0.169686i \(-0.0542755\pi\)
\(200\) 0 0
\(201\) 6.69073i 0.471928i
\(202\) 0 0
\(203\) 5.00405i 0.351215i
\(204\) 0 0
\(205\) 4.45258i 0.310982i
\(206\) 0 0
\(207\) 4.24418i 0.294991i
\(208\) 0 0
\(209\) 2.08246i 0.144047i
\(210\) 0 0
\(211\) 15.1007 1.03958 0.519788 0.854295i \(-0.326011\pi\)
0.519788 + 0.854295i \(0.326011\pi\)
\(212\) 0 0
\(213\) 19.0234i 1.30346i
\(214\) 0 0
\(215\) 5.96478i 0.406794i
\(216\) 0 0
\(217\) −7.88614 −0.535346
\(218\) 0 0
\(219\) 1.17264i 0.0792396i
\(220\) 0 0
\(221\) 10.0237 17.9214i 0.674265 1.20553i
\(222\) 0 0
\(223\) 9.12247 0.610886 0.305443 0.952210i \(-0.401195\pi\)
0.305443 + 0.952210i \(0.401195\pi\)
\(224\) 0 0
\(225\) −0.856436 −0.0570957
\(226\) 0 0
\(227\) −5.42890 −0.360328 −0.180164 0.983637i \(-0.557663\pi\)
−0.180164 + 0.983637i \(0.557663\pi\)
\(228\) 0 0
\(229\) 5.57938i 0.368696i −0.982861 0.184348i \(-0.940983\pi\)
0.982861 0.184348i \(-0.0590173\pi\)
\(230\) 0 0
\(231\) 1.10932i 0.0729882i
\(232\) 0 0
\(233\) 19.6266i 1.28578i 0.765959 + 0.642889i \(0.222264\pi\)
−0.765959 + 0.642889i \(0.777736\pi\)
\(234\) 0 0
\(235\) −11.3771 −0.742161
\(236\) 0 0
\(237\) 11.4648i 0.744721i
\(238\) 0 0
\(239\) 1.63097 0.105499 0.0527494 0.998608i \(-0.483202\pi\)
0.0527494 + 0.998608i \(0.483202\pi\)
\(240\) 0 0
\(241\) 20.9878i 1.35194i −0.736927 0.675972i \(-0.763724\pi\)
0.736927 0.675972i \(-0.236276\pi\)
\(242\) 0 0
\(243\) 8.59729 0.551516
\(244\) 0 0
\(245\) 5.94401 0.379749
\(246\) 0 0
\(247\) −14.0660 −0.894996
\(248\) 0 0
\(249\) 15.7415i 0.997579i
\(250\) 0 0
\(251\) 7.63860i 0.482144i 0.970507 + 0.241072i \(0.0774990\pi\)
−0.970507 + 0.241072i \(0.922501\pi\)
\(252\) 0 0
\(253\) 3.65392i 0.229720i
\(254\) 0 0
\(255\) 5.26852 + 2.94675i 0.329927 + 0.184532i
\(256\) 0 0
\(257\) 1.38861 0.0866189 0.0433095 0.999062i \(-0.486210\pi\)
0.0433095 + 0.999062i \(0.486210\pi\)
\(258\) 0 0
\(259\) 3.31487i 0.205976i
\(260\) 0 0
\(261\) 4.17048 0.258146
\(262\) 0 0
\(263\) 12.1867 0.751464 0.375732 0.926728i \(-0.377391\pi\)
0.375732 + 0.926728i \(0.377391\pi\)
\(264\) 0 0
\(265\) 0.0517813i 0.00318090i
\(266\) 0 0
\(267\) −9.81279 −0.600533
\(268\) 0 0
\(269\) 8.53409 0.520333 0.260166 0.965564i \(-0.416223\pi\)
0.260166 + 0.965564i \(0.416223\pi\)
\(270\) 0 0
\(271\) −19.0473 −1.15704 −0.578522 0.815667i \(-0.696370\pi\)
−0.578522 + 0.815667i \(0.696370\pi\)
\(272\) 0 0
\(273\) −7.49292 −0.453492
\(274\) 0 0
\(275\) 0.737326 0.0444625
\(276\) 0 0
\(277\) 3.11221 0.186994 0.0934972 0.995620i \(-0.470195\pi\)
0.0934972 + 0.995620i \(0.470195\pi\)
\(278\) 0 0
\(279\) 6.57247i 0.393483i
\(280\) 0 0
\(281\) −28.7935 −1.71767 −0.858837 0.512249i \(-0.828813\pi\)
−0.858837 + 0.512249i \(0.828813\pi\)
\(282\) 0 0
\(283\) 19.7867 1.17620 0.588100 0.808788i \(-0.299876\pi\)
0.588100 + 0.808788i \(0.299876\pi\)
\(284\) 0 0
\(285\) 4.13510i 0.244942i
\(286\) 0 0
\(287\) 4.57554 0.270086
\(288\) 0 0
\(289\) 8.89825 + 14.4852i 0.523427 + 0.852071i
\(290\) 0 0
\(291\) 11.0352i 0.646894i
\(292\) 0 0
\(293\) 11.3185i 0.661232i −0.943765 0.330616i \(-0.892744\pi\)
0.943765 0.330616i \(-0.107256\pi\)
\(294\) 0 0
\(295\) 6.48292i 0.377450i
\(296\) 0 0
\(297\) −4.16307 −0.241566
\(298\) 0 0
\(299\) −24.6803 −1.42730
\(300\) 0 0
\(301\) 6.12950 0.353298
\(302\) 0 0
\(303\) 2.92309i 0.167927i
\(304\) 0 0
\(305\) 14.4629 0.828142
\(306\) 0 0
\(307\) 34.8808i 1.99075i 0.0960443 + 0.995377i \(0.469381\pi\)
−0.0960443 + 0.995377i \(0.530619\pi\)
\(308\) 0 0
\(309\) −2.12015 −0.120611
\(310\) 0 0
\(311\) 28.9283i 1.64037i 0.572096 + 0.820186i \(0.306130\pi\)
−0.572096 + 0.820186i \(0.693870\pi\)
\(312\) 0 0
\(313\) 5.33643i 0.301633i −0.988562 0.150816i \(-0.951810\pi\)
0.988562 0.150816i \(-0.0481902\pi\)
\(314\) 0 0
\(315\) 0.880087i 0.0495873i
\(316\) 0 0
\(317\) −15.5468 −0.873195 −0.436598 0.899657i \(-0.643817\pi\)
−0.436598 + 0.899657i \(0.643817\pi\)
\(318\) 0 0
\(319\) −3.59046 −0.201027
\(320\) 0 0
\(321\) 6.94286 0.387513
\(322\) 0 0
\(323\) 5.68449 10.1634i 0.316294 0.565505i
\(324\) 0 0
\(325\) 4.98026i 0.276255i
\(326\) 0 0
\(327\) 27.2361 1.50616
\(328\) 0 0
\(329\) 11.6913i 0.644562i
\(330\) 0 0
\(331\) 0.824032i 0.0452929i −0.999744 0.0226465i \(-0.992791\pi\)
0.999744 0.0226465i \(-0.00720921\pi\)
\(332\) 0 0
\(333\) −2.76268 −0.151394
\(334\) 0 0
\(335\) 4.56989i 0.249680i
\(336\) 0 0
\(337\) 10.3903i 0.565998i −0.959120 0.282999i \(-0.908671\pi\)
0.959120 0.282999i \(-0.0913294\pi\)
\(338\) 0 0
\(339\) 19.9709i 1.08467i
\(340\) 0 0
\(341\) 5.65840i 0.306419i
\(342\) 0 0
\(343\) 13.3015i 0.718212i
\(344\) 0 0
\(345\) 7.25549i 0.390623i
\(346\) 0 0
\(347\) −8.82570 −0.473789 −0.236894 0.971535i \(-0.576129\pi\)
−0.236894 + 0.971535i \(0.576129\pi\)
\(348\) 0 0
\(349\) 7.74760i 0.414720i 0.978265 + 0.207360i \(0.0664871\pi\)
−0.978265 + 0.207360i \(0.933513\pi\)
\(350\) 0 0
\(351\) 28.1194i 1.50090i
\(352\) 0 0
\(353\) 7.97452 0.424441 0.212221 0.977222i \(-0.431930\pi\)
0.212221 + 0.977222i \(0.431930\pi\)
\(354\) 0 0
\(355\) 12.9933i 0.689613i
\(356\) 0 0
\(357\) 3.02812 5.41401i 0.160265 0.286540i
\(358\) 0 0
\(359\) 19.2883 1.01800 0.508998 0.860767i \(-0.330016\pi\)
0.508998 + 0.860767i \(0.330016\pi\)
\(360\) 0 0
\(361\) 11.0231 0.580163
\(362\) 0 0
\(363\) −15.3091 −0.803517
\(364\) 0 0
\(365\) 0.800933i 0.0419227i
\(366\) 0 0
\(367\) 15.8068i 0.825109i −0.910933 0.412555i \(-0.864637\pi\)
0.910933 0.412555i \(-0.135363\pi\)
\(368\) 0 0
\(369\) 3.81335i 0.198515i
\(370\) 0 0
\(371\) −0.0532113 −0.00276259
\(372\) 0 0
\(373\) 23.2547i 1.20408i −0.798466 0.602040i \(-0.794355\pi\)
0.798466 0.602040i \(-0.205645\pi\)
\(374\) 0 0
\(375\) 1.46409 0.0756054
\(376\) 0 0
\(377\) 24.2517i 1.24903i
\(378\) 0 0
\(379\) −26.7603 −1.37458 −0.687292 0.726381i \(-0.741201\pi\)
−0.687292 + 0.726381i \(0.741201\pi\)
\(380\) 0 0
\(381\) 4.77080 0.244415
\(382\) 0 0
\(383\) −8.46688 −0.432638 −0.216319 0.976323i \(-0.569405\pi\)
−0.216319 + 0.976323i \(0.569405\pi\)
\(384\) 0 0
\(385\) 0.757688i 0.0386154i
\(386\) 0 0
\(387\) 5.10845i 0.259677i
\(388\) 0 0
\(389\) 25.9652i 1.31649i 0.752804 + 0.658245i \(0.228701\pi\)
−0.752804 + 0.658245i \(0.771299\pi\)
\(390\) 0 0
\(391\) 9.97408 17.8328i 0.504411 0.901842i
\(392\) 0 0
\(393\) 28.0500 1.41493
\(394\) 0 0
\(395\) 7.83068i 0.394004i
\(396\) 0 0
\(397\) 22.6930 1.13893 0.569466 0.822015i \(-0.307150\pi\)
0.569466 + 0.822015i \(0.307150\pi\)
\(398\) 0 0
\(399\) −4.24929 −0.212731
\(400\) 0 0
\(401\) 32.7100i 1.63346i 0.577019 + 0.816731i \(0.304216\pi\)
−0.577019 + 0.816731i \(0.695784\pi\)
\(402\) 0 0
\(403\) −38.2196 −1.90385
\(404\) 0 0
\(405\) −5.69721 −0.283097
\(406\) 0 0
\(407\) 2.37846 0.117896
\(408\) 0 0
\(409\) −25.3481 −1.25338 −0.626691 0.779268i \(-0.715591\pi\)
−0.626691 + 0.779268i \(0.715591\pi\)
\(410\) 0 0
\(411\) 17.5879 0.867549
\(412\) 0 0
\(413\) −6.66195 −0.327813
\(414\) 0 0
\(415\) 10.7517i 0.527782i
\(416\) 0 0
\(417\) 12.9689 0.635091
\(418\) 0 0
\(419\) 2.11612 0.103379 0.0516897 0.998663i \(-0.483539\pi\)
0.0516897 + 0.998663i \(0.483539\pi\)
\(420\) 0 0
\(421\) 33.1164i 1.61399i 0.590556 + 0.806996i \(0.298908\pi\)
−0.590556 + 0.806996i \(0.701092\pi\)
\(422\) 0 0
\(423\) 9.74377 0.473758
\(424\) 0 0
\(425\) 3.59849 + 2.01268i 0.174552 + 0.0976292i
\(426\) 0 0
\(427\) 14.8623i 0.719236i
\(428\) 0 0
\(429\) 5.37626i 0.259568i
\(430\) 0 0
\(431\) 9.16433i 0.441430i −0.975338 0.220715i \(-0.929161\pi\)
0.975338 0.220715i \(-0.0708391\pi\)
\(432\) 0 0
\(433\) 28.6734 1.37796 0.688978 0.724783i \(-0.258060\pi\)
0.688978 + 0.724783i \(0.258060\pi\)
\(434\) 0 0
\(435\) −7.12949 −0.341833
\(436\) 0 0
\(437\) −13.9964 −0.669538
\(438\) 0 0
\(439\) 25.2376i 1.20452i 0.798299 + 0.602261i \(0.205734\pi\)
−0.798299 + 0.602261i \(0.794266\pi\)
\(440\) 0 0
\(441\) −5.09066 −0.242412
\(442\) 0 0
\(443\) 7.07363i 0.336078i 0.985780 + 0.168039i \(0.0537435\pi\)
−0.985780 + 0.168039i \(0.946257\pi\)
\(444\) 0 0
\(445\) −6.70231 −0.317720
\(446\) 0 0
\(447\) 32.7893i 1.55088i
\(448\) 0 0
\(449\) 14.5442i 0.686382i −0.939266 0.343191i \(-0.888492\pi\)
0.939266 0.343191i \(-0.111508\pi\)
\(450\) 0 0
\(451\) 3.28300i 0.154591i
\(452\) 0 0
\(453\) −22.6496 −1.06417
\(454\) 0 0
\(455\) −5.11780 −0.239926
\(456\) 0 0
\(457\) −36.1784 −1.69236 −0.846178 0.532901i \(-0.821102\pi\)
−0.846178 + 0.532901i \(0.821102\pi\)
\(458\) 0 0
\(459\) −20.3177 11.3639i −0.948349 0.530423i
\(460\) 0 0
\(461\) 2.76009i 0.128550i −0.997932 0.0642751i \(-0.979526\pi\)
0.997932 0.0642751i \(-0.0204735\pi\)
\(462\) 0 0
\(463\) −8.26733 −0.384216 −0.192108 0.981374i \(-0.561532\pi\)
−0.192108 + 0.981374i \(0.561532\pi\)
\(464\) 0 0
\(465\) 11.2357i 0.521045i
\(466\) 0 0
\(467\) 14.7543i 0.682748i −0.939928 0.341374i \(-0.889108\pi\)
0.939928 0.341374i \(-0.110892\pi\)
\(468\) 0 0
\(469\) −4.69609 −0.216845
\(470\) 0 0
\(471\) 16.1559i 0.744425i
\(472\) 0 0
\(473\) 4.39799i 0.202220i
\(474\) 0 0
\(475\) 2.82434i 0.129590i
\(476\) 0 0
\(477\) 0.0443474i 0.00203053i
\(478\) 0 0
\(479\) 22.2732i 1.01769i −0.860859 0.508843i \(-0.830073\pi\)
0.860859 0.508843i \(-0.169927\pi\)
\(480\) 0 0
\(481\) 16.0653i 0.732514i
\(482\) 0 0
\(483\) −7.45586 −0.339253
\(484\) 0 0
\(485\) 7.53723i 0.342248i
\(486\) 0 0
\(487\) 16.9274i 0.767055i 0.923529 + 0.383528i \(0.125291\pi\)
−0.923529 + 0.383528i \(0.874709\pi\)
\(488\) 0 0
\(489\) 0.469692 0.0212402
\(490\) 0 0
\(491\) 10.4958i 0.473668i 0.971550 + 0.236834i \(0.0761098\pi\)
−0.971550 + 0.236834i \(0.923890\pi\)
\(492\) 0 0
\(493\) −17.5231 9.80088i −0.789200 0.441409i
\(494\) 0 0
\(495\) −0.631473 −0.0283826
\(496\) 0 0
\(497\) −13.3521 −0.598924
\(498\) 0 0
\(499\) 23.9095 1.07034 0.535168 0.844746i \(-0.320248\pi\)
0.535168 + 0.844746i \(0.320248\pi\)
\(500\) 0 0
\(501\) 20.9666i 0.936721i
\(502\) 0 0
\(503\) 1.84621i 0.0823184i 0.999153 + 0.0411592i \(0.0131051\pi\)
−0.999153 + 0.0411592i \(0.986895\pi\)
\(504\) 0 0
\(505\) 1.99652i 0.0888441i
\(506\) 0 0
\(507\) −17.2807 −0.767463
\(508\) 0 0
\(509\) 21.9087i 0.971086i 0.874213 + 0.485543i \(0.161378\pi\)
−0.874213 + 0.485543i \(0.838622\pi\)
\(510\) 0 0
\(511\) −0.823051 −0.0364096
\(512\) 0 0
\(513\) 15.9467i 0.704065i
\(514\) 0 0
\(515\) −1.44810 −0.0638108
\(516\) 0 0
\(517\) −8.38865 −0.368932
\(518\) 0 0
\(519\) −25.5988 −1.12366
\(520\) 0 0
\(521\) 1.41157i 0.0618421i −0.999522 0.0309211i \(-0.990156\pi\)
0.999522 0.0309211i \(-0.00984405\pi\)
\(522\) 0 0
\(523\) 20.7749i 0.908421i 0.890894 + 0.454211i \(0.150079\pi\)
−0.890894 + 0.454211i \(0.849921\pi\)
\(524\) 0 0
\(525\) 1.50452i 0.0656628i
\(526\) 0 0
\(527\) 15.4457 27.6156i 0.672826 1.20295i
\(528\) 0 0
\(529\) −1.55824 −0.0677498
\(530\) 0 0
\(531\) 5.55221i 0.240945i
\(532\) 0 0
\(533\) 22.1750 0.960506
\(534\) 0 0
\(535\) 4.74210 0.205019
\(536\) 0 0
\(537\) 14.6972i 0.634231i
\(538\) 0 0
\(539\) 4.38267 0.188775
\(540\) 0 0
\(541\) −4.03830 −0.173620 −0.0868101 0.996225i \(-0.527667\pi\)
−0.0868101 + 0.996225i \(0.527667\pi\)
\(542\) 0 0
\(543\) 10.5662 0.453438
\(544\) 0 0
\(545\) 18.6027 0.796854
\(546\) 0 0
\(547\) 41.2053 1.76181 0.880906 0.473290i \(-0.156934\pi\)
0.880906 + 0.473290i \(0.156934\pi\)
\(548\) 0 0
\(549\) −12.3865 −0.528644
\(550\) 0 0
\(551\) 13.7533i 0.585912i
\(552\) 0 0
\(553\) 8.04693 0.342190
\(554\) 0 0
\(555\) 4.72285 0.200474
\(556\) 0 0
\(557\) 13.9646i 0.591699i 0.955235 + 0.295849i \(0.0956027\pi\)
−0.955235 + 0.295849i \(0.904397\pi\)
\(558\) 0 0
\(559\) 29.7062 1.25644
\(560\) 0 0
\(561\) 3.88462 + 2.17271i 0.164009 + 0.0917320i
\(562\) 0 0
\(563\) 39.0610i 1.64622i −0.567880 0.823111i \(-0.692236\pi\)
0.567880 0.823111i \(-0.307764\pi\)
\(564\) 0 0
\(565\) 13.6404i 0.573858i
\(566\) 0 0
\(567\) 5.85454i 0.245868i
\(568\) 0 0
\(569\) 40.3237 1.69046 0.845228 0.534405i \(-0.179464\pi\)
0.845228 + 0.534405i \(0.179464\pi\)
\(570\) 0 0
\(571\) −27.1177 −1.13484 −0.567421 0.823428i \(-0.692059\pi\)
−0.567421 + 0.823428i \(0.692059\pi\)
\(572\) 0 0
\(573\) −23.7595 −0.992566
\(574\) 0 0
\(575\) 4.95563i 0.206664i
\(576\) 0 0
\(577\) −7.77551 −0.323699 −0.161849 0.986815i \(-0.551746\pi\)
−0.161849 + 0.986815i \(0.551746\pi\)
\(578\) 0 0
\(579\) 26.9521i 1.12009i
\(580\) 0 0
\(581\) −11.0487 −0.458375
\(582\) 0 0
\(583\) 0.0381798i 0.00158124i
\(584\) 0 0
\(585\) 4.26528i 0.176348i
\(586\) 0 0
\(587\) 35.6192i 1.47016i 0.677980 + 0.735080i \(0.262855\pi\)
−0.677980 + 0.735080i \(0.737145\pi\)
\(588\) 0 0
\(589\) −21.6746 −0.893086
\(590\) 0 0
\(591\) 1.72500 0.0709572
\(592\) 0 0
\(593\) 35.3602 1.45207 0.726035 0.687658i \(-0.241361\pi\)
0.726035 + 0.687658i \(0.241361\pi\)
\(594\) 0 0
\(595\) 2.06826 3.69786i 0.0847904 0.151598i
\(596\) 0 0
\(597\) 7.00925i 0.286870i
\(598\) 0 0
\(599\) −25.3800 −1.03700 −0.518500 0.855078i \(-0.673509\pi\)
−0.518500 + 0.855078i \(0.673509\pi\)
\(600\) 0 0
\(601\) 0.940741i 0.0383736i 0.999816 + 0.0191868i \(0.00610773\pi\)
−0.999816 + 0.0191868i \(0.993892\pi\)
\(602\) 0 0
\(603\) 3.91382i 0.159383i
\(604\) 0 0
\(605\) −10.4563 −0.425111
\(606\) 0 0
\(607\) 9.70858i 0.394059i 0.980398 + 0.197030i \(0.0631295\pi\)
−0.980398 + 0.197030i \(0.936871\pi\)
\(608\) 0 0
\(609\) 7.32638i 0.296880i
\(610\) 0 0
\(611\) 56.6610i 2.29226i
\(612\) 0 0
\(613\) 30.1125i 1.21623i −0.793848 0.608116i \(-0.791925\pi\)
0.793848 0.608116i \(-0.208075\pi\)
\(614\) 0 0
\(615\) 6.51898i 0.262871i
\(616\) 0 0
\(617\) 33.4173i 1.34533i 0.739947 + 0.672665i \(0.234850\pi\)
−0.739947 + 0.672665i \(0.765150\pi\)
\(618\) 0 0
\(619\) −5.48862 −0.220606 −0.110303 0.993898i \(-0.535182\pi\)
−0.110303 + 0.993898i \(0.535182\pi\)
\(620\) 0 0
\(621\) 27.9803i 1.12281i
\(622\) 0 0
\(623\) 6.88740i 0.275938i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 3.04892i 0.121762i
\(628\) 0 0
\(629\) 11.6080 + 6.49247i 0.462840 + 0.258872i
\(630\) 0 0
\(631\) −0.444706 −0.0177035 −0.00885173 0.999961i \(-0.502818\pi\)
−0.00885173 + 0.999961i \(0.502818\pi\)
\(632\) 0 0
\(633\) 22.1088 0.878747
\(634\) 0 0
\(635\) 3.25854 0.129311
\(636\) 0 0
\(637\) 29.6027i 1.17290i
\(638\) 0 0
\(639\) 11.1279i 0.440214i
\(640\) 0 0
\(641\) 24.5740i 0.970616i 0.874343 + 0.485308i \(0.161292\pi\)
−0.874343 + 0.485308i \(0.838708\pi\)
\(642\) 0 0
\(643\) 37.3639 1.47349 0.736743 0.676173i \(-0.236363\pi\)
0.736743 + 0.676173i \(0.236363\pi\)
\(644\) 0 0
\(645\) 8.73298i 0.343861i
\(646\) 0 0
\(647\) 1.14820 0.0451405 0.0225703 0.999745i \(-0.492815\pi\)
0.0225703 + 0.999745i \(0.492815\pi\)
\(648\) 0 0
\(649\) 4.78003i 0.187633i
\(650\) 0 0
\(651\) −11.5460 −0.452524
\(652\) 0 0
\(653\) 4.48681 0.175582 0.0877912 0.996139i \(-0.472019\pi\)
0.0877912 + 0.996139i \(0.472019\pi\)
\(654\) 0 0
\(655\) 19.1586 0.748590
\(656\) 0 0
\(657\) 0.685948i 0.0267614i
\(658\) 0 0
\(659\) 0.209907i 0.00817683i −0.999992 0.00408841i \(-0.998699\pi\)
0.999992 0.00408841i \(-0.00130139\pi\)
\(660\) 0 0
\(661\) 0.915250i 0.0355991i 0.999842 + 0.0177996i \(0.00566607\pi\)
−0.999842 + 0.0177996i \(0.994334\pi\)
\(662\) 0 0
\(663\) 14.6756 26.2386i 0.569952 1.01902i
\(664\) 0 0
\(665\) −2.90234 −0.112548
\(666\) 0 0
\(667\) 24.1318i 0.934386i
\(668\) 0 0
\(669\) 13.3561 0.516378
\(670\) 0 0
\(671\) 10.6639 0.411674
\(672\) 0 0
\(673\) 28.6506i 1.10440i 0.833712 + 0.552199i \(0.186211\pi\)
−0.833712 + 0.552199i \(0.813789\pi\)
\(674\) 0 0
\(675\) −5.64618 −0.217321
\(676\) 0 0
\(677\) −27.5070 −1.05718 −0.528590 0.848877i \(-0.677279\pi\)
−0.528590 + 0.848877i \(0.677279\pi\)
\(678\) 0 0
\(679\) 7.74537 0.297240
\(680\) 0 0
\(681\) −7.94840 −0.304583
\(682\) 0 0
\(683\) −28.8188 −1.10272 −0.551361 0.834267i \(-0.685891\pi\)
−0.551361 + 0.834267i \(0.685891\pi\)
\(684\) 0 0
\(685\) 12.0129 0.458988
\(686\) 0 0
\(687\) 8.16872i 0.311656i
\(688\) 0 0
\(689\) −0.257885 −0.00982463
\(690\) 0 0
\(691\) 30.2174 1.14952 0.574761 0.818321i \(-0.305095\pi\)
0.574761 + 0.818321i \(0.305095\pi\)
\(692\) 0 0
\(693\) 0.648912i 0.0246501i
\(694\) 0 0
\(695\) 8.85801 0.336003
\(696\) 0 0
\(697\) −8.96161 + 16.0226i −0.339445 + 0.606898i
\(698\) 0 0
\(699\) 28.7351i 1.08686i
\(700\) 0 0
\(701\) 15.1682i 0.572893i 0.958096 + 0.286447i \(0.0924741\pi\)
−0.958096 + 0.286447i \(0.907526\pi\)
\(702\) 0 0
\(703\) 9.11073i 0.343618i
\(704\) 0 0
\(705\) −16.6571 −0.627344
\(706\) 0 0
\(707\) 2.05166 0.0771606
\(708\) 0 0
\(709\) −1.02190 −0.0383782 −0.0191891 0.999816i \(-0.506108\pi\)
−0.0191891 + 0.999816i \(0.506108\pi\)
\(710\) 0 0
\(711\) 6.70648i 0.251513i
\(712\) 0 0
\(713\) −38.0305 −1.42425
\(714\) 0 0
\(715\) 3.67208i 0.137328i
\(716\) 0 0
\(717\) 2.38789 0.0891775
\(718\) 0 0
\(719\) 46.2539i 1.72498i 0.506073 + 0.862491i \(0.331097\pi\)
−0.506073 + 0.862491i \(0.668903\pi\)
\(720\) 0 0
\(721\) 1.48809i 0.0554193i
\(722\) 0 0
\(723\) 30.7281i 1.14279i
\(724\) 0 0
\(725\) −4.86957 −0.180851
\(726\) 0 0
\(727\) −43.5602 −1.61556 −0.807779 0.589485i \(-0.799331\pi\)
−0.807779 + 0.589485i \(0.799331\pi\)
\(728\) 0 0
\(729\) 29.6788 1.09922
\(730\) 0 0
\(731\) −12.0052 + 21.4642i −0.444028 + 0.793882i
\(732\) 0 0
\(733\) 5.12531i 0.189308i 0.995510 + 0.0946538i \(0.0301744\pi\)
−0.995510 + 0.0946538i \(0.969826\pi\)
\(734\) 0 0
\(735\) 8.70257 0.320999
\(736\) 0 0
\(737\) 3.36950i 0.124117i
\(738\) 0 0
\(739\) 15.8626i 0.583514i −0.956493 0.291757i \(-0.905760\pi\)
0.956493 0.291757i \(-0.0942398\pi\)
\(740\) 0 0
\(741\) −20.5939 −0.756535
\(742\) 0 0
\(743\) 28.3848i 1.04134i −0.853759 0.520668i \(-0.825683\pi\)
0.853759 0.520668i \(-0.174317\pi\)
\(744\) 0 0
\(745\) 22.3957i 0.820513i
\(746\) 0 0
\(747\) 9.20817i 0.336909i
\(748\) 0 0
\(749\) 4.87305i 0.178058i
\(750\) 0 0
\(751\) 31.5903i 1.15275i 0.817187 + 0.576373i \(0.195533\pi\)
−0.817187 + 0.576373i \(0.804467\pi\)
\(752\) 0 0
\(753\) 11.1836i 0.407553i
\(754\) 0 0
\(755\) −15.4701 −0.563014
\(756\) 0 0
\(757\) 15.9749i 0.580619i 0.956933 + 0.290309i \(0.0937582\pi\)
−0.956933 + 0.290309i \(0.906242\pi\)
\(758\) 0 0
\(759\) 5.34967i 0.194181i
\(760\) 0 0
\(761\) −0.0742013 −0.00268979 −0.00134490 0.999999i \(-0.500428\pi\)
−0.00134490 + 0.999999i \(0.500428\pi\)
\(762\) 0 0
\(763\) 19.1165i 0.692063i
\(764\) 0 0
\(765\) −3.08188 1.72373i −0.111425 0.0623216i
\(766\) 0 0
\(767\) −32.2867 −1.16580
\(768\) 0 0
\(769\) −37.0122 −1.33470 −0.667348 0.744746i \(-0.732571\pi\)
−0.667348 + 0.744746i \(0.732571\pi\)
\(770\) 0 0
\(771\) 2.03305 0.0732184
\(772\) 0 0
\(773\) 22.3692i 0.804563i −0.915516 0.402282i \(-0.868217\pi\)
0.915516 0.402282i \(-0.131783\pi\)
\(774\) 0 0
\(775\) 7.67421i 0.275666i
\(776\) 0 0
\(777\) 4.85327i 0.174110i
\(778\) 0 0
\(779\) 12.5756 0.450568
\(780\) 0 0
\(781\) 9.58030i 0.342810i
\(782\) 0 0
\(783\) 27.4944 0.982571
\(784\) 0 0
\(785\) 11.0348i 0.393848i
\(786\) 0 0
\(787\) −10.9625 −0.390769 −0.195385 0.980727i \(-0.562596\pi\)
−0.195385 + 0.980727i \(0.562596\pi\)
\(788\) 0 0
\(789\) 17.8424 0.635208
\(790\) 0 0
\(791\) −14.0171 −0.498392
\(792\) 0 0
\(793\) 72.0289i 2.55782i
\(794\) 0 0
\(795\) 0.0758126i 0.00268880i
\(796\) 0 0
\(797\) 39.0009i 1.38148i −0.723102 0.690741i \(-0.757284\pi\)
0.723102 0.690741i \(-0.242716\pi\)
\(798\) 0 0
\(799\) −40.9404 22.8985i −1.44837 0.810090i
\(800\) 0 0
\(801\) 5.74010 0.202816
\(802\) 0 0
\(803\) 0.590549i 0.0208400i
\(804\) 0 0
\(805\) −5.09248 −0.179486
\(806\) 0 0
\(807\) 12.4947 0.439834
\(808\) 0 0
\(809\) 39.1418i 1.37615i 0.725638 + 0.688077i \(0.241545\pi\)
−0.725638 + 0.688077i \(0.758455\pi\)
\(810\) 0 0
\(811\) −18.0496 −0.633809 −0.316904 0.948458i \(-0.602643\pi\)
−0.316904 + 0.948458i \(0.602643\pi\)
\(812\) 0 0
\(813\) −27.8871 −0.978042
\(814\) 0 0
\(815\) 0.320808 0.0112374
\(816\) 0 0
\(817\) 16.8466 0.589387
\(818\) 0 0
\(819\) 4.38307 0.153157
\(820\) 0 0
\(821\) −4.04733 −0.141253 −0.0706263 0.997503i \(-0.522500\pi\)
−0.0706263 + 0.997503i \(0.522500\pi\)
\(822\) 0 0
\(823\) 10.4958i 0.365862i −0.983126 0.182931i \(-0.941441\pi\)
0.983126 0.182931i \(-0.0585585\pi\)
\(824\) 0 0
\(825\) 1.07951 0.0375838
\(826\) 0 0
\(827\) −35.2909 −1.22719 −0.613593 0.789623i \(-0.710276\pi\)
−0.613593 + 0.789623i \(0.710276\pi\)
\(828\) 0 0
\(829\) 30.4113i 1.05623i 0.849173 + 0.528114i \(0.177101\pi\)
−0.849173 + 0.528114i \(0.822899\pi\)
\(830\) 0 0
\(831\) 4.55656 0.158065
\(832\) 0 0
\(833\) 21.3894 + 11.9634i 0.741100 + 0.414506i
\(834\) 0 0
\(835\) 14.3206i 0.495584i
\(836\) 0 0
\(837\) 43.3299i 1.49770i
\(838\) 0 0
\(839\) 28.3278i 0.977985i 0.872288 + 0.488992i \(0.162635\pi\)
−0.872288 + 0.488992i \(0.837365\pi\)
\(840\) 0 0
\(841\) −5.28730 −0.182321
\(842\) 0 0
\(843\) −42.1563 −1.45194
\(844\) 0 0
\(845\) −11.8030 −0.406036
\(846\) 0 0
\(847\) 10.7451i 0.369206i
\(848\) 0 0
\(849\) 28.9696 0.994234
\(850\) 0 0
\(851\) 15.9858i 0.547986i
\(852\) 0 0
\(853\) 49.3618 1.69011 0.845057 0.534676i \(-0.179566\pi\)
0.845057 + 0.534676i \(0.179566\pi\)
\(854\) 0 0
\(855\) 2.41887i 0.0827236i
\(856\) 0 0
\(857\) 56.3068i 1.92340i −0.274099 0.961701i \(-0.588380\pi\)
0.274099 0.961701i \(-0.411620\pi\)
\(858\) 0 0
\(859\) 4.79059i 0.163453i 0.996655 + 0.0817264i \(0.0260434\pi\)
−0.996655 + 0.0817264i \(0.973957\pi\)
\(860\) 0 0
\(861\) 6.69901 0.228302
\(862\) 0 0
\(863\) −21.3707 −0.727469 −0.363734 0.931503i \(-0.618498\pi\)
−0.363734 + 0.931503i \(0.618498\pi\)
\(864\) 0 0
\(865\) −17.4844 −0.594488
\(866\) 0 0
\(867\) 13.0279 + 21.2077i 0.442449 + 0.720250i
\(868\) 0 0
\(869\) 5.77377i 0.195862i
\(870\) 0 0
\(871\) −22.7592 −0.771168
\(872\) 0 0
\(873\) 6.45515i 0.218474i
\(874\) 0 0
\(875\) 1.02762i 0.0347398i
\(876\) 0 0
\(877\) 13.8064 0.466208 0.233104 0.972452i \(-0.425112\pi\)
0.233104 + 0.972452i \(0.425112\pi\)
\(878\) 0 0
\(879\) 16.5713i 0.558935i
\(880\) 0 0
\(881\) 53.3373i 1.79698i 0.438996 + 0.898489i \(0.355334\pi\)
−0.438996 + 0.898489i \(0.644666\pi\)
\(882\) 0 0
\(883\) 17.6643i 0.594452i −0.954807 0.297226i \(-0.903939\pi\)
0.954807 0.297226i \(-0.0960614\pi\)
\(884\) 0 0
\(885\) 9.49159i 0.319056i
\(886\) 0 0
\(887\) 54.2478i 1.82146i −0.413001 0.910731i \(-0.635519\pi\)
0.413001 0.910731i \(-0.364481\pi\)
\(888\) 0 0
\(889\) 3.34853i 0.112306i
\(890\) 0 0
\(891\) −4.20070 −0.140729
\(892\) 0 0
\(893\) 32.1329i 1.07529i
\(894\) 0 0
\(895\) 10.0384i 0.335548i
\(896\) 0 0
\(897\) −36.1343 −1.20649
\(898\) 0 0
\(899\) 37.3701i 1.24636i
\(900\) 0 0
\(901\) 0.104219 0.186335i 0.00347204 0.00620771i
\(902\) 0 0
\(903\) 8.97415 0.298641
\(904\) 0 0
\(905\) 7.21688 0.239897
\(906\) 0 0
\(907\) 53.1016 1.76321 0.881605 0.471989i \(-0.156464\pi\)
0.881605 + 0.471989i \(0.156464\pi\)
\(908\) 0 0
\(909\) 1.70989i 0.0567136i
\(910\) 0 0
\(911\) 22.4664i 0.744344i −0.928164 0.372172i \(-0.878613\pi\)
0.928164 0.372172i \(-0.121387\pi\)
\(912\) 0 0
\(913\) 7.92754i 0.262363i
\(914\) 0 0
\(915\) 21.1750 0.700023
\(916\) 0 0
\(917\) 19.6877i 0.650145i
\(918\) 0 0
\(919\) −17.5340 −0.578393 −0.289197 0.957270i \(-0.593388\pi\)
−0.289197 + 0.957270i \(0.593388\pi\)
\(920\) 0 0
\(921\) 51.0687i 1.68277i
\(922\) 0 0
\(923\) −64.7101 −2.12996
\(924\) 0 0
\(925\) 3.22579 0.106063
\(926\) 0 0
\(927\) 1.24020 0.0407336
\(928\) 0 0
\(929\) 11.8068i 0.387369i −0.981064 0.193684i \(-0.937956\pi\)
0.981064 0.193684i \(-0.0620438\pi\)
\(930\) 0 0
\(931\) 16.7879i 0.550201i
\(932\) 0 0
\(933\) 42.3537i 1.38660i
\(934\) 0 0
\(935\) 2.65326 + 1.48400i 0.0867709 + 0.0485320i
\(936\) 0 0
\(937\) 42.2046 1.37876 0.689381 0.724398i \(-0.257882\pi\)
0.689381 + 0.724398i \(0.257882\pi\)
\(938\) 0 0
\(939\) 7.81302i 0.254968i
\(940\) 0 0
\(941\) 42.9773 1.40102 0.700510 0.713643i \(-0.252956\pi\)
0.700510 + 0.713643i \(0.252956\pi\)
\(942\) 0 0
\(943\) 22.0653 0.718546
\(944\) 0 0
\(945\) 5.80210i 0.188742i
\(946\) 0 0
\(947\) 23.7141 0.770605 0.385302 0.922790i \(-0.374097\pi\)
0.385302 + 0.922790i \(0.374097\pi\)
\(948\) 0 0
\(949\) −3.98886 −0.129484
\(950\) 0 0
\(951\) −22.7619 −0.738106
\(952\) 0 0
\(953\) 25.3815 0.822186 0.411093 0.911593i \(-0.365147\pi\)
0.411093 + 0.911593i \(0.365147\pi\)
\(954\) 0 0
\(955\) −16.2281 −0.525130
\(956\) 0 0
\(957\) −5.25676 −0.169927
\(958\) 0 0
\(959\) 12.3446i 0.398628i
\(960\) 0 0
\(961\) −27.8935 −0.899789
\(962\) 0 0
\(963\) −4.06130 −0.130874
\(964\) 0 0
\(965\) 18.4087i 0.592598i
\(966\) 0 0
\(967\) 9.84890 0.316719 0.158360 0.987382i \(-0.449379\pi\)
0.158360 + 0.987382i \(0.449379\pi\)
\(968\) 0 0
\(969\) 8.32262 14.8801i 0.267361 0.478018i
\(970\) 0 0
\(971\) 15.5359i 0.498572i −0.968430 0.249286i \(-0.919804\pi\)
0.968430 0.249286i \(-0.0801959\pi\)
\(972\) 0 0
\(973\) 9.10263i 0.291817i
\(974\) 0 0
\(975\) 7.29156i 0.233517i
\(976\) 0 0
\(977\) −11.3011 −0.361556 −0.180778 0.983524i \(-0.557861\pi\)
−0.180778 + 0.983524i \(0.557861\pi\)
\(978\) 0 0
\(979\) −4.94179 −0.157940
\(980\) 0 0
\(981\) −15.9321 −0.508672
\(982\) 0 0
\(983\) 44.2735i 1.41210i 0.708160 + 0.706052i \(0.249526\pi\)
−0.708160 + 0.706052i \(0.750474\pi\)
\(984\) 0 0
\(985\) 1.17821 0.0375408
\(986\) 0 0
\(987\) 17.1171i 0.544844i
\(988\) 0 0
\(989\) 29.5592 0.939928
\(990\) 0 0
\(991\) 52.0174i 1.65239i 0.563386 + 0.826194i \(0.309498\pi\)
−0.563386 + 0.826194i \(0.690502\pi\)
\(992\) 0 0
\(993\) 1.20646i 0.0382858i
\(994\) 0 0
\(995\) 4.78744i 0.151772i
\(996\) 0 0
\(997\) 5.37281 0.170159 0.0850793 0.996374i \(-0.472886\pi\)
0.0850793 + 0.996374i \(0.472886\pi\)
\(998\) 0 0
\(999\) −18.2134 −0.576245
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2720.2.l.b.2481.25 36
4.3 odd 2 680.2.l.a.101.9 36
8.3 odd 2 680.2.l.b.101.10 yes 36
8.5 even 2 2720.2.l.a.2481.11 36
17.16 even 2 2720.2.l.a.2481.12 36
68.67 odd 2 680.2.l.b.101.9 yes 36
136.67 odd 2 680.2.l.a.101.10 yes 36
136.101 even 2 inner 2720.2.l.b.2481.26 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.l.a.101.9 36 4.3 odd 2
680.2.l.a.101.10 yes 36 136.67 odd 2
680.2.l.b.101.9 yes 36 68.67 odd 2
680.2.l.b.101.10 yes 36 8.3 odd 2
2720.2.l.a.2481.11 36 8.5 even 2
2720.2.l.a.2481.12 36 17.16 even 2
2720.2.l.b.2481.25 36 1.1 even 1 trivial
2720.2.l.b.2481.26 36 136.101 even 2 inner