Properties

Label 680.2.h.b.509.8
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.8
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.b.509.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.29647 + 0.564954i) q^{2} +2.10974i q^{3} +(1.36165 - 1.46489i) q^{4} +(-2.12767 - 0.687771i) q^{5} +(-1.19191 - 2.73521i) q^{6} +2.16636 q^{7} +(-0.937746 + 2.66845i) q^{8} -1.45102 q^{9} +(3.14701 - 0.310361i) q^{10} -1.85151 q^{11} +(3.09054 + 2.87274i) q^{12} +6.11522 q^{13} +(-2.80861 + 1.22389i) q^{14} +(1.45102 - 4.48884i) q^{15} +(-0.291795 - 3.98934i) q^{16} +(-0.319939 + 4.11067i) q^{17} +(1.88120 - 0.819760i) q^{18} +2.40417i q^{19} +(-3.90466 + 2.18029i) q^{20} +4.57046i q^{21} +(2.40042 - 1.04602i) q^{22} -5.17461 q^{23} +(-5.62975 - 1.97840i) q^{24} +(4.05394 + 2.92670i) q^{25} +(-7.92819 + 3.45482i) q^{26} +3.26795i q^{27} +(2.94983 - 3.17347i) q^{28} +3.36345 q^{29} +(0.654783 + 6.63939i) q^{30} +0.731556i q^{31} +(2.63210 + 5.00720i) q^{32} -3.90622i q^{33} +(-1.90755 - 5.51010i) q^{34} +(-4.60929 - 1.48996i) q^{35} +(-1.97579 + 2.12558i) q^{36} +10.8095i q^{37} +(-1.35825 - 3.11693i) q^{38} +12.9016i q^{39} +(3.83050 - 5.03262i) q^{40} -4.69931i q^{41} +(-2.58210 - 5.92545i) q^{42} -5.90331 q^{43} +(-2.52112 + 2.71226i) q^{44} +(3.08729 + 0.997971i) q^{45} +(6.70872 - 2.92342i) q^{46} -3.82883i q^{47} +(8.41649 - 0.615613i) q^{48} -2.30690 q^{49} +(-6.90925 - 1.50408i) q^{50} +(-8.67247 - 0.674989i) q^{51} +(8.32682 - 8.95812i) q^{52} +6.98932 q^{53} +(-1.84624 - 4.23679i) q^{54} +(3.93940 + 1.27342i) q^{55} +(-2.03149 + 5.78082i) q^{56} -5.07219 q^{57} +(-4.36060 + 1.90019i) q^{58} +1.35564i q^{59} +(-4.59985 - 8.23783i) q^{60} -3.71760 q^{61} +(-0.413295 - 0.948438i) q^{62} -3.14343 q^{63} +(-6.24126 - 5.00466i) q^{64} +(-13.0112 - 4.20587i) q^{65} +(2.20683 + 5.06428i) q^{66} -11.7947 q^{67} +(5.58603 + 6.06599i) q^{68} -10.9171i q^{69} +(6.81755 - 0.672353i) q^{70} +11.1457i q^{71} +(1.36069 - 3.87198i) q^{72} -4.82829 q^{73} +(-6.10685 - 14.0141i) q^{74} +(-6.17459 + 8.55278i) q^{75} +(3.52184 + 3.27365i) q^{76} -4.01103 q^{77} +(-7.28878 - 16.7264i) q^{78} +0.112435i q^{79} +(-2.12291 + 8.68868i) q^{80} -11.2476 q^{81} +(2.65489 + 6.09250i) q^{82} +10.5584 q^{83} +(6.69521 + 6.22339i) q^{84} +(3.50793 - 8.52610i) q^{85} +(7.65345 - 3.33510i) q^{86} +7.09602i q^{87} +(1.73625 - 4.94067i) q^{88} +10.0055 q^{89} +(-4.56638 + 0.450341i) q^{90} +13.2478 q^{91} +(-7.04604 + 7.58023i) q^{92} -1.54340 q^{93} +(2.16311 + 4.96396i) q^{94} +(1.65352 - 5.11528i) q^{95} +(-10.5639 + 5.55305i) q^{96} -10.8895 q^{97} +(2.99082 - 1.30329i) q^{98} +2.68658 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{4} - 56 q^{9} + 56 q^{15} - 4 q^{16} - 36 q^{26} - 28 q^{30} + 24 q^{34} + 88 q^{36} + 8 q^{49} - 16 q^{50} - 88 q^{55} - 88 q^{60} - 132 q^{64} + 208 q^{66} + 72 q^{70} - 20 q^{76} - 56 q^{81}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.29647 + 0.564954i −0.916741 + 0.399483i
\(3\) 2.10974i 1.21806i 0.793147 + 0.609031i \(0.208441\pi\)
−0.793147 + 0.609031i \(0.791559\pi\)
\(4\) 1.36165 1.46489i 0.680827 0.732444i
\(5\) −2.12767 0.687771i −0.951522 0.307581i
\(6\) −1.19191 2.73521i −0.486594 1.11665i
\(7\) 2.16636 0.818806 0.409403 0.912354i \(-0.365737\pi\)
0.409403 + 0.912354i \(0.365737\pi\)
\(8\) −0.937746 + 2.66845i −0.331543 + 0.943440i
\(9\) −1.45102 −0.483674
\(10\) 3.14701 0.310361i 0.995172 0.0981448i
\(11\) −1.85151 −0.558252 −0.279126 0.960255i \(-0.590045\pi\)
−0.279126 + 0.960255i \(0.590045\pi\)
\(12\) 3.09054 + 2.87274i 0.892162 + 0.829289i
\(13\) 6.11522 1.69606 0.848029 0.529950i \(-0.177789\pi\)
0.848029 + 0.529950i \(0.177789\pi\)
\(14\) −2.80861 + 1.22389i −0.750633 + 0.327099i
\(15\) 1.45102 4.48884i 0.374652 1.15901i
\(16\) −0.291795 3.98934i −0.0729487 0.997336i
\(17\) −0.319939 + 4.11067i −0.0775965 + 0.996985i
\(18\) 1.88120 0.819760i 0.443404 0.193219i
\(19\) 2.40417i 0.551555i 0.961222 + 0.275777i \(0.0889353\pi\)
−0.961222 + 0.275777i \(0.911065\pi\)
\(20\) −3.90466 + 2.18029i −0.873108 + 0.487527i
\(21\) 4.57046i 0.997356i
\(22\) 2.40042 1.04602i 0.511772 0.223012i
\(23\) −5.17461 −1.07898 −0.539491 0.841992i \(-0.681383\pi\)
−0.539491 + 0.841992i \(0.681383\pi\)
\(24\) −5.62975 1.97840i −1.14917 0.403840i
\(25\) 4.05394 + 2.92670i 0.810788 + 0.585340i
\(26\) −7.92819 + 3.45482i −1.55485 + 0.677546i
\(27\) 3.26795i 0.628917i
\(28\) 2.94983 3.17347i 0.557465 0.599730i
\(29\) 3.36345 0.624577 0.312288 0.949987i \(-0.398904\pi\)
0.312288 + 0.949987i \(0.398904\pi\)
\(30\) 0.654783 + 6.63939i 0.119546 + 1.21218i
\(31\) 0.731556i 0.131391i 0.997840 + 0.0656957i \(0.0209266\pi\)
−0.997840 + 0.0656957i \(0.979073\pi\)
\(32\) 2.63210 + 5.00720i 0.465293 + 0.885157i
\(33\) 3.90622i 0.679985i
\(34\) −1.90755 5.51010i −0.327142 0.944975i
\(35\) −4.60929 1.48996i −0.779112 0.251849i
\(36\) −1.97579 + 2.12558i −0.329298 + 0.354264i
\(37\) 10.8095i 1.77706i 0.458814 + 0.888532i \(0.348274\pi\)
−0.458814 + 0.888532i \(0.651726\pi\)
\(38\) −1.35825 3.11693i −0.220337 0.505633i
\(39\) 12.9016i 2.06590i
\(40\) 3.83050 5.03262i 0.605655 0.795728i
\(41\) 4.69931i 0.733909i −0.930239 0.366955i \(-0.880400\pi\)
0.930239 0.366955i \(-0.119600\pi\)
\(42\) −2.58210 5.92545i −0.398426 0.914317i
\(43\) −5.90331 −0.900247 −0.450123 0.892966i \(-0.648620\pi\)
−0.450123 + 0.892966i \(0.648620\pi\)
\(44\) −2.52112 + 2.71226i −0.380073 + 0.408888i
\(45\) 3.08729 + 0.997971i 0.460226 + 0.148769i
\(46\) 6.70872 2.92342i 0.989146 0.431034i
\(47\) 3.82883i 0.558493i −0.960219 0.279246i \(-0.909915\pi\)
0.960219 0.279246i \(-0.0900846\pi\)
\(48\) 8.41649 0.615613i 1.21482 0.0888560i
\(49\) −2.30690 −0.329557
\(50\) −6.90925 1.50408i −0.977116 0.212709i
\(51\) −8.67247 0.674989i −1.21439 0.0945174i
\(52\) 8.32682 8.95812i 1.15472 1.24227i
\(53\) 6.98932 0.960056 0.480028 0.877253i \(-0.340626\pi\)
0.480028 + 0.877253i \(0.340626\pi\)
\(54\) −1.84624 4.23679i −0.251241 0.576554i
\(55\) 3.93940 + 1.27342i 0.531189 + 0.171707i
\(56\) −2.03149 + 5.78082i −0.271470 + 0.772494i
\(57\) −5.07219 −0.671828
\(58\) −4.36060 + 1.90019i −0.572575 + 0.249508i
\(59\) 1.35564i 0.176490i 0.996099 + 0.0882449i \(0.0281258\pi\)
−0.996099 + 0.0882449i \(0.971874\pi\)
\(60\) −4.59985 8.23783i −0.593838 1.06350i
\(61\) −3.71760 −0.475990 −0.237995 0.971266i \(-0.576490\pi\)
−0.237995 + 0.971266i \(0.576490\pi\)
\(62\) −0.413295 0.948438i −0.0524886 0.120452i
\(63\) −3.14343 −0.396035
\(64\) −6.24126 5.00466i −0.780158 0.625582i
\(65\) −13.0112 4.20587i −1.61384 0.521675i
\(66\) 2.20683 + 5.06428i 0.271642 + 0.623370i
\(67\) −11.7947 −1.44095 −0.720477 0.693478i \(-0.756077\pi\)
−0.720477 + 0.693478i \(0.756077\pi\)
\(68\) 5.58603 + 6.06599i 0.677406 + 0.735610i
\(69\) 10.9171i 1.31427i
\(70\) 6.81755 0.672353i 0.814853 0.0803615i
\(71\) 11.1457i 1.32275i 0.750057 + 0.661374i \(0.230026\pi\)
−0.750057 + 0.661374i \(0.769974\pi\)
\(72\) 1.36069 3.87198i 0.160359 0.456317i
\(73\) −4.82829 −0.565109 −0.282554 0.959251i \(-0.591182\pi\)
−0.282554 + 0.959251i \(0.591182\pi\)
\(74\) −6.10685 14.0141i −0.709907 1.62911i
\(75\) −6.17459 + 8.55278i −0.712980 + 0.987590i
\(76\) 3.52184 + 3.27365i 0.403983 + 0.375514i
\(77\) −4.01103 −0.457100
\(78\) −7.28878 16.7264i −0.825292 1.89390i
\(79\) 0.112435i 0.0126500i 0.999980 + 0.00632498i \(0.00201332\pi\)
−0.999980 + 0.00632498i \(0.997987\pi\)
\(80\) −2.12291 + 8.68868i −0.237349 + 0.971424i
\(81\) −11.2476 −1.24973
\(82\) 2.65489 + 6.09250i 0.293184 + 0.672804i
\(83\) 10.5584 1.15893 0.579465 0.814997i \(-0.303262\pi\)
0.579465 + 0.814997i \(0.303262\pi\)
\(84\) 6.69521 + 6.22339i 0.730507 + 0.679027i
\(85\) 3.50793 8.52610i 0.380488 0.924786i
\(86\) 7.65345 3.33510i 0.825293 0.359633i
\(87\) 7.09602i 0.760773i
\(88\) 1.73625 4.94067i 0.185085 0.526677i
\(89\) 10.0055 1.06058 0.530292 0.847815i \(-0.322082\pi\)
0.530292 + 0.847815i \(0.322082\pi\)
\(90\) −4.56638 + 0.450341i −0.481339 + 0.0474701i
\(91\) 13.2478 1.38874
\(92\) −7.04604 + 7.58023i −0.734600 + 0.790294i
\(93\) −1.54340 −0.160043
\(94\) 2.16311 + 4.96396i 0.223108 + 0.511993i
\(95\) 1.65352 5.11528i 0.169648 0.524817i
\(96\) −10.5639 + 5.55305i −1.07818 + 0.566756i
\(97\) −10.8895 −1.10566 −0.552831 0.833293i \(-0.686452\pi\)
−0.552831 + 0.833293i \(0.686452\pi\)
\(98\) 2.99082 1.30329i 0.302118 0.131652i
\(99\) 2.68658 0.270012
\(100\) 9.80735 1.95342i 0.980735 0.195342i
\(101\) 1.11209i 0.110657i −0.998468 0.0553287i \(-0.982379\pi\)
0.998468 0.0553287i \(-0.0176207\pi\)
\(102\) 11.6249 4.02444i 1.15104 0.398479i
\(103\) 9.49791i 0.935857i 0.883766 + 0.467928i \(0.154999\pi\)
−0.883766 + 0.467928i \(0.845001\pi\)
\(104\) −5.73453 + 16.3182i −0.562316 + 1.60013i
\(105\) 3.14343 9.72442i 0.306767 0.949006i
\(106\) −9.06142 + 3.94864i −0.880123 + 0.383526i
\(107\) 9.77953i 0.945423i 0.881217 + 0.472712i \(0.156725\pi\)
−0.881217 + 0.472712i \(0.843275\pi\)
\(108\) 4.78718 + 4.44982i 0.460646 + 0.428184i
\(109\) 17.5905 1.68486 0.842430 0.538806i \(-0.181124\pi\)
0.842430 + 0.538806i \(0.181124\pi\)
\(110\) −5.82673 + 0.574637i −0.555557 + 0.0547895i
\(111\) −22.8052 −2.16457
\(112\) −0.632132 8.64234i −0.0597308 0.816624i
\(113\) 12.1552 1.14346 0.571732 0.820441i \(-0.306272\pi\)
0.571732 + 0.820441i \(0.306272\pi\)
\(114\) 6.57593 2.86555i 0.615892 0.268384i
\(115\) 11.0099 + 3.55895i 1.02667 + 0.331874i
\(116\) 4.57985 4.92708i 0.425229 0.457468i
\(117\) −8.87332 −0.820339
\(118\) −0.765876 1.75755i −0.0705046 0.161795i
\(119\) −0.693101 + 8.90519i −0.0635365 + 0.816337i
\(120\) 10.6175 + 8.08137i 0.969245 + 0.737725i
\(121\) −7.57190 −0.688355
\(122\) 4.81975 2.10027i 0.436359 0.190150i
\(123\) 9.91435 0.893946
\(124\) 1.07165 + 0.996126i 0.0962368 + 0.0894548i
\(125\) −6.61254 9.01523i −0.591444 0.806346i
\(126\) 4.07536 1.77589i 0.363061 0.158209i
\(127\) 7.69908i 0.683183i 0.939849 + 0.341591i \(0.110966\pi\)
−0.939849 + 0.341591i \(0.889034\pi\)
\(128\) 10.9190 + 2.96235i 0.965112 + 0.261837i
\(129\) 12.4545i 1.09656i
\(130\) 19.2447 1.89793i 1.68787 0.166459i
\(131\) −8.54786 −0.746830 −0.373415 0.927664i \(-0.621813\pi\)
−0.373415 + 0.927664i \(0.621813\pi\)
\(132\) −5.72217 5.31892i −0.498051 0.462952i
\(133\) 5.20829i 0.451616i
\(134\) 15.2915 6.66348i 1.32098 0.575637i
\(135\) 2.24760 6.95311i 0.193443 0.598428i
\(136\) −10.6691 4.70851i −0.914869 0.403751i
\(137\) 9.56697i 0.817361i 0.912677 + 0.408681i \(0.134011\pi\)
−0.912677 + 0.408681i \(0.865989\pi\)
\(138\) 6.16766 + 14.1537i 0.525026 + 1.20484i
\(139\) 7.97287 0.676250 0.338125 0.941101i \(-0.390207\pi\)
0.338125 + 0.941101i \(0.390207\pi\)
\(140\) −8.45888 + 4.72328i −0.714906 + 0.399190i
\(141\) 8.07786 0.680279
\(142\) −6.29679 14.4500i −0.528415 1.21262i
\(143\) −11.3224 −0.946827
\(144\) 0.423401 + 5.78862i 0.0352834 + 0.482385i
\(145\) −7.15630 2.31328i −0.594299 0.192108i
\(146\) 6.25972 2.72776i 0.518058 0.225751i
\(147\) 4.86697i 0.401421i
\(148\) 15.8347 + 14.7188i 1.30160 + 1.20987i
\(149\) 21.9285i 1.79646i −0.439530 0.898228i \(-0.644855\pi\)
0.439530 0.898228i \(-0.355145\pi\)
\(150\) 3.17322 14.5768i 0.259092 1.19019i
\(151\) 14.6281 1.19042 0.595209 0.803571i \(-0.297069\pi\)
0.595209 + 0.803571i \(0.297069\pi\)
\(152\) −6.41542 2.25450i −0.520359 0.182864i
\(153\) 0.464238 5.96468i 0.0375314 0.482216i
\(154\) 5.20017 2.26605i 0.419042 0.182603i
\(155\) 0.503143 1.55651i 0.0404134 0.125022i
\(156\) 18.8993 + 17.5675i 1.51316 + 1.40652i
\(157\) −7.45137 −0.594684 −0.297342 0.954771i \(-0.596100\pi\)
−0.297342 + 0.954771i \(0.596100\pi\)
\(158\) −0.0635208 0.145769i −0.00505344 0.0115967i
\(159\) 14.7457i 1.16941i
\(160\) −2.15642 12.4639i −0.170480 0.985361i
\(161\) −11.2101 −0.883476
\(162\) 14.5821 6.35438i 1.14568 0.499247i
\(163\) 13.8521i 1.08498i −0.840063 0.542490i \(-0.817482\pi\)
0.840063 0.542490i \(-0.182518\pi\)
\(164\) −6.88397 6.39884i −0.537547 0.499665i
\(165\) −2.68658 + 8.31113i −0.209150 + 0.647021i
\(166\) −13.6886 + 5.96498i −1.06244 + 0.462972i
\(167\) 16.1778 1.25188 0.625938 0.779873i \(-0.284716\pi\)
0.625938 + 0.779873i \(0.284716\pi\)
\(168\) −12.1960 4.28593i −0.940946 0.330667i
\(169\) 24.3959 1.87661
\(170\) 0.268943 + 13.0356i 0.0206270 + 0.999787i
\(171\) 3.48851i 0.266773i
\(172\) −8.03827 + 8.64769i −0.612912 + 0.659380i
\(173\) 6.21909i 0.472829i 0.971652 + 0.236414i \(0.0759723\pi\)
−0.971652 + 0.236414i \(0.924028\pi\)
\(174\) −4.00892 9.19975i −0.303916 0.697432i
\(175\) 8.78228 + 6.34027i 0.663878 + 0.479280i
\(176\) 0.540262 + 7.38631i 0.0407238 + 0.556764i
\(177\) −2.86006 −0.214975
\(178\) −12.9718 + 5.65266i −0.972280 + 0.423685i
\(179\) 14.0992i 1.05383i 0.849919 + 0.526913i \(0.176651\pi\)
−0.849919 + 0.526913i \(0.823349\pi\)
\(180\) 5.66574 3.16365i 0.422299 0.235804i
\(181\) 18.0233 1.33966 0.669829 0.742515i \(-0.266367\pi\)
0.669829 + 0.742515i \(0.266367\pi\)
\(182\) −17.1753 + 7.48437i −1.27312 + 0.554778i
\(183\) 7.84319i 0.579785i
\(184\) 4.85247 13.8082i 0.357729 1.01795i
\(185\) 7.43444 22.9989i 0.546591 1.69092i
\(186\) 2.00096 0.871947i 0.146718 0.0639343i
\(187\) 0.592370 7.61096i 0.0433184 0.556569i
\(188\) −5.60881 5.21355i −0.409065 0.380237i
\(189\) 7.07954i 0.514961i
\(190\) 0.746162 + 7.56596i 0.0541322 + 0.548892i
\(191\) 3.47978 0.251788 0.125894 0.992044i \(-0.459820\pi\)
0.125894 + 0.992044i \(0.459820\pi\)
\(192\) 10.5586 13.1675i 0.761998 0.950281i
\(193\) 16.2989 1.17322 0.586610 0.809870i \(-0.300462\pi\)
0.586610 + 0.809870i \(0.300462\pi\)
\(194\) 14.1179 6.15207i 1.01361 0.441693i
\(195\) 8.87332 27.4502i 0.635432 1.96575i
\(196\) −3.14120 + 3.37935i −0.224371 + 0.241382i
\(197\) 17.1153i 1.21941i −0.792627 0.609707i \(-0.791287\pi\)
0.792627 0.609707i \(-0.208713\pi\)
\(198\) −3.48307 + 1.51780i −0.247531 + 0.107865i
\(199\) 19.0307i 1.34905i −0.738253 0.674524i \(-0.764349\pi\)
0.738253 0.674524i \(-0.235651\pi\)
\(200\) −11.6113 + 8.07325i −0.821044 + 0.570865i
\(201\) 24.8839i 1.75517i
\(202\) 0.628281 + 1.44179i 0.0442057 + 0.101444i
\(203\) 7.28643 0.511407
\(204\) −12.7977 + 11.7851i −0.896018 + 0.825122i
\(205\) −3.23205 + 9.99857i −0.225736 + 0.698331i
\(206\) −5.36588 12.3137i −0.373859 0.857938i
\(207\) 7.50848 0.521875
\(208\) −1.78439 24.3957i −0.123725 1.69154i
\(209\) 4.45135i 0.307906i
\(210\) 1.41849 + 14.3833i 0.0978853 + 0.992541i
\(211\) −3.28113 −0.225883 −0.112941 0.993602i \(-0.536027\pi\)
−0.112941 + 0.993602i \(0.536027\pi\)
\(212\) 9.51703 10.2386i 0.653632 0.703188i
\(213\) −23.5145 −1.61119
\(214\) −5.52499 12.6788i −0.377680 0.866708i
\(215\) 12.5603 + 4.06013i 0.856604 + 0.276898i
\(216\) −8.72036 3.06451i −0.593345 0.208513i
\(217\) 1.58481i 0.107584i
\(218\) −22.8054 + 9.93779i −1.54458 + 0.673072i
\(219\) 10.1865i 0.688337i
\(220\) 7.22952 4.03683i 0.487414 0.272163i
\(221\) −1.95650 + 25.1377i −0.131608 + 1.69094i
\(222\) 29.5662 12.8839i 1.98435 0.864710i
\(223\) 29.0341i 1.94427i −0.234424 0.972134i \(-0.575320\pi\)
0.234424 0.972134i \(-0.424680\pi\)
\(224\) 5.70206 + 10.8474i 0.380985 + 0.724771i
\(225\) −5.88236 4.24670i −0.392157 0.283114i
\(226\) −15.7588 + 6.86712i −1.04826 + 0.456794i
\(227\) 20.0978i 1.33394i −0.745085 0.666970i \(-0.767591\pi\)
0.745085 0.666970i \(-0.232409\pi\)
\(228\) −6.90657 + 7.43019i −0.457399 + 0.492076i
\(229\) 18.7378i 1.23823i 0.785302 + 0.619113i \(0.212508\pi\)
−0.785302 + 0.619113i \(0.787492\pi\)
\(230\) −16.2846 + 1.60600i −1.07377 + 0.105896i
\(231\) 8.46226i 0.556776i
\(232\) −3.15406 + 8.97520i −0.207074 + 0.589251i
\(233\) 4.14371 0.271464 0.135732 0.990746i \(-0.456661\pi\)
0.135732 + 0.990746i \(0.456661\pi\)
\(234\) 11.5040 5.01302i 0.752038 0.327711i
\(235\) −2.63336 + 8.14649i −0.171782 + 0.531418i
\(236\) 1.98587 + 1.84592i 0.129269 + 0.120159i
\(237\) −0.237210 −0.0154084
\(238\) −4.13244 11.9369i −0.267866 0.773751i
\(239\) 9.53014 0.616454 0.308227 0.951313i \(-0.400264\pi\)
0.308227 + 0.951313i \(0.400264\pi\)
\(240\) −18.3309 4.47880i −1.18325 0.289106i
\(241\) 1.10400i 0.0711151i −0.999368 0.0355576i \(-0.988679\pi\)
0.999368 0.0355576i \(-0.0113207\pi\)
\(242\) 9.81673 4.27778i 0.631043 0.274986i
\(243\) 13.9257i 0.893335i
\(244\) −5.06209 + 5.44587i −0.324067 + 0.348636i
\(245\) 4.90831 + 1.58662i 0.313581 + 0.101365i
\(246\) −12.8536 + 5.60115i −0.819517 + 0.357116i
\(247\) 14.7020i 0.935469i
\(248\) −1.95212 0.686014i −0.123960 0.0435619i
\(249\) 22.2754i 1.41165i
\(250\) 13.6661 + 7.95216i 0.864322 + 0.502939i
\(251\) 23.7570i 1.49953i 0.661706 + 0.749763i \(0.269833\pi\)
−0.661706 + 0.749763i \(0.730167\pi\)
\(252\) −4.28027 + 4.60477i −0.269631 + 0.290074i
\(253\) 9.58086 0.602343
\(254\) −4.34962 9.98160i −0.272920 0.626301i
\(255\) 17.9879 + 7.40083i 1.12645 + 0.463458i
\(256\) −15.8297 + 2.32814i −0.989357 + 0.145509i
\(257\) 9.30407i 0.580372i 0.956970 + 0.290186i \(0.0937171\pi\)
−0.956970 + 0.290186i \(0.906283\pi\)
\(258\) 7.03621 + 16.1468i 0.438055 + 1.00526i
\(259\) 23.4172i 1.45507i
\(260\) −23.8778 + 13.3330i −1.48084 + 0.826874i
\(261\) −4.88044 −0.302092
\(262\) 11.0820 4.82915i 0.684649 0.298346i
\(263\) 5.99547i 0.369697i 0.982767 + 0.184848i \(0.0591794\pi\)
−0.982767 + 0.184848i \(0.940821\pi\)
\(264\) 10.4235 + 3.66304i 0.641525 + 0.225444i
\(265\) −14.8709 4.80705i −0.913515 0.295295i
\(266\) −2.94245 6.75238i −0.180413 0.414015i
\(267\) 21.1091i 1.29186i
\(268\) −16.0603 + 17.2780i −0.981041 + 1.05542i
\(269\) −13.1391 −0.801106 −0.400553 0.916274i \(-0.631182\pi\)
−0.400553 + 0.916274i \(0.631182\pi\)
\(270\) 1.01424 + 10.2843i 0.0617249 + 0.625881i
\(271\) −9.00112 −0.546779 −0.273389 0.961903i \(-0.588145\pi\)
−0.273389 + 0.961903i \(0.588145\pi\)
\(272\) 16.4922 + 0.0768717i 0.999989 + 0.00466103i
\(273\) 27.9494i 1.69157i
\(274\) −5.40490 12.4033i −0.326522 0.749309i
\(275\) −7.50592 5.41882i −0.452624 0.326767i
\(276\) −15.9923 14.8653i −0.962626 0.894788i
\(277\) 23.8779i 1.43468i −0.696722 0.717342i \(-0.745359\pi\)
0.696722 0.717342i \(-0.254641\pi\)
\(278\) −10.3366 + 4.50431i −0.619946 + 0.270150i
\(279\) 1.06150i 0.0635506i
\(280\) 8.29822 10.9025i 0.495914 0.651546i
\(281\) 15.2045 0.907027 0.453513 0.891249i \(-0.350170\pi\)
0.453513 + 0.891249i \(0.350170\pi\)
\(282\) −10.4727 + 4.56362i −0.623639 + 0.271759i
\(283\) 23.8313i 1.41662i 0.705901 + 0.708310i \(0.250542\pi\)
−0.705901 + 0.708310i \(0.749458\pi\)
\(284\) 16.3272 + 15.1765i 0.968838 + 0.900562i
\(285\) 10.7919 + 3.48851i 0.639259 + 0.206641i
\(286\) 14.6791 6.39664i 0.867995 0.378241i
\(287\) 10.1804i 0.600929i
\(288\) −3.81923 7.26556i −0.225050 0.428127i
\(289\) −16.7953 2.63033i −0.987958 0.154725i
\(290\) 10.5848 1.04388i 0.621561 0.0612990i
\(291\) 22.9741i 1.34676i
\(292\) −6.57446 + 7.07291i −0.384741 + 0.413911i
\(293\) −13.4198 −0.783996 −0.391998 0.919966i \(-0.628216\pi\)
−0.391998 + 0.919966i \(0.628216\pi\)
\(294\) 2.74961 + 6.30986i 0.160361 + 0.367999i
\(295\) 0.932373 2.88436i 0.0542848 0.167934i
\(296\) −28.8445 10.1365i −1.67655 0.589174i
\(297\) 6.05064i 0.351094i
\(298\) 12.3886 + 28.4296i 0.717653 + 1.64688i
\(299\) −31.6439 −1.83001
\(300\) 4.12122 + 20.6910i 0.237939 + 1.19460i
\(301\) −12.7887 −0.737127
\(302\) −18.9649 + 8.26420i −1.09130 + 0.475551i
\(303\) 2.34623 0.134788
\(304\) 9.59107 0.701525i 0.550085 0.0402352i
\(305\) 7.90982 + 2.55686i 0.452915 + 0.146405i
\(306\) 2.76790 + 7.99528i 0.158230 + 0.457060i
\(307\) −29.0354 −1.65714 −0.828568 0.559888i \(-0.810844\pi\)
−0.828568 + 0.559888i \(0.810844\pi\)
\(308\) −5.46164 + 5.87572i −0.311206 + 0.334800i
\(309\) −20.0382 −1.13993
\(310\) 0.227046 + 2.30221i 0.0128954 + 0.130757i
\(311\) 3.67913i 0.208624i 0.994545 + 0.104312i \(0.0332641\pi\)
−0.994545 + 0.104312i \(0.966736\pi\)
\(312\) −34.4272 12.0984i −1.94906 0.684936i
\(313\) 14.4341 0.815866 0.407933 0.913012i \(-0.366250\pi\)
0.407933 + 0.913012i \(0.366250\pi\)
\(314\) 9.66046 4.20968i 0.545171 0.237566i
\(315\) 6.68818 + 2.16196i 0.376836 + 0.121813i
\(316\) 0.164705 + 0.153098i 0.00926539 + 0.00861244i
\(317\) 0.137217i 0.00770689i −0.999993 0.00385344i \(-0.998773\pi\)
0.999993 0.00385344i \(-0.00122659\pi\)
\(318\) −8.33062 19.1173i −0.467158 1.07204i
\(319\) −6.22746 −0.348671
\(320\) 9.83728 + 14.9408i 0.549921 + 0.835217i
\(321\) −20.6323 −1.15158
\(322\) 14.5335 6.33317i 0.809919 0.352934i
\(323\) −9.88277 0.769188i −0.549892 0.0427988i
\(324\) −15.3153 + 16.4765i −0.850852 + 0.915360i
\(325\) 24.7908 + 17.8974i 1.37514 + 0.992770i
\(326\) 7.82579 + 17.9588i 0.433430 + 0.994645i
\(327\) 37.1114i 2.05226i
\(328\) 12.5399 + 4.40676i 0.692399 + 0.243323i
\(329\) 8.29462i 0.457297i
\(330\) −1.21234 12.2929i −0.0667370 0.676702i
\(331\) 22.5043i 1.23695i −0.785806 0.618473i \(-0.787751\pi\)
0.785806 0.618473i \(-0.212249\pi\)
\(332\) 14.3768 15.4668i 0.789031 0.848851i
\(333\) 15.6848i 0.859520i
\(334\) −20.9740 + 9.13971i −1.14765 + 0.500103i
\(335\) 25.0953 + 8.11207i 1.37110 + 0.443210i
\(336\) 18.2331 1.33364i 0.994699 0.0727558i
\(337\) 12.8862 0.701955 0.350977 0.936384i \(-0.385849\pi\)
0.350977 + 0.936384i \(0.385849\pi\)
\(338\) −31.6285 + 13.7826i −1.72037 + 0.749674i
\(339\) 25.6443i 1.39281i
\(340\) −7.71320 16.7483i −0.418307 0.908306i
\(341\) 1.35448i 0.0733494i
\(342\) 1.97084 + 4.52273i 0.106571 + 0.244561i
\(343\) −20.1621 −1.08865
\(344\) 5.53581 15.7527i 0.298471 0.849329i
\(345\) −7.50848 + 23.2280i −0.404243 + 1.25055i
\(346\) −3.51350 8.06285i −0.188887 0.433462i
\(347\) 17.0015i 0.912687i −0.889804 0.456344i \(-0.849159\pi\)
0.889804 0.456344i \(-0.150841\pi\)
\(348\) 10.3949 + 9.66232i 0.557224 + 0.517955i
\(349\) 35.6065i 1.90597i −0.303015 0.952986i \(-0.597993\pi\)
0.303015 0.952986i \(-0.402007\pi\)
\(350\) −14.9679 3.25837i −0.800068 0.174167i
\(351\) 19.9842i 1.06668i
\(352\) −4.87336 9.27089i −0.259751 0.494140i
\(353\) 23.2325i 1.23654i −0.785965 0.618270i \(-0.787834\pi\)
0.785965 0.618270i \(-0.212166\pi\)
\(354\) 3.70798 1.61580i 0.197077 0.0858789i
\(355\) 7.66567 23.7143i 0.406852 1.25862i
\(356\) 13.6241 14.6570i 0.722074 0.776818i
\(357\) −18.7877 1.46227i −0.994349 0.0773914i
\(358\) −7.96542 18.2792i −0.420985 0.966085i
\(359\) −14.9651 −0.789826 −0.394913 0.918719i \(-0.629225\pi\)
−0.394913 + 0.918719i \(0.629225\pi\)
\(360\) −5.55813 + 7.30245i −0.292939 + 0.384873i
\(361\) 13.2200 0.695787
\(362\) −23.3666 + 10.1823i −1.22812 + 0.535171i
\(363\) 15.9748i 0.838459i
\(364\) 18.0389 19.4065i 0.945493 1.01718i
\(365\) 10.2730 + 3.32076i 0.537713 + 0.173817i
\(366\) 4.43104 + 10.1684i 0.231614 + 0.531513i
\(367\) −23.3931 −1.22111 −0.610556 0.791973i \(-0.709054\pi\)
−0.610556 + 0.791973i \(0.709054\pi\)
\(368\) 1.50993 + 20.6433i 0.0787103 + 1.07611i
\(369\) 6.81880i 0.354973i
\(370\) 3.35484 + 34.0175i 0.174410 + 1.76849i
\(371\) 15.1414 0.786100
\(372\) −2.10157 + 2.26090i −0.108961 + 0.117222i
\(373\) 32.4530 1.68035 0.840176 0.542313i \(-0.182451\pi\)
0.840176 + 0.542313i \(0.182451\pi\)
\(374\) 3.53185 + 10.2020i 0.182628 + 0.527534i
\(375\) 19.0198 13.9508i 0.982179 0.720415i
\(376\) 10.2171 + 3.59047i 0.526904 + 0.185165i
\(377\) 20.5682 1.05932
\(378\) −3.99961 9.17839i −0.205718 0.472086i
\(379\) 25.8746 1.32909 0.664545 0.747248i \(-0.268625\pi\)
0.664545 + 0.747248i \(0.268625\pi\)
\(380\) −5.24179 9.38747i −0.268898 0.481567i
\(381\) −16.2431 −0.832158
\(382\) −4.51143 + 1.96592i −0.230825 + 0.100585i
\(383\) 11.3405i 0.579472i 0.957107 + 0.289736i \(0.0935675\pi\)
−0.957107 + 0.289736i \(0.906433\pi\)
\(384\) −6.24980 + 23.0363i −0.318934 + 1.17557i
\(385\) 8.53415 + 2.75867i 0.434941 + 0.140595i
\(386\) −21.1310 + 9.20812i −1.07554 + 0.468681i
\(387\) 8.56583 0.435426
\(388\) −14.8277 + 15.9519i −0.752765 + 0.809836i
\(389\) 14.9099i 0.755961i −0.925814 0.377980i \(-0.876619\pi\)
0.925814 0.377980i \(-0.123381\pi\)
\(390\) 4.00414 + 40.6013i 0.202758 + 2.05593i
\(391\) 1.65556 21.2711i 0.0837252 1.07573i
\(392\) 2.16328 6.15585i 0.109262 0.310917i
\(393\) 18.0338i 0.909685i
\(394\) 9.66934 + 22.1894i 0.487134 + 1.11789i
\(395\) 0.0773298 0.239225i 0.00389088 0.0120367i
\(396\) 3.65820 3.93554i 0.183831 0.197769i
\(397\) 18.2959i 0.918247i 0.888372 + 0.459124i \(0.151836\pi\)
−0.888372 + 0.459124i \(0.848164\pi\)
\(398\) 10.7514 + 24.6726i 0.538921 + 1.23673i
\(399\) −10.9882 −0.550097
\(400\) 10.4927 17.0266i 0.524634 0.851328i
\(401\) 15.9420i 0.796108i 0.917362 + 0.398054i \(0.130314\pi\)
−0.917362 + 0.398054i \(0.869686\pi\)
\(402\) 14.0582 + 32.2611i 0.701161 + 1.60904i
\(403\) 4.47363i 0.222847i
\(404\) −1.62909 1.51429i −0.0810504 0.0753386i
\(405\) 23.9312 + 7.73578i 1.18915 + 0.384394i
\(406\) −9.44662 + 4.11650i −0.468828 + 0.204298i
\(407\) 20.0138i 0.992049i
\(408\) 9.93375 22.5091i 0.491794 1.11437i
\(409\) −9.75792 −0.482498 −0.241249 0.970463i \(-0.577557\pi\)
−0.241249 + 0.970463i \(0.577557\pi\)
\(410\) −1.45848 14.7888i −0.0720294 0.730366i
\(411\) −20.1839 −0.995597
\(412\) 13.9134 + 12.9329i 0.685463 + 0.637157i
\(413\) 2.93681i 0.144511i
\(414\) −9.73449 + 4.24194i −0.478424 + 0.208480i
\(415\) −22.4647 7.26173i −1.10275 0.356464i
\(416\) 16.0959 + 30.6201i 0.789164 + 1.50128i
\(417\) 16.8207i 0.823715i
\(418\) 2.51481 + 5.77103i 0.123003 + 0.282270i
\(419\) 0.671116 0.0327861 0.0163931 0.999866i \(-0.494782\pi\)
0.0163931 + 0.999866i \(0.494782\pi\)
\(420\) −9.96492 17.8461i −0.486238 0.870799i
\(421\) 26.6975i 1.30116i −0.759440 0.650578i \(-0.774527\pi\)
0.759440 0.650578i \(-0.225473\pi\)
\(422\) 4.25388 1.85369i 0.207076 0.0902362i
\(423\) 5.55572i 0.270128i
\(424\) −6.55420 + 18.6506i −0.318300 + 0.905756i
\(425\) −13.3277 + 15.7281i −0.646489 + 0.762923i
\(426\) 30.4858 13.2846i 1.47704 0.643642i
\(427\) −8.05365 −0.389743
\(428\) 14.3259 + 13.3163i 0.692470 + 0.643670i
\(429\) 23.8874i 1.15329i
\(430\) −18.5778 + 1.83216i −0.895900 + 0.0883545i
\(431\) 2.77459i 0.133647i −0.997765 0.0668236i \(-0.978714\pi\)
0.997765 0.0668236i \(-0.0212865\pi\)
\(432\) 13.0370 0.953571i 0.627241 0.0458787i
\(433\) 11.7652i 0.565399i −0.959208 0.282700i \(-0.908770\pi\)
0.959208 0.282700i \(-0.0912300\pi\)
\(434\) −0.895345 2.05466i −0.0429779 0.0986266i
\(435\) 4.88044 15.0980i 0.233999 0.723892i
\(436\) 23.9521 25.7680i 1.14710 1.23407i
\(437\) 12.4407i 0.595118i
\(438\) 5.75488 + 13.2064i 0.274979 + 0.631027i
\(439\) 31.3148i 1.49458i −0.664500 0.747288i \(-0.731356\pi\)
0.664500 0.747288i \(-0.268644\pi\)
\(440\) −7.09221 + 9.31796i −0.338108 + 0.444216i
\(441\) 3.34736 0.159398
\(442\) −11.6651 33.6955i −0.554852 1.60273i
\(443\) −34.7836 −1.65262 −0.826310 0.563215i \(-0.809564\pi\)
−0.826310 + 0.563215i \(0.809564\pi\)
\(444\) −31.0528 + 33.4071i −1.47370 + 1.58543i
\(445\) −21.2884 6.88151i −1.00917 0.326215i
\(446\) 16.4029 + 37.6418i 0.776702 + 1.78239i
\(447\) 46.2636 2.18819
\(448\) −13.5208 10.8419i −0.638798 0.512231i
\(449\) 19.6407i 0.926902i −0.886123 0.463451i \(-0.846611\pi\)
0.886123 0.463451i \(-0.153389\pi\)
\(450\) 10.0255 + 2.18245i 0.472605 + 0.102882i
\(451\) 8.70083i 0.409706i
\(452\) 16.5512 17.8060i 0.778501 0.837523i
\(453\) 30.8616i 1.45000i
\(454\) 11.3543 + 26.0562i 0.532886 + 1.22288i
\(455\) −28.1868 9.11143i −1.32142 0.427150i
\(456\) 4.75642 13.5349i 0.222740 0.633829i
\(457\) 3.47599i 0.162600i −0.996690 0.0812999i \(-0.974093\pi\)
0.996690 0.0812999i \(-0.0259072\pi\)
\(458\) −10.5860 24.2929i −0.494650 1.13513i
\(459\) −13.4335 1.04554i −0.627021 0.0488018i
\(460\) 20.2051 11.2822i 0.942067 0.526033i
\(461\) 4.83805i 0.225331i −0.993633 0.112665i \(-0.964061\pi\)
0.993633 0.112665i \(-0.0359388\pi\)
\(462\) 4.78079 + 10.9710i 0.222422 + 0.510419i
\(463\) 29.2405i 1.35892i −0.733711 0.679461i \(-0.762214\pi\)
0.733711 0.679461i \(-0.237786\pi\)
\(464\) −0.981437 13.4180i −0.0455621 0.622913i
\(465\) 3.28383 + 1.06150i 0.152284 + 0.0492260i
\(466\) −5.37219 + 2.34101i −0.248862 + 0.108445i
\(467\) −3.72931 −0.172572 −0.0862860 0.996270i \(-0.527500\pi\)
−0.0862860 + 0.996270i \(0.527500\pi\)
\(468\) −12.0824 + 12.9984i −0.558509 + 0.600852i
\(469\) −25.5516 −1.17986
\(470\) −1.18832 12.0494i −0.0548132 0.555796i
\(471\) 15.7205i 0.724362i
\(472\) −3.61747 1.27125i −0.166507 0.0585140i
\(473\) 10.9300 0.502564
\(474\) 0.307535 0.134013i 0.0141255 0.00615540i
\(475\) −7.03629 + 9.74637i −0.322847 + 0.447194i
\(476\) 12.1013 + 13.1411i 0.554664 + 0.602321i
\(477\) −10.1416 −0.464354
\(478\) −12.3555 + 5.38409i −0.565128 + 0.246263i
\(479\) 29.8166i 1.36235i −0.732118 0.681177i \(-0.761468\pi\)
0.732118 0.681177i \(-0.238532\pi\)
\(480\) 26.2957 4.54949i 1.20023 0.207655i
\(481\) 66.1023i 3.01400i
\(482\) 0.623711 + 1.43130i 0.0284093 + 0.0651941i
\(483\) 23.6504i 1.07613i
\(484\) −10.3103 + 11.0920i −0.468651 + 0.504182i
\(485\) 23.1693 + 7.48949i 1.05206 + 0.340080i
\(486\) 7.86739 + 18.0542i 0.356872 + 0.818957i
\(487\) −17.2766 −0.782878 −0.391439 0.920204i \(-0.628023\pi\)
−0.391439 + 0.920204i \(0.628023\pi\)
\(488\) 3.48616 9.92023i 0.157811 0.449068i
\(489\) 29.2244 1.32157
\(490\) −7.25983 + 0.715972i −0.327966 + 0.0323443i
\(491\) 12.7948i 0.577421i 0.957416 + 0.288710i \(0.0932265\pi\)
−0.957416 + 0.288710i \(0.906774\pi\)
\(492\) 13.4999 14.5234i 0.608623 0.654766i
\(493\) −1.07610 + 13.8260i −0.0484650 + 0.622694i
\(494\) −8.30598 19.0607i −0.373704 0.857582i
\(495\) −5.71616 1.84776i −0.256922 0.0830504i
\(496\) 2.91843 0.213464i 0.131041 0.00958483i
\(497\) 24.1455i 1.08307i
\(498\) −12.5846 28.8794i −0.563929 1.29411i
\(499\) −19.5725 −0.876183 −0.438092 0.898930i \(-0.644345\pi\)
−0.438092 + 0.898930i \(0.644345\pi\)
\(500\) −22.2103 2.58899i −0.993275 0.115783i
\(501\) 34.1310i 1.52486i
\(502\) −13.4216 30.8001i −0.599035 1.37468i
\(503\) 34.1869 1.52432 0.762160 0.647388i \(-0.224139\pi\)
0.762160 + 0.647388i \(0.224139\pi\)
\(504\) 2.94774 8.38809i 0.131303 0.373635i
\(505\) −0.764866 + 2.36616i −0.0340361 + 0.105293i
\(506\) −12.4213 + 5.41274i −0.552193 + 0.240626i
\(507\) 51.4692i 2.28583i
\(508\) 11.2783 + 10.4835i 0.500393 + 0.465129i
\(509\) 28.5269i 1.26443i −0.774791 0.632217i \(-0.782145\pi\)
0.774791 0.632217i \(-0.217855\pi\)
\(510\) −27.5019 + 0.567400i −1.21780 + 0.0251249i
\(511\) −10.4598 −0.462714
\(512\) 19.2074 11.9614i 0.848856 0.528625i
\(513\) −7.85671 −0.346882
\(514\) −5.25637 12.0624i −0.231848 0.532050i
\(515\) 6.53239 20.2084i 0.287851 0.890488i
\(516\) −18.2444 16.9587i −0.803166 0.746565i
\(517\) 7.08913i 0.311780i
\(518\) −13.2296 30.3596i −0.581276 1.33392i
\(519\) −13.1207 −0.575935
\(520\) 23.4243 30.7756i 1.02723 1.34960i
\(521\) 0.501445i 0.0219687i 0.999940 + 0.0109843i \(0.00349650\pi\)
−0.999940 + 0.0109843i \(0.996504\pi\)
\(522\) 6.32733 2.75722i 0.276940 0.120680i
\(523\) 1.90322 0.0832220 0.0416110 0.999134i \(-0.486751\pi\)
0.0416110 + 0.999134i \(0.486751\pi\)
\(524\) −11.6392 + 12.5217i −0.508462 + 0.547011i
\(525\) −13.3764 + 18.5284i −0.583792 + 0.808644i
\(526\) −3.38717 7.77293i −0.147687 0.338916i
\(527\) −3.00719 0.234053i −0.130995 0.0101955i
\(528\) −15.5832 + 1.13981i −0.678173 + 0.0496040i
\(529\) 3.77663 0.164201
\(530\) 21.9954 2.16921i 0.955421 0.0942245i
\(531\) 1.96707i 0.0853635i
\(532\) 7.62957 + 7.09190i 0.330784 + 0.307473i
\(533\) 28.7373i 1.24475i
\(534\) −11.9257 27.3672i −0.516074 1.18430i
\(535\) 6.72608 20.8076i 0.290794 0.899591i
\(536\) 11.0605 31.4736i 0.477739 1.35945i
\(537\) −29.7458 −1.28363
\(538\) 17.0344 7.42299i 0.734406 0.320028i
\(539\) 4.27125 0.183976
\(540\) −7.12507 12.7602i −0.306614 0.549112i
\(541\) 3.26662 0.140443 0.0702215 0.997531i \(-0.477629\pi\)
0.0702215 + 0.997531i \(0.477629\pi\)
\(542\) 11.6697 5.08522i 0.501255 0.218429i
\(543\) 38.0245i 1.63179i
\(544\) −21.4251 + 9.21769i −0.918593 + 0.395205i
\(545\) −37.4266 12.0982i −1.60318 0.518230i
\(546\) −15.7901 36.2354i −0.675754 1.55073i
\(547\) 19.2791i 0.824315i 0.911113 + 0.412157i \(0.135225\pi\)
−0.911113 + 0.412157i \(0.864775\pi\)
\(548\) 14.0145 + 13.0269i 0.598672 + 0.556482i
\(549\) 5.39432 0.230224
\(550\) 12.7926 + 2.78482i 0.545477 + 0.118745i
\(551\) 8.08631i 0.344488i
\(552\) 29.1318 + 10.2375i 1.23993 + 0.435736i
\(553\) 0.243575i 0.0103579i
\(554\) 13.4899 + 30.9569i 0.573131 + 1.31523i
\(555\) 48.5219 + 15.6848i 2.05964 + 0.665781i
\(556\) 10.8563 11.6794i 0.460410 0.495316i
\(557\) −5.98141 −0.253441 −0.126720 0.991938i \(-0.540445\pi\)
−0.126720 + 0.991938i \(0.540445\pi\)
\(558\) 0.599700 + 1.37620i 0.0253873 + 0.0582594i
\(559\) −36.1001 −1.52687
\(560\) −4.59899 + 18.8228i −0.194343 + 0.795408i
\(561\) 16.0572 + 1.24975i 0.677935 + 0.0527645i
\(562\) −19.7122 + 8.58986i −0.831508 + 0.362341i
\(563\) −15.0294 −0.633415 −0.316707 0.948523i \(-0.602577\pi\)
−0.316707 + 0.948523i \(0.602577\pi\)
\(564\) 10.9993 11.8332i 0.463152 0.498266i
\(565\) −25.8622 8.35998i −1.08803 0.351707i
\(566\) −13.4636 30.8964i −0.565916 1.29867i
\(567\) −24.3663 −1.02329
\(568\) −29.7417 10.4518i −1.24793 0.438548i
\(569\) 4.62940 0.194075 0.0970373 0.995281i \(-0.469063\pi\)
0.0970373 + 0.995281i \(0.469063\pi\)
\(570\) −15.9622 + 1.57421i −0.668584 + 0.0659364i
\(571\) 30.2968 1.26788 0.633941 0.773381i \(-0.281436\pi\)
0.633941 + 0.773381i \(0.281436\pi\)
\(572\) −15.4172 + 16.5861i −0.644626 + 0.693498i
\(573\) 7.34145i 0.306694i
\(574\) 5.75145 + 13.1985i 0.240061 + 0.550896i
\(575\) −20.9776 15.1445i −0.874826 0.631571i
\(576\) 9.05621 + 7.26187i 0.377342 + 0.302578i
\(577\) 2.37981i 0.0990727i 0.998772 + 0.0495364i \(0.0157744\pi\)
−0.998772 + 0.0495364i \(0.984226\pi\)
\(578\) 23.2605 6.07842i 0.967511 0.252829i
\(579\) 34.3865i 1.42905i
\(580\) −13.1331 + 7.33329i −0.545323 + 0.304498i
\(581\) 22.8732 0.948938
\(582\) 12.9793 + 29.7851i 0.538009 + 1.23463i
\(583\) −12.9408 −0.535953
\(584\) 4.52771 12.8841i 0.187358 0.533146i
\(585\) 18.8795 + 6.10282i 0.780570 + 0.252320i
\(586\) 17.3984 7.58160i 0.718721 0.313193i
\(587\) 15.6420 0.645614 0.322807 0.946465i \(-0.395374\pi\)
0.322807 + 0.946465i \(0.395374\pi\)
\(588\) −7.12956 6.62713i −0.294018 0.273298i
\(589\) −1.75879 −0.0724695
\(590\) 0.420739 + 4.26622i 0.0173216 + 0.175638i
\(591\) 36.1089 1.48532
\(592\) 43.1227 3.15415i 1.77233 0.129635i
\(593\) 19.7700i 0.811855i 0.913905 + 0.405928i \(0.133052\pi\)
−0.913905 + 0.405928i \(0.866948\pi\)
\(594\) 3.41833 + 7.84446i 0.140256 + 0.321862i
\(595\) 7.59942 18.4706i 0.311546 0.757220i
\(596\) −32.1229 29.8591i −1.31580 1.22308i
\(597\) 40.1498 1.64322
\(598\) 41.0253 17.8774i 1.67765 0.731059i
\(599\) 15.1584 0.619354 0.309677 0.950842i \(-0.399779\pi\)
0.309677 + 0.950842i \(0.399779\pi\)
\(600\) −17.0325 24.4969i −0.695348 1.00008i
\(601\) 25.8190i 1.05318i 0.850119 + 0.526590i \(0.176530\pi\)
−0.850119 + 0.526590i \(0.823470\pi\)
\(602\) 16.5801 7.22501i 0.675754 0.294470i
\(603\) 17.1144 0.696952
\(604\) 19.9184 21.4285i 0.810469 0.871914i
\(605\) 16.1105 + 5.20774i 0.654985 + 0.211725i
\(606\) −3.04181 + 1.32551i −0.123565 + 0.0538453i
\(607\) −0.167507 −0.00679890 −0.00339945 0.999994i \(-0.501082\pi\)
−0.00339945 + 0.999994i \(0.501082\pi\)
\(608\) −12.0382 + 6.32801i −0.488212 + 0.256635i
\(609\) 15.3725i 0.622925i
\(610\) −11.6993 + 1.15380i −0.473692 + 0.0467159i
\(611\) 23.4142i 0.947236i
\(612\) −8.10545 8.80189i −0.327644 0.355795i
\(613\) 15.2387 0.615485 0.307742 0.951470i \(-0.400427\pi\)
0.307742 + 0.951470i \(0.400427\pi\)
\(614\) 37.6434 16.4036i 1.51916 0.661997i
\(615\) −21.0944 6.81880i −0.850610 0.274961i
\(616\) 3.76133 10.7033i 0.151548 0.431246i
\(617\) 16.8431 0.678076 0.339038 0.940773i \(-0.389898\pi\)
0.339038 + 0.940773i \(0.389898\pi\)
\(618\) 25.9788 11.3206i 1.04502 0.455383i
\(619\) 46.2447 1.85873 0.929366 0.369159i \(-0.120354\pi\)
0.929366 + 0.369159i \(0.120354\pi\)
\(620\) −1.59500 2.85647i −0.0640569 0.114719i
\(621\) 16.9104i 0.678590i
\(622\) −2.07854 4.76987i −0.0833417 0.191254i
\(623\) 21.6755 0.868412
\(624\) 51.4687 3.76461i 2.06040 0.150705i
\(625\) 7.86888 + 23.7293i 0.314755 + 0.949173i
\(626\) −18.7134 + 8.15463i −0.747938 + 0.325924i
\(627\) 9.39122 0.375049
\(628\) −10.1462 + 10.9154i −0.404877 + 0.435573i
\(629\) −44.4342 3.45837i −1.77171 0.137894i
\(630\) −9.89241 + 0.975599i −0.394123 + 0.0388688i
\(631\) 38.9878 1.55208 0.776040 0.630684i \(-0.217225\pi\)
0.776040 + 0.630684i \(0.217225\pi\)
\(632\) −0.300028 0.105436i −0.0119345 0.00419401i
\(633\) 6.92236i 0.275139i
\(634\) 0.0775214 + 0.177898i 0.00307877 + 0.00706522i
\(635\) 5.29520 16.3811i 0.210134 0.650063i
\(636\) 21.6008 + 20.0785i 0.856526 + 0.796165i
\(637\) −14.1072 −0.558948
\(638\) 8.07370 3.51823i 0.319641 0.139288i
\(639\) 16.1726i 0.639778i
\(640\) −21.1946 13.8127i −0.837789 0.545994i
\(641\) 44.8043i 1.76966i −0.465910 0.884832i \(-0.654273\pi\)
0.465910 0.884832i \(-0.345727\pi\)
\(642\) 26.7491 11.6563i 1.05570 0.460038i
\(643\) 12.7986i 0.504727i −0.967633 0.252363i \(-0.918792\pi\)
0.967633 0.252363i \(-0.0812079\pi\)
\(644\) −15.2642 + 16.4215i −0.601495 + 0.647097i
\(645\) −8.56583 + 26.4990i −0.337279 + 1.04340i
\(646\) 13.2472 4.58608i 0.521206 0.180437i
\(647\) 2.44724i 0.0962109i 0.998842 + 0.0481054i \(0.0153183\pi\)
−0.998842 + 0.0481054i \(0.984682\pi\)
\(648\) 10.5474 30.0137i 0.414341 1.17905i
\(649\) 2.50999i 0.0985257i
\(650\) −42.2516 9.19777i −1.65724 0.360766i
\(651\) −3.34355 −0.131044
\(652\) −20.2918 18.8618i −0.794687 0.738683i
\(653\) 16.4974i 0.645591i −0.946469 0.322796i \(-0.895377\pi\)
0.946469 0.322796i \(-0.104623\pi\)
\(654\) −20.9662 48.1137i −0.819844 1.88139i
\(655\) 18.1870 + 5.87897i 0.710625 + 0.229710i
\(656\) −18.7472 + 1.37124i −0.731954 + 0.0535377i
\(657\) 7.00596 0.273328
\(658\) 4.68608 + 10.7537i 0.182682 + 0.419223i
\(659\) 47.2155i 1.83925i 0.392794 + 0.919627i \(0.371509\pi\)
−0.392794 + 0.919627i \(0.628491\pi\)
\(660\) 8.51668 + 15.2524i 0.331511 + 0.593700i
\(661\) 24.8352i 0.965977i 0.875627 + 0.482989i \(0.160449\pi\)
−0.875627 + 0.482989i \(0.839551\pi\)
\(662\) 12.7139 + 29.1761i 0.494139 + 1.13396i
\(663\) −53.0341 4.12771i −2.05967 0.160307i
\(664\) −9.90105 + 28.1744i −0.384235 + 1.09338i
\(665\) 3.58212 11.0815i 0.138908 0.429723i
\(666\) 8.86117 + 20.3348i 0.343363 + 0.787957i
\(667\) −17.4045 −0.673907
\(668\) 22.0286 23.6987i 0.852311 0.916929i
\(669\) 61.2546 2.36824
\(670\) −37.1181 + 3.66062i −1.43400 + 0.141422i
\(671\) 6.88318 0.265722
\(672\) −22.8852 + 12.0299i −0.882816 + 0.464063i
\(673\) −41.8116 −1.61172 −0.805859 0.592108i \(-0.798296\pi\)
−0.805859 + 0.592108i \(0.798296\pi\)
\(674\) −16.7065 + 7.28009i −0.643510 + 0.280419i
\(675\) −9.56430 + 13.2481i −0.368130 + 0.509918i
\(676\) 33.2188 35.7373i 1.27765 1.37451i
\(677\) 42.5535i 1.63547i 0.575598 + 0.817733i \(0.304769\pi\)
−0.575598 + 0.817733i \(0.695231\pi\)
\(678\) −14.4879 33.2470i −0.556403 1.27684i
\(679\) −23.5906 −0.905322
\(680\) 19.4619 + 17.3561i 0.746332 + 0.665574i
\(681\) 42.4013 1.62482
\(682\) 0.765221 + 1.75604i 0.0293018 + 0.0672424i
\(683\) 38.1275i 1.45891i 0.684030 + 0.729454i \(0.260226\pi\)
−0.684030 + 0.729454i \(0.739774\pi\)
\(684\) −5.11027 4.75014i −0.195396 0.181626i
\(685\) 6.57989 20.3553i 0.251405 0.777737i
\(686\) 26.1395 11.3906i 0.998009 0.434896i
\(687\) −39.5319 −1.50824
\(688\) 1.72256 + 23.5503i 0.0656718 + 0.897848i
\(689\) 42.7412 1.62831
\(690\) −3.38825 34.3563i −0.128988 1.30792i
\(691\) 33.7650 1.28448 0.642240 0.766503i \(-0.278005\pi\)
0.642240 + 0.766503i \(0.278005\pi\)
\(692\) 9.11028 + 8.46826i 0.346321 + 0.321915i
\(693\) 5.82010 0.221087
\(694\) 9.60505 + 22.0419i 0.364603 + 0.836698i
\(695\) −16.9636 5.48351i −0.643467 0.208002i
\(696\) −18.9354 6.65426i −0.717744 0.252229i
\(697\) 19.3173 + 1.50349i 0.731696 + 0.0569488i
\(698\) 20.1160 + 46.1626i 0.761403 + 1.74728i
\(699\) 8.74217i 0.330659i
\(700\) 21.2462 4.23180i 0.803032 0.159947i
\(701\) 17.0754i 0.644930i 0.946581 + 0.322465i \(0.104512\pi\)
−0.946581 + 0.322465i \(0.895488\pi\)
\(702\) −11.2902 25.9089i −0.426120 0.977868i
\(703\) −25.9878 −0.980149
\(704\) 11.5558 + 9.26618i 0.435525 + 0.349232i
\(705\) −17.1870 5.55572i −0.647300 0.209241i
\(706\) 13.1253 + 30.1202i 0.493977 + 1.13359i
\(707\) 2.40919i 0.0906069i
\(708\) −3.89441 + 4.18967i −0.146361 + 0.157457i
\(709\) 5.77448 0.216865 0.108433 0.994104i \(-0.465417\pi\)
0.108433 + 0.994104i \(0.465417\pi\)
\(710\) 3.45918 + 35.0755i 0.129821 + 1.31636i
\(711\) 0.163146i 0.00611846i
\(712\) −9.38264 + 26.6992i −0.351629 + 1.00060i
\(713\) 3.78552i 0.141769i
\(714\) 25.1837 8.71838i 0.942477 0.326277i
\(715\) 24.0903 + 7.78723i 0.900927 + 0.291226i
\(716\) 20.6538 + 19.1983i 0.771869 + 0.717473i
\(717\) 20.1062i 0.750879i
\(718\) 19.4017 8.45457i 0.724065 0.315522i
\(719\) 1.08606i 0.0405032i 0.999795 + 0.0202516i \(0.00644672\pi\)
−0.999795 + 0.0202516i \(0.993553\pi\)
\(720\) 3.08039 12.6075i 0.114799 0.469853i
\(721\) 20.5759i 0.766285i
\(722\) −17.1392 + 7.46867i −0.637856 + 0.277955i
\(723\) 2.32917 0.0866226
\(724\) 24.5415 26.4021i 0.912076 0.981225i
\(725\) 13.6352 + 9.84380i 0.506399 + 0.365590i
\(726\) 9.02502 + 20.7108i 0.334950 + 0.768649i
\(727\) 4.16080i 0.154315i 0.997019 + 0.0771577i \(0.0245845\pi\)
−0.997019 + 0.0771577i \(0.975416\pi\)
\(728\) −12.4230 + 35.3510i −0.460428 + 1.31019i
\(729\) −4.36309 −0.161596
\(730\) −15.1947 + 1.49851i −0.562381 + 0.0554625i
\(731\) 1.88870 24.2666i 0.0698560 0.897532i
\(732\) −11.4894 10.6797i −0.424660 0.394733i
\(733\) −4.33241 −0.160021 −0.0800106 0.996794i \(-0.525495\pi\)
−0.0800106 + 0.996794i \(0.525495\pi\)
\(734\) 30.3284 13.2160i 1.11944 0.487813i
\(735\) −3.34736 + 10.3553i −0.123469 + 0.381961i
\(736\) −13.6201 25.9103i −0.502043 0.955068i
\(737\) 21.8381 0.804416
\(738\) −3.85231 8.84035i −0.141805 0.325418i
\(739\) 15.8244i 0.582110i −0.956706 0.291055i \(-0.905994\pi\)
0.956706 0.291055i \(-0.0940062\pi\)
\(740\) −23.5677 42.2072i −0.866368 1.55157i
\(741\) −31.0176 −1.13946
\(742\) −19.6303 + 8.55416i −0.720650 + 0.314033i
\(743\) 18.2459 0.669377 0.334688 0.942329i \(-0.391369\pi\)
0.334688 + 0.942329i \(0.391369\pi\)
\(744\) 1.44731 4.11848i 0.0530611 0.150991i
\(745\) −15.0818 + 46.6566i −0.552555 + 1.70937i
\(746\) −42.0742 + 18.3344i −1.54045 + 0.671272i
\(747\) −15.3204 −0.560544
\(748\) −10.3426 11.2313i −0.378163 0.410655i
\(749\) 21.1860i 0.774118i
\(750\) −16.7770 + 28.8320i −0.612611 + 1.05280i
\(751\) 31.8283i 1.16143i −0.814106 0.580716i \(-0.802773\pi\)
0.814106 0.580716i \(-0.197227\pi\)
\(752\) −15.2745 + 1.11723i −0.557005 + 0.0407413i
\(753\) −50.1211 −1.82652
\(754\) −26.6660 + 11.6201i −0.971120 + 0.423179i
\(755\) −31.1237 10.0608i −1.13271 0.366150i
\(756\) 10.3707 + 9.63989i 0.377180 + 0.350599i
\(757\) −29.8842 −1.08616 −0.543079 0.839681i \(-0.682742\pi\)
−0.543079 + 0.839681i \(0.682742\pi\)
\(758\) −33.5456 + 14.6180i −1.21843 + 0.530949i
\(759\) 20.2132i 0.733691i
\(760\) 12.0993 + 9.20917i 0.438887 + 0.334052i
\(761\) −22.4335 −0.813212 −0.406606 0.913604i \(-0.633288\pi\)
−0.406606 + 0.913604i \(0.633288\pi\)
\(762\) 21.0586 9.17659i 0.762874 0.332433i
\(763\) 38.1072 1.37957
\(764\) 4.73826 5.09749i 0.171424 0.184421i
\(765\) −5.09008 + 12.3716i −0.184032 + 0.447295i
\(766\) −6.40685 14.7026i −0.231489 0.531225i
\(767\) 8.29006i 0.299337i
\(768\) −4.91178 33.3966i −0.177239 1.20510i
\(769\) −4.31813 −0.155716 −0.0778578 0.996964i \(-0.524808\pi\)
−0.0778578 + 0.996964i \(0.524808\pi\)
\(770\) −12.6228 + 1.24487i −0.454893 + 0.0448620i
\(771\) −19.6292 −0.706929
\(772\) 22.1935 23.8761i 0.798760 0.859318i
\(773\) −21.7080 −0.780784 −0.390392 0.920649i \(-0.627660\pi\)
−0.390392 + 0.920649i \(0.627660\pi\)
\(774\) −11.1053 + 4.83930i −0.399173 + 0.173945i
\(775\) −2.14104 + 2.96568i −0.0769085 + 0.106531i
\(776\) 10.2116 29.0581i 0.366575 1.04313i
\(777\) −49.4042 −1.77237
\(778\) 8.42339 + 19.3302i 0.301993 + 0.693020i
\(779\) 11.2980 0.404791
\(780\) −28.1291 50.3761i −1.00718 1.80376i
\(781\) 20.6363i 0.738426i
\(782\) 9.87084 + 28.5127i 0.352980 + 1.01961i
\(783\) 10.9916i 0.392807i
\(784\) 0.673141 + 9.20301i 0.0240408 + 0.328679i
\(785\) 15.8540 + 5.12484i 0.565855 + 0.182913i
\(786\) 10.1883 + 23.3802i 0.363403 + 0.833945i
\(787\) 39.6960i 1.41501i −0.706708 0.707505i \(-0.749821\pi\)
0.706708 0.707505i \(-0.250179\pi\)
\(788\) −25.0720 23.3051i −0.893152 0.830210i
\(789\) −12.6489 −0.450313
\(790\) 0.0348955 + 0.353835i 0.00124153 + 0.0125889i
\(791\) 26.3325 0.936274
\(792\) −2.51933 + 7.16902i −0.0895206 + 0.254740i
\(793\) −22.7340 −0.807306
\(794\) −10.3364 23.7201i −0.366824 0.841795i
\(795\) 10.1416 31.3739i 0.359687 1.11272i
\(796\) −27.8778 25.9132i −0.988102 0.918469i
\(797\) 39.4371 1.39693 0.698466 0.715643i \(-0.253866\pi\)
0.698466 + 0.715643i \(0.253866\pi\)
\(798\) 14.2458 6.20781i 0.504296 0.219754i
\(799\) 15.7391 + 1.22499i 0.556809 + 0.0433371i
\(800\) −3.98420 + 28.0023i −0.140863 + 0.990029i
\(801\) −14.5182 −0.512976
\(802\) −9.00652 20.6683i −0.318031 0.729824i
\(803\) 8.93964 0.315473
\(804\) −36.4521 33.8832i −1.28557 1.19497i
\(805\) 23.8513 + 7.70996i 0.840647 + 0.271740i
\(806\) −2.52739 5.79991i −0.0890236 0.204293i
\(807\) 27.7202i 0.975796i
\(808\) 2.96757 + 1.04286i 0.104399 + 0.0366877i
\(809\) 16.9543i 0.596082i 0.954553 + 0.298041i \(0.0963333\pi\)
−0.954553 + 0.298041i \(0.903667\pi\)
\(810\) −35.3963 + 3.49082i −1.24370 + 0.122655i
\(811\) 0.243229 0.00854091 0.00427045 0.999991i \(-0.498641\pi\)
0.00427045 + 0.999991i \(0.498641\pi\)
\(812\) 9.92160 10.6738i 0.348180 0.374577i
\(813\) 18.9901i 0.666010i
\(814\) 11.3069 + 25.9473i 0.396307 + 0.909452i
\(815\) −9.52707 + 29.4726i −0.333719 + 1.03238i
\(816\) −0.162180 + 34.7944i −0.00567742 + 1.21805i
\(817\) 14.1926i 0.496535i
\(818\) 12.6508 5.51277i 0.442326 0.192750i
\(819\) −19.2228 −0.671698
\(820\) 10.2459 + 18.3492i 0.357801 + 0.640782i
\(821\) 12.8973 0.450119 0.225060 0.974345i \(-0.427742\pi\)
0.225060 + 0.974345i \(0.427742\pi\)
\(822\) 26.1677 11.4030i 0.912704 0.397724i
\(823\) 54.7637 1.90894 0.954471 0.298305i \(-0.0964212\pi\)
0.954471 + 0.298305i \(0.0964212\pi\)
\(824\) −25.3447 8.90663i −0.882925 0.310277i
\(825\) 11.4323 15.8356i 0.398022 0.551324i
\(826\) −1.65916 3.80747i −0.0577296 0.132479i
\(827\) 6.47155i 0.225038i 0.993650 + 0.112519i \(0.0358919\pi\)
−0.993650 + 0.112519i \(0.964108\pi\)
\(828\) 10.2240 10.9991i 0.355307 0.382244i
\(829\) 11.7897i 0.409472i −0.978817 0.204736i \(-0.934366\pi\)
0.978817 0.204736i \(-0.0656336\pi\)
\(830\) 33.2272 3.27690i 1.15333 0.113743i
\(831\) 50.3762 1.74753
\(832\) −38.1667 30.6046i −1.32319 1.06102i
\(833\) 0.738066 9.48291i 0.0255725 0.328563i
\(834\) −9.50293 21.8075i −0.329060 0.755133i
\(835\) −34.4210 11.1266i −1.19119 0.385053i
\(836\) −6.52073 6.06120i −0.225524 0.209631i
\(837\) −2.39069 −0.0826342
\(838\) −0.870079 + 0.379149i −0.0300564 + 0.0130975i
\(839\) 25.5582i 0.882366i 0.897417 + 0.441183i \(0.145441\pi\)
−0.897417 + 0.441183i \(0.854559\pi\)
\(840\) 23.0014 + 17.5071i 0.793624 + 0.604053i
\(841\) −17.6872 −0.609904
\(842\) 15.0828 + 34.6124i 0.519789 + 1.19282i
\(843\) 32.0777i 1.10481i
\(844\) −4.46777 + 4.80650i −0.153787 + 0.165446i
\(845\) −51.9065 16.7788i −1.78564 0.577209i
\(846\) −3.13873 7.20281i −0.107912 0.247638i
\(847\) −16.4034 −0.563629
\(848\) −2.03945 27.8828i −0.0700349 0.957498i
\(849\) −50.2779 −1.72553
\(850\) 8.39331 27.9205i 0.287888 0.957664i
\(851\) 55.9348i 1.91742i
\(852\) −32.0186 + 34.4461i −1.09694 + 1.18010i
\(853\) 39.1503i 1.34048i 0.742144 + 0.670240i \(0.233809\pi\)
−0.742144 + 0.670240i \(0.766191\pi\)
\(854\) 10.4413 4.54994i 0.357294 0.155696i
\(855\) −2.39929 + 7.42238i −0.0820541 + 0.253840i
\(856\) −26.0962 9.17072i −0.891950 0.313449i
\(857\) 17.0651 0.582932 0.291466 0.956581i \(-0.405857\pi\)
0.291466 + 0.956581i \(0.405857\pi\)
\(858\) 13.4953 + 30.9692i 0.460721 + 1.05727i
\(859\) 21.7162i 0.740946i 0.928843 + 0.370473i \(0.120804\pi\)
−0.928843 + 0.370473i \(0.879196\pi\)
\(860\) 23.0504 12.8709i 0.786012 0.438895i
\(861\) 21.4780 0.731969
\(862\) 1.56751 + 3.59716i 0.0533897 + 0.122520i
\(863\) 6.55592i 0.223166i −0.993755 0.111583i \(-0.964408\pi\)
0.993755 0.111583i \(-0.0355921\pi\)
\(864\) −16.3633 + 8.60156i −0.556690 + 0.292631i
\(865\) 4.27731 13.2322i 0.145433 0.449907i
\(866\) 6.64679 + 15.2532i 0.225867 + 0.518324i
\(867\) 5.54932 35.4337i 0.188465 1.20339i
\(868\) 2.32157 + 2.15796i 0.0787992 + 0.0732461i
\(869\) 0.208175i 0.00706186i
\(870\) 2.20233 + 22.3312i 0.0746659 + 0.757100i
\(871\) −72.1274 −2.44394
\(872\) −16.4954 + 46.9393i −0.558604 + 1.58956i
\(873\) 15.8009 0.534780
\(874\) 7.02840 + 16.1289i 0.237739 + 0.545569i
\(875\) −14.3251 19.5302i −0.484278 0.660241i
\(876\) −14.9220 13.8704i −0.504169 0.468639i
\(877\) 9.71283i 0.327979i 0.986462 + 0.163990i \(0.0524363\pi\)
−0.986462 + 0.163990i \(0.947564\pi\)
\(878\) 17.6914 + 40.5987i 0.597057 + 1.37014i
\(879\) 28.3125i 0.954955i
\(880\) 3.93060 16.0872i 0.132500 0.542299i
\(881\) 18.1997i 0.613163i 0.951844 + 0.306581i \(0.0991851\pi\)
−0.951844 + 0.306581i \(0.900815\pi\)
\(882\) −4.33974 + 1.89110i −0.146127 + 0.0636768i
\(883\) 37.1100 1.24885 0.624426 0.781084i \(-0.285333\pi\)
0.624426 + 0.781084i \(0.285333\pi\)
\(884\) 34.1598 + 37.0949i 1.14892 + 1.24764i
\(885\) 6.08526 + 1.96707i 0.204554 + 0.0661223i
\(886\) 45.0959 19.6512i 1.51502 0.660193i
\(887\) −15.0022 −0.503726 −0.251863 0.967763i \(-0.581043\pi\)
−0.251863 + 0.967763i \(0.581043\pi\)
\(888\) 21.3855 60.8546i 0.717650 2.04215i
\(889\) 16.6789i 0.559394i
\(890\) 31.4875 3.10532i 1.05546 0.104091i
\(891\) 20.8251 0.697666
\(892\) −42.5317 39.5344i −1.42407 1.32371i
\(893\) 9.20517 0.308039
\(894\) −59.9792 + 26.1368i −2.00601 + 0.874145i
\(895\) 9.69705 29.9985i 0.324137 1.00274i
\(896\) 23.6544 + 6.41751i 0.790239 + 0.214394i
\(897\) 66.7606i 2.22907i
\(898\) 11.0961 + 25.4635i 0.370281 + 0.849728i
\(899\) 2.46055i 0.0820640i
\(900\) −14.2307 + 2.83445i −0.474356 + 0.0944818i
\(901\) −2.23615 + 28.7308i −0.0744971 + 0.957162i
\(902\) −4.91557 11.2803i −0.163670 0.375594i
\(903\) 26.9808i 0.897866i
\(904\) −11.3985 + 32.4355i −0.379108 + 1.07879i
\(905\) −38.3475 12.3959i −1.27471 0.412053i
\(906\) −17.4354 40.0110i −0.579251 1.32928i
\(907\) 23.7320i 0.788009i 0.919108 + 0.394005i \(0.128911\pi\)
−0.919108 + 0.394005i \(0.871089\pi\)
\(908\) −29.4411 27.3663i −0.977036 0.908182i
\(909\) 1.61367i 0.0535221i
\(910\) 41.6908 4.11159i 1.38204 0.136298i
\(911\) 39.2283i 1.29969i −0.760067 0.649845i \(-0.774834\pi\)
0.760067 0.649845i \(-0.225166\pi\)
\(912\) 1.48004 + 20.2347i 0.0490090 + 0.670038i
\(913\) −19.5489 −0.646974
\(914\) 1.96377 + 4.50650i 0.0649558 + 0.149062i
\(915\) −5.39432 + 16.6877i −0.178331 + 0.551678i
\(916\) 27.4487 + 25.5144i 0.906931 + 0.843018i
\(917\) −18.5177 −0.611509
\(918\) 18.0067 6.23378i 0.594311 0.205745i
\(919\) −14.5875 −0.481198 −0.240599 0.970625i \(-0.577344\pi\)
−0.240599 + 0.970625i \(0.577344\pi\)
\(920\) −19.8213 + 26.0419i −0.653490 + 0.858575i
\(921\) 61.2572i 2.01849i
\(922\) 2.73328 + 6.27238i 0.0900157 + 0.206570i
\(923\) 68.1582i 2.24346i
\(924\) −12.3963 11.5227i −0.407807 0.379068i
\(925\) −31.6360 + 43.8209i −1.04019 + 1.44082i
\(926\) 16.5195 + 37.9094i 0.542866 + 1.24578i
\(927\) 13.7817i 0.452650i
\(928\) 8.85292 + 16.8415i 0.290611 + 0.552848i
\(929\) 18.3897i 0.603348i 0.953411 + 0.301674i \(0.0975454\pi\)
−0.953411 + 0.301674i \(0.902455\pi\)
\(930\) −4.85708 + 0.479010i −0.159270 + 0.0157074i
\(931\) 5.54618i 0.181769i
\(932\) 5.64230 6.07008i 0.184820 0.198832i
\(933\) −7.76202 −0.254117
\(934\) 4.83493 2.10689i 0.158204 0.0689395i
\(935\) −6.49497 + 15.7862i −0.212408 + 0.516263i
\(936\) 8.32092 23.6780i 0.271978 0.773940i
\(937\) 31.7597i 1.03754i 0.854912 + 0.518772i \(0.173611\pi\)
−0.854912 + 0.518772i \(0.826389\pi\)
\(938\) 33.1268 14.4355i 1.08163 0.471335i
\(939\) 30.4524i 0.993775i
\(940\) 8.34796 + 14.9503i 0.272280 + 0.487624i
\(941\) −4.49157 −0.146421 −0.0732105 0.997317i \(-0.523324\pi\)
−0.0732105 + 0.997317i \(0.523324\pi\)
\(942\) 8.88135 + 20.3811i 0.289370 + 0.664052i
\(943\) 24.3171i 0.791874i
\(944\) 5.40813 0.395570i 0.176020 0.0128747i
\(945\) 4.86911 15.0629i 0.158392 0.489997i
\(946\) −14.1704 + 6.17497i −0.460721 + 0.200766i
\(947\) 39.2638i 1.27590i −0.770077 0.637951i \(-0.779782\pi\)
0.770077 0.637951i \(-0.220218\pi\)
\(948\) −0.322998 + 0.347486i −0.0104905 + 0.0112858i
\(949\) −29.5261 −0.958457
\(950\) 3.61606 16.6110i 0.117321 0.538933i
\(951\) 0.289493 0.00938746
\(952\) −23.1131 10.2003i −0.749100 0.330594i
\(953\) 16.3843i 0.530739i 0.964147 + 0.265370i \(0.0854940\pi\)
−0.964147 + 0.265370i \(0.914506\pi\)
\(954\) 13.1483 5.72956i 0.425692 0.185501i
\(955\) −7.40382 2.39330i −0.239582 0.0774452i
\(956\) 12.9768 13.9606i 0.419698 0.451518i
\(957\) 13.1384i 0.424703i
\(958\) 16.8450 + 38.6562i 0.544237 + 1.24893i
\(959\) 20.7255i 0.669260i
\(960\) −31.5213 + 20.7541i −1.01735 + 0.669837i
\(961\) 30.4648 0.982736
\(962\) −37.3447 85.6994i −1.20404 2.76306i
\(963\) 14.1903i 0.457277i
\(964\) −1.61724 1.50327i −0.0520879 0.0484171i
\(965\) −34.6786 11.2099i −1.11634 0.360860i
\(966\) 13.3614 + 30.6619i 0.429895 + 0.986531i
\(967\) 33.3204i 1.07151i 0.844373 + 0.535756i \(0.179973\pi\)
−0.844373 + 0.535756i \(0.820027\pi\)
\(968\) 7.10052 20.2053i 0.228219 0.649422i
\(969\) 1.62279 20.8501i 0.0521315 0.669802i
\(970\) −34.2694 + 3.37968i −1.10032 + 0.108515i
\(971\) 55.2049i 1.77161i −0.464058 0.885805i \(-0.653607\pi\)
0.464058 0.885805i \(-0.346393\pi\)
\(972\) −20.3996 18.9620i −0.654318 0.608207i
\(973\) 17.2721 0.553718
\(974\) 22.3986 9.76049i 0.717696 0.312746i
\(975\) −37.7590 + 52.3022i −1.20925 + 1.67501i
\(976\) 1.08478 + 14.8308i 0.0347229 + 0.474722i
\(977\) 30.9280i 0.989476i −0.869042 0.494738i \(-0.835264\pi\)
0.869042 0.494738i \(-0.164736\pi\)
\(978\) −37.8884 + 16.5104i −1.21154 + 0.527945i
\(979\) −18.5253 −0.592072
\(980\) 9.00765 5.02970i 0.287739 0.160668i
\(981\) −25.5241 −0.814923
\(982\) −7.22847 16.5880i −0.230670 0.529345i
\(983\) 42.0498 1.34118 0.670590 0.741828i \(-0.266041\pi\)
0.670590 + 0.741828i \(0.266041\pi\)
\(984\) −9.29714 + 26.4559i −0.296382 + 0.843385i
\(985\) −11.7714 + 36.4156i −0.375068 + 1.16030i
\(986\) −6.41595 18.5330i −0.204325 0.590209i
\(987\) 17.4995 0.557016
\(988\) 21.5369 + 20.0191i 0.685179 + 0.636893i
\(989\) 30.5474 0.971349
\(990\) 8.45471 0.833811i 0.268708 0.0265003i
\(991\) 15.3276i 0.486898i −0.969914 0.243449i \(-0.921721\pi\)
0.969914 0.243449i \(-0.0782788\pi\)
\(992\) −3.66305 + 1.92553i −0.116302 + 0.0611355i
\(993\) 47.4783 1.50668
\(994\) −13.6411 31.3038i −0.432669 0.992897i
\(995\) −13.0887 + 40.4909i −0.414941 + 1.28365i
\(996\) 32.6310 + 30.3314i 1.03395 + 0.961088i
\(997\) 17.8287i 0.564639i 0.959320 + 0.282320i \(0.0911039\pi\)
−0.959320 + 0.282320i \(0.908896\pi\)
\(998\) 25.3750 11.0575i 0.803233 0.350020i
\(999\) −35.3248 −1.11763
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.b.509.8 yes 40
5.4 even 2 inner 680.2.h.b.509.33 yes 40
8.5 even 2 inner 680.2.h.b.509.35 yes 40
17.16 even 2 inner 680.2.h.b.509.7 yes 40
40.29 even 2 inner 680.2.h.b.509.6 yes 40
85.84 even 2 inner 680.2.h.b.509.34 yes 40
136.101 even 2 inner 680.2.h.b.509.36 yes 40
680.509 even 2 inner 680.2.h.b.509.5 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.b.509.5 40 680.509 even 2 inner
680.2.h.b.509.6 yes 40 40.29 even 2 inner
680.2.h.b.509.7 yes 40 17.16 even 2 inner
680.2.h.b.509.8 yes 40 1.1 even 1 trivial
680.2.h.b.509.33 yes 40 5.4 even 2 inner
680.2.h.b.509.34 yes 40 85.84 even 2 inner
680.2.h.b.509.35 yes 40 8.5 even 2 inner
680.2.h.b.509.36 yes 40 136.101 even 2 inner