Properties

Label 680.2.h.b.509.35
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.35
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.b.509.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.29647 + 0.564954i) q^{2} -2.10974i q^{3} +(1.36165 + 1.46489i) q^{4} +(2.12767 + 0.687771i) q^{5} +(1.19191 - 2.73521i) q^{6} +2.16636 q^{7} +(0.937746 + 2.66845i) q^{8} -1.45102 q^{9} +(2.36989 + 2.09371i) q^{10} +1.85151 q^{11} +(3.09054 - 2.87274i) q^{12} -6.11522 q^{13} +(2.80861 + 1.22389i) q^{14} +(1.45102 - 4.48884i) q^{15} +(-0.291795 + 3.98934i) q^{16} +(-0.319939 + 4.11067i) q^{17} +(-1.88120 - 0.819760i) q^{18} -2.40417i q^{19} +(1.88964 + 4.05330i) q^{20} -4.57046i q^{21} +(2.40042 + 1.04602i) q^{22} -5.17461 q^{23} +(5.62975 - 1.97840i) q^{24} +(4.05394 + 2.92670i) q^{25} +(-7.92819 - 3.45482i) q^{26} -3.26795i q^{27} +(2.94983 + 3.17347i) q^{28} -3.36345 q^{29} +(4.41719 - 4.99987i) q^{30} +0.731556i q^{31} +(-2.63210 + 5.00720i) q^{32} -3.90622i q^{33} +(-2.73713 + 5.14860i) q^{34} +(4.60929 + 1.48996i) q^{35} +(-1.97579 - 2.12558i) q^{36} -10.8095i q^{37} +(1.35825 - 3.11693i) q^{38} +12.9016i q^{39} +(0.159928 + 6.32253i) q^{40} -4.69931i q^{41} +(2.58210 - 5.92545i) q^{42} +5.90331 q^{43} +(2.52112 + 2.71226i) q^{44} +(-3.08729 - 0.997971i) q^{45} +(-6.70872 - 2.92342i) q^{46} -3.82883i q^{47} +(8.41649 + 0.615613i) q^{48} -2.30690 q^{49} +(3.60235 + 6.08466i) q^{50} +(8.67247 + 0.674989i) q^{51} +(-8.32682 - 8.95812i) q^{52} -6.98932 q^{53} +(1.84624 - 4.23679i) q^{54} +(3.93940 + 1.27342i) q^{55} +(2.03149 + 5.78082i) q^{56} -5.07219 q^{57} +(-4.36060 - 1.90019i) q^{58} -1.35564i q^{59} +(8.55143 - 3.98666i) q^{60} +3.71760 q^{61} +(-0.413295 + 0.948438i) q^{62} -3.14343 q^{63} +(-6.24126 + 5.00466i) q^{64} +(-13.0112 - 4.20587i) q^{65} +(2.20683 - 5.06428i) q^{66} +11.7947 q^{67} +(-6.45732 + 5.12864i) q^{68} +10.9171i q^{69} +(5.13403 + 4.53572i) q^{70} +11.1457i q^{71} +(-1.36069 - 3.87198i) q^{72} -4.82829 q^{73} +(6.10685 - 14.0141i) q^{74} +(6.17459 - 8.55278i) q^{75} +(3.52184 - 3.27365i) q^{76} +4.01103 q^{77} +(-7.28878 + 16.7264i) q^{78} +0.112435i q^{79} +(-3.36460 + 8.28731i) q^{80} -11.2476 q^{81} +(2.65489 - 6.09250i) q^{82} -10.5584 q^{83} +(6.69521 - 6.22339i) q^{84} +(-3.50793 + 8.52610i) q^{85} +(7.65345 + 3.33510i) q^{86} +7.09602i q^{87} +(1.73625 + 4.94067i) q^{88} +10.0055 q^{89} +(-3.43877 - 3.03801i) q^{90} -13.2478 q^{91} +(-7.04604 - 7.58023i) q^{92} +1.54340 q^{93} +(2.16311 - 4.96396i) q^{94} +(1.65352 - 5.11528i) q^{95} +(10.5639 + 5.55305i) q^{96} -10.8895 q^{97} +(-2.99082 - 1.30329i) q^{98} -2.68658 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{4} - 56 q^{9} + 56 q^{15} - 4 q^{16} - 36 q^{26} - 28 q^{30} + 24 q^{34} + 88 q^{36} + 8 q^{49} - 16 q^{50} - 88 q^{55} - 88 q^{60} - 132 q^{64} + 208 q^{66} + 72 q^{70} - 20 q^{76} - 56 q^{81}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.29647 + 0.564954i 0.916741 + 0.399483i
\(3\) 2.10974i 1.21806i −0.793147 0.609031i \(-0.791559\pi\)
0.793147 0.609031i \(-0.208441\pi\)
\(4\) 1.36165 + 1.46489i 0.680827 + 0.732444i
\(5\) 2.12767 + 0.687771i 0.951522 + 0.307581i
\(6\) 1.19191 2.73521i 0.486594 1.11665i
\(7\) 2.16636 0.818806 0.409403 0.912354i \(-0.365737\pi\)
0.409403 + 0.912354i \(0.365737\pi\)
\(8\) 0.937746 + 2.66845i 0.331543 + 0.943440i
\(9\) −1.45102 −0.483674
\(10\) 2.36989 + 2.09371i 0.749426 + 0.662088i
\(11\) 1.85151 0.558252 0.279126 0.960255i \(-0.409955\pi\)
0.279126 + 0.960255i \(0.409955\pi\)
\(12\) 3.09054 2.87274i 0.892162 0.829289i
\(13\) −6.11522 −1.69606 −0.848029 0.529950i \(-0.822211\pi\)
−0.848029 + 0.529950i \(0.822211\pi\)
\(14\) 2.80861 + 1.22389i 0.750633 + 0.327099i
\(15\) 1.45102 4.48884i 0.374652 1.15901i
\(16\) −0.291795 + 3.98934i −0.0729487 + 0.997336i
\(17\) −0.319939 + 4.11067i −0.0775965 + 0.996985i
\(18\) −1.88120 0.819760i −0.443404 0.193219i
\(19\) 2.40417i 0.551555i −0.961222 0.275777i \(-0.911065\pi\)
0.961222 0.275777i \(-0.0889353\pi\)
\(20\) 1.88964 + 4.05330i 0.422536 + 0.906346i
\(21\) 4.57046i 0.997356i
\(22\) 2.40042 + 1.04602i 0.511772 + 0.223012i
\(23\) −5.17461 −1.07898 −0.539491 0.841992i \(-0.681383\pi\)
−0.539491 + 0.841992i \(0.681383\pi\)
\(24\) 5.62975 1.97840i 1.14917 0.403840i
\(25\) 4.05394 + 2.92670i 0.810788 + 0.585340i
\(26\) −7.92819 3.45482i −1.55485 0.677546i
\(27\) 3.26795i 0.628917i
\(28\) 2.94983 + 3.17347i 0.557465 + 0.599730i
\(29\) −3.36345 −0.624577 −0.312288 0.949987i \(-0.601096\pi\)
−0.312288 + 0.949987i \(0.601096\pi\)
\(30\) 4.41719 4.99987i 0.806464 0.912847i
\(31\) 0.731556i 0.131391i 0.997840 + 0.0656957i \(0.0209266\pi\)
−0.997840 + 0.0656957i \(0.979073\pi\)
\(32\) −2.63210 + 5.00720i −0.465293 + 0.885157i
\(33\) 3.90622i 0.679985i
\(34\) −2.73713 + 5.14860i −0.469414 + 0.882978i
\(35\) 4.60929 + 1.48996i 0.779112 + 0.251849i
\(36\) −1.97579 2.12558i −0.329298 0.354264i
\(37\) 10.8095i 1.77706i −0.458814 0.888532i \(-0.651726\pi\)
0.458814 0.888532i \(-0.348274\pi\)
\(38\) 1.35825 3.11693i 0.220337 0.505633i
\(39\) 12.9016i 2.06590i
\(40\) 0.159928 + 6.32253i 0.0252868 + 0.999680i
\(41\) 4.69931i 0.733909i −0.930239 0.366955i \(-0.880400\pi\)
0.930239 0.366955i \(-0.119600\pi\)
\(42\) 2.58210 5.92545i 0.398426 0.914317i
\(43\) 5.90331 0.900247 0.450123 0.892966i \(-0.351380\pi\)
0.450123 + 0.892966i \(0.351380\pi\)
\(44\) 2.52112 + 2.71226i 0.380073 + 0.408888i
\(45\) −3.08729 0.997971i −0.460226 0.148769i
\(46\) −6.70872 2.92342i −0.989146 0.431034i
\(47\) 3.82883i 0.558493i −0.960219 0.279246i \(-0.909915\pi\)
0.960219 0.279246i \(-0.0900846\pi\)
\(48\) 8.41649 + 0.615613i 1.21482 + 0.0888560i
\(49\) −2.30690 −0.329557
\(50\) 3.60235 + 6.08466i 0.509450 + 0.860501i
\(51\) 8.67247 + 0.674989i 1.21439 + 0.0945174i
\(52\) −8.32682 8.95812i −1.15472 1.24227i
\(53\) −6.98932 −0.960056 −0.480028 0.877253i \(-0.659374\pi\)
−0.480028 + 0.877253i \(0.659374\pi\)
\(54\) 1.84624 4.23679i 0.251241 0.576554i
\(55\) 3.93940 + 1.27342i 0.531189 + 0.171707i
\(56\) 2.03149 + 5.78082i 0.271470 + 0.772494i
\(57\) −5.07219 −0.671828
\(58\) −4.36060 1.90019i −0.572575 0.249508i
\(59\) 1.35564i 0.176490i −0.996099 0.0882449i \(-0.971874\pi\)
0.996099 0.0882449i \(-0.0281258\pi\)
\(60\) 8.55143 3.98666i 1.10399 0.514675i
\(61\) 3.71760 0.475990 0.237995 0.971266i \(-0.423510\pi\)
0.237995 + 0.971266i \(0.423510\pi\)
\(62\) −0.413295 + 0.948438i −0.0524886 + 0.120452i
\(63\) −3.14343 −0.396035
\(64\) −6.24126 + 5.00466i −0.780158 + 0.625582i
\(65\) −13.0112 4.20587i −1.61384 0.521675i
\(66\) 2.20683 5.06428i 0.271642 0.623370i
\(67\) 11.7947 1.44095 0.720477 0.693478i \(-0.243923\pi\)
0.720477 + 0.693478i \(0.243923\pi\)
\(68\) −6.45732 + 5.12864i −0.783066 + 0.621939i
\(69\) 10.9171i 1.31427i
\(70\) 5.13403 + 4.53572i 0.613634 + 0.542122i
\(71\) 11.1457i 1.32275i 0.750057 + 0.661374i \(0.230026\pi\)
−0.750057 + 0.661374i \(0.769974\pi\)
\(72\) −1.36069 3.87198i −0.160359 0.456317i
\(73\) −4.82829 −0.565109 −0.282554 0.959251i \(-0.591182\pi\)
−0.282554 + 0.959251i \(0.591182\pi\)
\(74\) 6.10685 14.0141i 0.709907 1.62911i
\(75\) 6.17459 8.55278i 0.712980 0.987590i
\(76\) 3.52184 3.27365i 0.403983 0.375514i
\(77\) 4.01103 0.457100
\(78\) −7.28878 + 16.7264i −0.825292 + 1.89390i
\(79\) 0.112435i 0.0126500i 0.999980 + 0.00632498i \(0.00201332\pi\)
−0.999980 + 0.00632498i \(0.997987\pi\)
\(80\) −3.36460 + 8.28731i −0.376174 + 0.926549i
\(81\) −11.2476 −1.24973
\(82\) 2.65489 6.09250i 0.293184 0.672804i
\(83\) −10.5584 −1.15893 −0.579465 0.814997i \(-0.696738\pi\)
−0.579465 + 0.814997i \(0.696738\pi\)
\(84\) 6.69521 6.22339i 0.730507 0.679027i
\(85\) −3.50793 + 8.52610i −0.380488 + 0.924786i
\(86\) 7.65345 + 3.33510i 0.825293 + 0.359633i
\(87\) 7.09602i 0.760773i
\(88\) 1.73625 + 4.94067i 0.185085 + 0.526677i
\(89\) 10.0055 1.06058 0.530292 0.847815i \(-0.322082\pi\)
0.530292 + 0.847815i \(0.322082\pi\)
\(90\) −3.43877 3.03801i −0.362478 0.320235i
\(91\) −13.2478 −1.38874
\(92\) −7.04604 7.58023i −0.734600 0.790294i
\(93\) 1.54340 0.160043
\(94\) 2.16311 4.96396i 0.223108 0.511993i
\(95\) 1.65352 5.11528i 0.169648 0.524817i
\(96\) 10.5639 + 5.55305i 1.07818 + 0.566756i
\(97\) −10.8895 −1.10566 −0.552831 0.833293i \(-0.686452\pi\)
−0.552831 + 0.833293i \(0.686452\pi\)
\(98\) −2.99082 1.30329i −0.302118 0.131652i
\(99\) −2.68658 −0.270012
\(100\) 1.23278 + 9.92372i 0.123278 + 0.992372i
\(101\) 1.11209i 0.110657i 0.998468 + 0.0553287i \(0.0176207\pi\)
−0.998468 + 0.0553287i \(0.982379\pi\)
\(102\) 10.8622 + 5.77465i 1.07552 + 0.571775i
\(103\) 9.49791i 0.935857i 0.883766 + 0.467928i \(0.154999\pi\)
−0.883766 + 0.467928i \(0.845001\pi\)
\(104\) −5.73453 16.3182i −0.562316 1.60013i
\(105\) 3.14343 9.72442i 0.306767 0.949006i
\(106\) −9.06142 3.94864i −0.880123 0.383526i
\(107\) 9.77953i 0.945423i −0.881217 0.472712i \(-0.843275\pi\)
0.881217 0.472712i \(-0.156725\pi\)
\(108\) 4.78718 4.44982i 0.460646 0.428184i
\(109\) −17.5905 −1.68486 −0.842430 0.538806i \(-0.818876\pi\)
−0.842430 + 0.538806i \(0.818876\pi\)
\(110\) 4.38788 + 3.87652i 0.418368 + 0.369612i
\(111\) −22.8052 −2.16457
\(112\) −0.632132 + 8.64234i −0.0597308 + 0.816624i
\(113\) 12.1552 1.14346 0.571732 0.820441i \(-0.306272\pi\)
0.571732 + 0.820441i \(0.306272\pi\)
\(114\) −6.57593 2.86555i −0.615892 0.268384i
\(115\) −11.0099 3.55895i −1.02667 0.331874i
\(116\) −4.57985 4.92708i −0.425229 0.457468i
\(117\) 8.87332 0.820339
\(118\) 0.765876 1.75755i 0.0705046 0.161795i
\(119\) −0.693101 + 8.90519i −0.0635365 + 0.816337i
\(120\) 13.3389 0.337406i 1.21767 0.0308008i
\(121\) −7.57190 −0.688355
\(122\) 4.81975 + 2.10027i 0.436359 + 0.190150i
\(123\) −9.91435 −0.893946
\(124\) −1.07165 + 0.996126i −0.0962368 + 0.0894548i
\(125\) 6.61254 + 9.01523i 0.591444 + 0.806346i
\(126\) −4.07536 1.77589i −0.363061 0.158209i
\(127\) 7.69908i 0.683183i 0.939849 + 0.341591i \(0.110966\pi\)
−0.939849 + 0.341591i \(0.889034\pi\)
\(128\) −10.9190 + 2.96235i −0.965112 + 0.261837i
\(129\) 12.4545i 1.09656i
\(130\) −14.4924 12.8035i −1.27107 1.12294i
\(131\) 8.54786 0.746830 0.373415 0.927664i \(-0.378187\pi\)
0.373415 + 0.927664i \(0.378187\pi\)
\(132\) 5.72217 5.31892i 0.498051 0.462952i
\(133\) 5.20829i 0.451616i
\(134\) 15.2915 + 6.66348i 1.32098 + 0.575637i
\(135\) 2.24760 6.95311i 0.193443 0.598428i
\(136\) −11.2692 + 3.00103i −0.966322 + 0.257336i
\(137\) 9.56697i 0.817361i 0.912677 + 0.408681i \(0.134011\pi\)
−0.912677 + 0.408681i \(0.865989\pi\)
\(138\) −6.16766 + 14.1537i −0.525026 + 1.20484i
\(139\) −7.97287 −0.676250 −0.338125 0.941101i \(-0.609793\pi\)
−0.338125 + 0.941101i \(0.609793\pi\)
\(140\) 4.09363 + 8.78090i 0.345975 + 0.742121i
\(141\) −8.07786 −0.680279
\(142\) −6.29679 + 14.4500i −0.528415 + 1.21262i
\(143\) −11.3224 −0.946827
\(144\) 0.423401 5.78862i 0.0352834 0.482385i
\(145\) −7.15630 2.31328i −0.594299 0.192108i
\(146\) −6.25972 2.72776i −0.518058 0.225751i
\(147\) 4.86697i 0.401421i
\(148\) 15.8347 14.7188i 1.30160 1.20987i
\(149\) 21.9285i 1.79646i 0.439530 + 0.898228i \(0.355145\pi\)
−0.439530 + 0.898228i \(0.644855\pi\)
\(150\) 12.8371 7.60004i 1.04814 0.620541i
\(151\) 14.6281 1.19042 0.595209 0.803571i \(-0.297069\pi\)
0.595209 + 0.803571i \(0.297069\pi\)
\(152\) 6.41542 2.25450i 0.520359 0.182864i
\(153\) 0.464238 5.96468i 0.0375314 0.482216i
\(154\) 5.20017 + 2.26605i 0.419042 + 0.182603i
\(155\) −0.503143 + 1.55651i −0.0404134 + 0.125022i
\(156\) −18.8993 + 17.5675i −1.51316 + 1.40652i
\(157\) 7.45137 0.594684 0.297342 0.954771i \(-0.403900\pi\)
0.297342 + 0.954771i \(0.403900\pi\)
\(158\) −0.0635208 + 0.145769i −0.00505344 + 0.0115967i
\(159\) 14.7457i 1.16941i
\(160\) −9.04404 + 8.84338i −0.714994 + 0.699131i
\(161\) −11.2101 −0.883476
\(162\) −14.5821 6.35438i −1.14568 0.499247i
\(163\) 13.8521i 1.08498i 0.840063 + 0.542490i \(0.182518\pi\)
−0.840063 + 0.542490i \(0.817482\pi\)
\(164\) 6.88397 6.39884i 0.537547 0.499665i
\(165\) 2.68658 8.31113i 0.209150 0.647021i
\(166\) −13.6886 5.96498i −1.06244 0.462972i
\(167\) 16.1778 1.25188 0.625938 0.779873i \(-0.284716\pi\)
0.625938 + 0.779873i \(0.284716\pi\)
\(168\) 12.1960 4.28593i 0.940946 0.330667i
\(169\) 24.3959 1.87661
\(170\) −9.36477 + 9.07200i −0.718245 + 0.695790i
\(171\) 3.48851i 0.266773i
\(172\) 8.03827 + 8.64769i 0.612912 + 0.659380i
\(173\) 6.21909i 0.472829i −0.971652 0.236414i \(-0.924028\pi\)
0.971652 0.236414i \(-0.0759723\pi\)
\(174\) −4.00892 + 9.19975i −0.303916 + 0.697432i
\(175\) 8.78228 + 6.34027i 0.663878 + 0.479280i
\(176\) −0.540262 + 7.38631i −0.0407238 + 0.556764i
\(177\) −2.86006 −0.214975
\(178\) 12.9718 + 5.65266i 0.972280 + 0.423685i
\(179\) 14.0992i 1.05383i −0.849919 0.526913i \(-0.823349\pi\)
0.849919 0.526913i \(-0.176651\pi\)
\(180\) −2.74191 5.88143i −0.204370 0.438376i
\(181\) −18.0233 −1.33966 −0.669829 0.742515i \(-0.733633\pi\)
−0.669829 + 0.742515i \(0.733633\pi\)
\(182\) −17.1753 7.48437i −1.27312 0.554778i
\(183\) 7.84319i 0.579785i
\(184\) −4.85247 13.8082i −0.357729 1.01795i
\(185\) 7.43444 22.9989i 0.546591 1.69092i
\(186\) 2.00096 + 0.871947i 0.146718 + 0.0639343i
\(187\) −0.592370 + 7.61096i −0.0433184 + 0.556569i
\(188\) 5.60881 5.21355i 0.409065 0.380237i
\(189\) 7.07954i 0.514961i
\(190\) 5.03363 5.69763i 0.365178 0.413349i
\(191\) 3.47978 0.251788 0.125894 0.992044i \(-0.459820\pi\)
0.125894 + 0.992044i \(0.459820\pi\)
\(192\) 10.5586 + 13.1675i 0.761998 + 0.950281i
\(193\) 16.2989 1.17322 0.586610 0.809870i \(-0.300462\pi\)
0.586610 + 0.809870i \(0.300462\pi\)
\(194\) −14.1179 6.15207i −1.01361 0.441693i
\(195\) −8.87332 + 27.4502i −0.635432 + 1.96575i
\(196\) −3.14120 3.37935i −0.224371 0.241382i
\(197\) 17.1153i 1.21941i 0.792627 + 0.609707i \(0.208713\pi\)
−0.792627 + 0.609707i \(0.791287\pi\)
\(198\) −3.48307 1.51780i −0.247531 0.107865i
\(199\) 19.0307i 1.34905i −0.738253 0.674524i \(-0.764349\pi\)
0.738253 0.674524i \(-0.235651\pi\)
\(200\) −4.00818 + 13.5622i −0.283421 + 0.958995i
\(201\) 24.8839i 1.75517i
\(202\) −0.628281 + 1.44179i −0.0442057 + 0.101444i
\(203\) −7.28643 −0.511407
\(204\) 10.8201 + 13.6233i 0.757560 + 0.953822i
\(205\) 3.23205 9.99857i 0.225736 0.698331i
\(206\) −5.36588 + 12.3137i −0.373859 + 0.857938i
\(207\) 7.50848 0.521875
\(208\) 1.78439 24.3957i 0.123725 1.69154i
\(209\) 4.45135i 0.307906i
\(210\) 9.56920 10.8315i 0.660338 0.747444i
\(211\) 3.28113 0.225883 0.112941 0.993602i \(-0.463973\pi\)
0.112941 + 0.993602i \(0.463973\pi\)
\(212\) −9.51703 10.2386i −0.653632 0.703188i
\(213\) 23.5145 1.61119
\(214\) 5.52499 12.6788i 0.377680 0.866708i
\(215\) 12.5603 + 4.06013i 0.856604 + 0.276898i
\(216\) 8.72036 3.06451i 0.593345 0.208513i
\(217\) 1.58481i 0.107584i
\(218\) −22.8054 9.93779i −1.54458 0.673072i
\(219\) 10.1865i 0.688337i
\(220\) 3.49869 + 7.50474i 0.235882 + 0.505969i
\(221\) 1.95650 25.1377i 0.131608 1.69094i
\(222\) −29.5662 12.8839i −1.98435 0.864710i
\(223\) 29.0341i 1.94427i −0.234424 0.972134i \(-0.575320\pi\)
0.234424 0.972134i \(-0.424680\pi\)
\(224\) −5.70206 + 10.8474i −0.380985 + 0.724771i
\(225\) −5.88236 4.24670i −0.392157 0.283114i
\(226\) 15.7588 + 6.86712i 1.04826 + 0.456794i
\(227\) 20.0978i 1.33394i 0.745085 + 0.666970i \(0.232409\pi\)
−0.745085 + 0.666970i \(0.767591\pi\)
\(228\) −6.90657 7.43019i −0.457399 0.492076i
\(229\) 18.7378i 1.23823i −0.785302 0.619113i \(-0.787492\pi\)
0.785302 0.619113i \(-0.212508\pi\)
\(230\) −12.2633 10.8341i −0.808617 0.714381i
\(231\) 8.46226i 0.556776i
\(232\) −3.15406 8.97520i −0.207074 0.589251i
\(233\) 4.14371 0.271464 0.135732 0.990746i \(-0.456661\pi\)
0.135732 + 0.990746i \(0.456661\pi\)
\(234\) 11.5040 + 5.01302i 0.752038 + 0.327711i
\(235\) 2.63336 8.14649i 0.171782 0.531418i
\(236\) 1.98587 1.84592i 0.129269 0.120159i
\(237\) 0.237210 0.0154084
\(238\) −5.92960 + 11.1537i −0.384359 + 0.722988i
\(239\) 9.53014 0.616454 0.308227 0.951313i \(-0.400264\pi\)
0.308227 + 0.951313i \(0.400264\pi\)
\(240\) 17.4841 + 7.09844i 1.12859 + 0.458203i
\(241\) 1.10400i 0.0711151i −0.999368 0.0355576i \(-0.988679\pi\)
0.999368 0.0355576i \(-0.0113207\pi\)
\(242\) −9.81673 4.27778i −0.631043 0.274986i
\(243\) 13.9257i 0.893335i
\(244\) 5.06209 + 5.44587i 0.324067 + 0.348636i
\(245\) −4.90831 1.58662i −0.313581 0.101365i
\(246\) −12.8536 5.60115i −0.819517 0.357116i
\(247\) 14.7020i 0.935469i
\(248\) −1.95212 + 0.686014i −0.123960 + 0.0435619i
\(249\) 22.2754i 1.41165i
\(250\) 3.47976 + 15.4237i 0.220079 + 0.975482i
\(251\) 23.7570i 1.49953i −0.661706 0.749763i \(-0.730167\pi\)
0.661706 0.749763i \(-0.269833\pi\)
\(252\) −4.28027 4.60477i −0.269631 0.290074i
\(253\) −9.58086 −0.602343
\(254\) −4.34962 + 9.98160i −0.272920 + 0.626301i
\(255\) 17.9879 + 7.40083i 1.12645 + 0.463458i
\(256\) −15.8297 2.32814i −0.989357 0.145509i
\(257\) 9.30407i 0.580372i 0.956970 + 0.290186i \(0.0937171\pi\)
−0.956970 + 0.290186i \(0.906283\pi\)
\(258\) 7.03621 16.1468i 0.438055 1.00526i
\(259\) 23.4172i 1.45507i
\(260\) −11.5556 24.7868i −0.716646 1.53721i
\(261\) 4.88044 0.302092
\(262\) 11.0820 + 4.82915i 0.684649 + 0.298346i
\(263\) 5.99547i 0.369697i 0.982767 + 0.184848i \(0.0591794\pi\)
−0.982767 + 0.184848i \(0.940821\pi\)
\(264\) 10.4235 3.66304i 0.641525 0.225444i
\(265\) −14.8709 4.80705i −0.913515 0.295295i
\(266\) 2.94245 6.75238i 0.180413 0.414015i
\(267\) 21.1091i 1.29186i
\(268\) 16.0603 + 17.2780i 0.981041 + 1.05542i
\(269\) 13.1391 0.801106 0.400553 0.916274i \(-0.368818\pi\)
0.400553 + 0.916274i \(0.368818\pi\)
\(270\) 6.84213 7.74469i 0.416399 0.471327i
\(271\) −9.00112 −0.546779 −0.273389 0.961903i \(-0.588145\pi\)
−0.273389 + 0.961903i \(0.588145\pi\)
\(272\) −16.3055 2.47582i −0.988668 0.150119i
\(273\) 27.9494i 1.69157i
\(274\) −5.40490 + 12.4033i −0.326522 + 0.749309i
\(275\) 7.50592 + 5.41882i 0.452624 + 0.326767i
\(276\) −15.9923 + 14.8653i −0.962626 + 0.894788i
\(277\) 23.8779i 1.43468i 0.696722 + 0.717342i \(0.254641\pi\)
−0.696722 + 0.717342i \(0.745359\pi\)
\(278\) −10.3366 4.50431i −0.619946 0.270150i
\(279\) 1.06150i 0.0635506i
\(280\) 0.346460 + 13.6969i 0.0207050 + 0.818544i
\(281\) 15.2045 0.907027 0.453513 0.891249i \(-0.350170\pi\)
0.453513 + 0.891249i \(0.350170\pi\)
\(282\) −10.4727 4.56362i −0.623639 0.271759i
\(283\) 23.8313i 1.41662i −0.705901 0.708310i \(-0.749458\pi\)
0.705901 0.708310i \(-0.250542\pi\)
\(284\) −16.3272 + 15.1765i −0.968838 + 0.900562i
\(285\) −10.7919 3.48851i −0.639259 0.206641i
\(286\) −14.6791 6.39664i −0.867995 0.378241i
\(287\) 10.1804i 0.600929i
\(288\) 3.81923 7.26556i 0.225050 0.428127i
\(289\) −16.7953 2.63033i −0.987958 0.154725i
\(290\) −7.97101 7.04208i −0.468074 0.413525i
\(291\) 22.9741i 1.34676i
\(292\) −6.57446 7.07291i −0.384741 0.413911i
\(293\) 13.4198 0.783996 0.391998 0.919966i \(-0.371784\pi\)
0.391998 + 0.919966i \(0.371784\pi\)
\(294\) −2.74961 + 6.30986i −0.160361 + 0.367999i
\(295\) 0.932373 2.88436i 0.0542848 0.167934i
\(296\) 28.8445 10.1365i 1.67655 0.589174i
\(297\) 6.05064i 0.351094i
\(298\) −12.3886 + 28.4296i −0.717653 + 1.64688i
\(299\) 31.6439 1.83001
\(300\) 20.9365 2.60085i 1.20877 0.150160i
\(301\) 12.7887 0.737127
\(302\) 18.9649 + 8.26420i 1.09130 + 0.475551i
\(303\) 2.34623 0.134788
\(304\) 9.59107 + 0.701525i 0.550085 + 0.0402352i
\(305\) 7.90982 + 2.55686i 0.452915 + 0.146405i
\(306\) 3.97164 7.47074i 0.227043 0.427074i
\(307\) 29.0354 1.65714 0.828568 0.559888i \(-0.189156\pi\)
0.828568 + 0.559888i \(0.189156\pi\)
\(308\) 5.46164 + 5.87572i 0.311206 + 0.334800i
\(309\) 20.0382 1.13993
\(310\) −1.53166 + 1.73371i −0.0869926 + 0.0984680i
\(311\) 3.67913i 0.208624i 0.994545 + 0.104312i \(0.0332641\pi\)
−0.994545 + 0.104312i \(0.966736\pi\)
\(312\) −34.4272 + 12.0984i −1.94906 + 0.684936i
\(313\) 14.4341 0.815866 0.407933 0.913012i \(-0.366250\pi\)
0.407933 + 0.913012i \(0.366250\pi\)
\(314\) 9.66046 + 4.20968i 0.545171 + 0.237566i
\(315\) −6.68818 2.16196i −0.376836 0.121813i
\(316\) −0.164705 + 0.153098i −0.00926539 + 0.00861244i
\(317\) 0.137217i 0.00770689i 0.999993 + 0.00385344i \(0.00122659\pi\)
−0.999993 + 0.00385344i \(0.998773\pi\)
\(318\) −8.33062 + 19.1173i −0.467158 + 1.07204i
\(319\) −6.22746 −0.348671
\(320\) −16.7214 + 6.35569i −0.934755 + 0.355294i
\(321\) −20.6323 −1.15158
\(322\) −14.5335 6.33317i −0.809919 0.352934i
\(323\) 9.88277 + 0.769188i 0.549892 + 0.0427988i
\(324\) −15.3153 16.4765i −0.850852 0.915360i
\(325\) −24.7908 17.8974i −1.37514 0.992770i
\(326\) −7.82579 + 17.9588i −0.433430 + 0.994645i
\(327\) 37.1114i 2.05226i
\(328\) 12.5399 4.40676i 0.692399 0.243323i
\(329\) 8.29462i 0.457297i
\(330\) 8.17847 9.25731i 0.450210 0.509598i
\(331\) 22.5043i 1.23695i 0.785806 + 0.618473i \(0.212249\pi\)
−0.785806 + 0.618473i \(0.787751\pi\)
\(332\) −14.3768 15.4668i −0.789031 0.848851i
\(333\) 15.6848i 0.859520i
\(334\) 20.9740 + 9.13971i 1.14765 + 0.500103i
\(335\) 25.0953 + 8.11207i 1.37110 + 0.443210i
\(336\) 18.2331 + 1.33364i 0.994699 + 0.0727558i
\(337\) 12.8862 0.701955 0.350977 0.936384i \(-0.385849\pi\)
0.350977 + 0.936384i \(0.385849\pi\)
\(338\) 31.6285 + 13.7826i 1.72037 + 0.749674i
\(339\) 25.6443i 1.39281i
\(340\) −17.2664 + 6.47089i −0.936401 + 0.350933i
\(341\) 1.35448i 0.0733494i
\(342\) −1.97084 + 4.52273i −0.106571 + 0.244561i
\(343\) −20.1621 −1.08865
\(344\) 5.53581 + 15.7527i 0.298471 + 0.849329i
\(345\) −7.50848 + 23.2280i −0.404243 + 1.25055i
\(346\) 3.51350 8.06285i 0.188887 0.433462i
\(347\) 17.0015i 0.912687i 0.889804 + 0.456344i \(0.150841\pi\)
−0.889804 + 0.456344i \(0.849159\pi\)
\(348\) −10.3949 + 9.66232i −0.557224 + 0.517955i
\(349\) 35.6065i 1.90597i 0.303015 + 0.952986i \(0.402007\pi\)
−0.303015 + 0.952986i \(0.597993\pi\)
\(350\) 7.80398 + 13.1815i 0.417140 + 0.704583i
\(351\) 19.9842i 1.06668i
\(352\) −4.87336 + 9.27089i −0.259751 + 0.494140i
\(353\) 23.2325i 1.23654i −0.785965 0.618270i \(-0.787834\pi\)
0.785965 0.618270i \(-0.212166\pi\)
\(354\) −3.70798 1.61580i −0.197077 0.0858789i
\(355\) −7.66567 + 23.7143i −0.406852 + 1.25862i
\(356\) 13.6241 + 14.6570i 0.722074 + 0.776818i
\(357\) 18.7877 + 1.46227i 0.994349 + 0.0773914i
\(358\) 7.96542 18.2792i 0.420985 0.966085i
\(359\) −14.9651 −0.789826 −0.394913 0.918719i \(-0.629225\pi\)
−0.394913 + 0.918719i \(0.629225\pi\)
\(360\) −0.232058 9.17413i −0.0122306 0.483519i
\(361\) 13.2200 0.695787
\(362\) −23.3666 10.1823i −1.22812 0.535171i
\(363\) 15.9748i 0.838459i
\(364\) −18.0389 19.4065i −0.945493 1.01718i
\(365\) −10.2730 3.32076i −0.537713 0.173817i
\(366\) 4.43104 10.1684i 0.231614 0.531513i
\(367\) −23.3931 −1.22111 −0.610556 0.791973i \(-0.709054\pi\)
−0.610556 + 0.791973i \(0.709054\pi\)
\(368\) 1.50993 20.6433i 0.0787103 1.07611i
\(369\) 6.81880i 0.354973i
\(370\) 22.6318 25.6173i 1.17657 1.33178i
\(371\) −15.1414 −0.786100
\(372\) 2.10157 + 2.26090i 0.108961 + 0.117222i
\(373\) −32.4530 −1.68035 −0.840176 0.542313i \(-0.817549\pi\)
−0.840176 + 0.542313i \(0.817549\pi\)
\(374\) −5.06783 + 9.53270i −0.262051 + 0.492924i
\(375\) 19.0198 13.9508i 0.982179 0.720415i
\(376\) 10.2171 3.59047i 0.526904 0.185165i
\(377\) 20.5682 1.05932
\(378\) 3.99961 9.17839i 0.205718 0.472086i
\(379\) −25.8746 −1.32909 −0.664545 0.747248i \(-0.731375\pi\)
−0.664545 + 0.747248i \(0.731375\pi\)
\(380\) 9.74484 4.54302i 0.499900 0.233052i
\(381\) 16.2431 0.832158
\(382\) 4.51143 + 1.96592i 0.230825 + 0.100585i
\(383\) 11.3405i 0.579472i 0.957107 + 0.289736i \(0.0935675\pi\)
−0.957107 + 0.289736i \(0.906433\pi\)
\(384\) 6.24980 + 23.0363i 0.318934 + 1.17557i
\(385\) 8.53415 + 2.75867i 0.434941 + 0.140595i
\(386\) 21.1310 + 9.20812i 1.07554 + 0.468681i
\(387\) −8.56583 −0.435426
\(388\) −14.8277 15.9519i −0.752765 0.809836i
\(389\) 14.9099i 0.755961i 0.925814 + 0.377980i \(0.123381\pi\)
−0.925814 + 0.377980i \(0.876619\pi\)
\(390\) −27.0121 + 30.5753i −1.36781 + 1.54824i
\(391\) 1.65556 21.2711i 0.0837252 1.07573i
\(392\) −2.16328 6.15585i −0.109262 0.310917i
\(393\) 18.0338i 0.909685i
\(394\) −9.66934 + 22.1894i −0.487134 + 1.11789i
\(395\) −0.0773298 + 0.239225i −0.00389088 + 0.0120367i
\(396\) −3.65820 3.93554i −0.183831 0.197769i
\(397\) 18.2959i 0.918247i −0.888372 0.459124i \(-0.848164\pi\)
0.888372 0.459124i \(-0.151836\pi\)
\(398\) 10.7514 24.6726i 0.538921 1.23673i
\(399\) −10.9882 −0.550097
\(400\) −12.8585 + 15.3186i −0.642926 + 0.765928i
\(401\) 15.9420i 0.796108i 0.917362 + 0.398054i \(0.130314\pi\)
−0.917362 + 0.398054i \(0.869686\pi\)
\(402\) 14.0582 32.2611i 0.701161 1.60904i
\(403\) 4.47363i 0.222847i
\(404\) −1.62909 + 1.51429i −0.0810504 + 0.0753386i
\(405\) −23.9312 7.73578i −1.18915 0.384394i
\(406\) −9.44662 4.11650i −0.468828 0.204298i
\(407\) 20.0138i 0.992049i
\(408\) 6.33140 + 23.7750i 0.313451 + 1.17704i
\(409\) −9.75792 −0.482498 −0.241249 0.970463i \(-0.577557\pi\)
−0.241249 + 0.970463i \(0.577557\pi\)
\(410\) 9.83898 11.1369i 0.485913 0.550010i
\(411\) 20.1839 0.995597
\(412\) −13.9134 + 12.9329i −0.685463 + 0.637157i
\(413\) 2.93681i 0.144511i
\(414\) 9.73449 + 4.24194i 0.478424 + 0.208480i
\(415\) −22.4647 7.26173i −1.10275 0.356464i
\(416\) 16.0959 30.6201i 0.789164 1.50128i
\(417\) 16.8207i 0.823715i
\(418\) 2.51481 5.77103i 0.123003 0.282270i
\(419\) −0.671116 −0.0327861 −0.0163931 0.999866i \(-0.505218\pi\)
−0.0163931 + 0.999866i \(0.505218\pi\)
\(420\) 18.5255 8.63652i 0.903950 0.421419i
\(421\) 26.6975i 1.30116i 0.759440 + 0.650578i \(0.225473\pi\)
−0.759440 + 0.650578i \(0.774527\pi\)
\(422\) 4.25388 + 1.85369i 0.207076 + 0.0902362i
\(423\) 5.55572i 0.270128i
\(424\) −6.55420 18.6506i −0.318300 0.905756i
\(425\) −13.3277 + 15.7281i −0.646489 + 0.762923i
\(426\) 30.4858 + 13.2846i 1.47704 + 0.643642i
\(427\) 8.05365 0.389743
\(428\) 14.3259 13.3163i 0.692470 0.643670i
\(429\) 23.8874i 1.15329i
\(430\) 13.9902 + 12.3598i 0.674668 + 0.596043i
\(431\) 2.77459i 0.133647i −0.997765 0.0668236i \(-0.978714\pi\)
0.997765 0.0668236i \(-0.0212865\pi\)
\(432\) 13.0370 + 0.953571i 0.627241 + 0.0458787i
\(433\) 11.7652i 0.565399i −0.959208 0.282700i \(-0.908770\pi\)
0.959208 0.282700i \(-0.0912300\pi\)
\(434\) −0.895345 + 2.05466i −0.0429779 + 0.0986266i
\(435\) −4.88044 + 15.0980i −0.233999 + 0.723892i
\(436\) −23.9521 25.7680i −1.14710 1.23407i
\(437\) 12.4407i 0.595118i
\(438\) −5.75488 + 13.2064i −0.274979 + 0.631027i
\(439\) 31.3148i 1.49458i −0.664500 0.747288i \(-0.731356\pi\)
0.664500 0.747288i \(-0.268644\pi\)
\(440\) 0.296108 + 11.7062i 0.0141164 + 0.558073i
\(441\) 3.34736 0.159398
\(442\) 16.7382 31.4849i 0.796153 1.49758i
\(443\) 34.7836 1.65262 0.826310 0.563215i \(-0.190436\pi\)
0.826310 + 0.563215i \(0.190436\pi\)
\(444\) −31.0528 33.4071i −1.47370 1.58543i
\(445\) 21.2884 + 6.88151i 1.00917 + 0.326215i
\(446\) 16.4029 37.6418i 0.776702 1.78239i
\(447\) 46.2636 2.18819
\(448\) −13.5208 + 10.8419i −0.638798 + 0.512231i
\(449\) 19.6407i 0.926902i −0.886123 0.463451i \(-0.846611\pi\)
0.886123 0.463451i \(-0.153389\pi\)
\(450\) −5.22709 8.82897i −0.246407 0.416202i
\(451\) 8.70083i 0.409706i
\(452\) 16.5512 + 17.8060i 0.778501 + 0.837523i
\(453\) 30.8616i 1.45000i
\(454\) −11.3543 + 26.0562i −0.532886 + 1.22288i
\(455\) −28.1868 9.11143i −1.32142 0.427150i
\(456\) −4.75642 13.5349i −0.222740 0.633829i
\(457\) 3.47599i 0.162600i −0.996690 0.0812999i \(-0.974093\pi\)
0.996690 0.0812999i \(-0.0259072\pi\)
\(458\) 10.5860 24.2929i 0.494650 1.13513i
\(459\) 13.4335 + 1.04554i 0.627021 + 0.0488018i
\(460\) −9.77816 20.9743i −0.455909 0.977931i
\(461\) 4.83805i 0.225331i 0.993633 + 0.112665i \(0.0359388\pi\)
−0.993633 + 0.112665i \(0.964061\pi\)
\(462\) 4.78079 10.9710i 0.222422 0.510419i
\(463\) 29.2405i 1.35892i −0.733711 0.679461i \(-0.762214\pi\)
0.733711 0.679461i \(-0.237786\pi\)
\(464\) 0.981437 13.4180i 0.0455621 0.622913i
\(465\) 3.28383 + 1.06150i 0.152284 + 0.0492260i
\(466\) 5.37219 + 2.34101i 0.248862 + 0.108445i
\(467\) 3.72931 0.172572 0.0862860 0.996270i \(-0.472500\pi\)
0.0862860 + 0.996270i \(0.472500\pi\)
\(468\) 12.0824 + 12.9984i 0.558509 + 0.600852i
\(469\) 25.5516 1.17986
\(470\) 8.01646 9.07392i 0.369772 0.418549i
\(471\) 15.7205i 0.724362i
\(472\) 3.61747 1.27125i 0.166507 0.0585140i
\(473\) 10.9300 0.502564
\(474\) 0.307535 + 0.134013i 0.0141255 + 0.00615540i
\(475\) 7.03629 9.74637i 0.322847 0.447194i
\(476\) −13.9889 + 11.1105i −0.641179 + 0.509248i
\(477\) 10.1416 0.464354
\(478\) 12.3555 + 5.38409i 0.565128 + 0.246263i
\(479\) 29.8166i 1.36235i −0.732118 0.681177i \(-0.761468\pi\)
0.732118 0.681177i \(-0.238532\pi\)
\(480\) 18.6573 + 19.0806i 0.851584 + 0.870907i
\(481\) 66.1023i 3.01400i
\(482\) 0.623711 1.43130i 0.0284093 0.0651941i
\(483\) 23.6504i 1.07613i
\(484\) −10.3103 11.0920i −0.468651 0.504182i
\(485\) −23.1693 7.48949i −1.05206 0.340080i
\(486\) −7.86739 + 18.0542i −0.356872 + 0.818957i
\(487\) −17.2766 −0.782878 −0.391439 0.920204i \(-0.628023\pi\)
−0.391439 + 0.920204i \(0.628023\pi\)
\(488\) 3.48616 + 9.92023i 0.157811 + 0.449068i
\(489\) 29.2244 1.32157
\(490\) −5.46710 4.82997i −0.246978 0.218196i
\(491\) 12.7948i 0.577421i −0.957416 0.288710i \(-0.906774\pi\)
0.957416 0.288710i \(-0.0932265\pi\)
\(492\) −13.4999 14.5234i −0.608623 0.654766i
\(493\) 1.07610 13.8260i 0.0484650 0.622694i
\(494\) −8.30598 + 19.0607i −0.373704 + 0.857582i
\(495\) −5.71616 1.84776i −0.256922 0.0830504i
\(496\) −2.91843 0.213464i −0.131041 0.00958483i
\(497\) 24.1455i 1.08307i
\(498\) −12.5846 + 28.8794i −0.563929 + 1.29411i
\(499\) 19.5725 0.876183 0.438092 0.898930i \(-0.355655\pi\)
0.438092 + 0.898930i \(0.355655\pi\)
\(500\) −4.20230 + 21.9623i −0.187933 + 0.982182i
\(501\) 34.1310i 1.52486i
\(502\) 13.4216 30.8001i 0.599035 1.37468i
\(503\) 34.1869 1.52432 0.762160 0.647388i \(-0.224139\pi\)
0.762160 + 0.647388i \(0.224139\pi\)
\(504\) −2.94774 8.38809i −0.131303 0.373635i
\(505\) −0.764866 + 2.36616i −0.0340361 + 0.105293i
\(506\) −12.4213 5.41274i −0.552193 0.240626i
\(507\) 51.4692i 2.28583i
\(508\) −11.2783 + 10.4835i −0.500393 + 0.465129i
\(509\) 28.5269i 1.26443i 0.774791 + 0.632217i \(0.217855\pi\)
−0.774791 + 0.632217i \(0.782145\pi\)
\(510\) 19.1396 + 19.7573i 0.847516 + 0.874866i
\(511\) −10.4598 −0.462714
\(512\) −19.2074 11.9614i −0.848856 0.528625i
\(513\) −7.85671 −0.346882
\(514\) −5.25637 + 12.0624i −0.231848 + 0.532050i
\(515\) −6.53239 + 20.2084i −0.287851 + 0.890488i
\(516\) 18.2444 16.9587i 0.803166 0.746565i
\(517\) 7.08913i 0.311780i
\(518\) 13.2296 30.3596i 0.581276 1.33392i
\(519\) −13.1207 −0.575935
\(520\) −0.977993 38.6637i −0.0428878 1.69552i
\(521\) 0.501445i 0.0219687i 0.999940 + 0.0109843i \(0.00349650\pi\)
−0.999940 + 0.0109843i \(0.996504\pi\)
\(522\) 6.32733 + 2.75722i 0.276940 + 0.120680i
\(523\) −1.90322 −0.0832220 −0.0416110 0.999134i \(-0.513249\pi\)
−0.0416110 + 0.999134i \(0.513249\pi\)
\(524\) 11.6392 + 12.5217i 0.508462 + 0.547011i
\(525\) 13.3764 18.5284i 0.583792 0.808644i
\(526\) −3.38717 + 7.77293i −0.147687 + 0.338916i
\(527\) −3.00719 0.234053i −0.130995 0.0101955i
\(528\) 15.5832 + 1.13981i 0.678173 + 0.0496040i
\(529\) 3.77663 0.164201
\(530\) −16.5639 14.6336i −0.719491 0.635642i
\(531\) 1.96707i 0.0853635i
\(532\) 7.62957 7.09190i 0.330784 0.307473i
\(533\) 28.7373i 1.24475i
\(534\) 11.9257 27.3672i 0.516074 1.18430i
\(535\) 6.72608 20.8076i 0.290794 0.899591i
\(536\) 11.0605 + 31.4736i 0.477739 + 1.35945i
\(537\) −29.7458 −1.28363
\(538\) 17.0344 + 7.42299i 0.734406 + 0.320028i
\(539\) −4.27125 −0.183976
\(540\) 13.2460 6.17525i 0.570016 0.265740i
\(541\) −3.26662 −0.140443 −0.0702215 0.997531i \(-0.522371\pi\)
−0.0702215 + 0.997531i \(0.522371\pi\)
\(542\) −11.6697 5.08522i −0.501255 0.218429i
\(543\) 38.0245i 1.63179i
\(544\) −19.7409 12.4217i −0.846382 0.532576i
\(545\) −37.4266 12.0982i −1.60318 0.518230i
\(546\) −15.7901 + 36.2354i −0.675754 + 1.55073i
\(547\) 19.2791i 0.824315i −0.911113 0.412157i \(-0.864775\pi\)
0.911113 0.412157i \(-0.135225\pi\)
\(548\) −14.0145 + 13.0269i −0.598672 + 0.556482i
\(549\) −5.39432 −0.230224
\(550\) 6.66980 + 11.2658i 0.284401 + 0.480376i
\(551\) 8.08631i 0.344488i
\(552\) −29.1318 + 10.2375i −1.23993 + 0.435736i
\(553\) 0.243575i 0.0103579i
\(554\) −13.4899 + 30.9569i −0.573131 + 1.31523i
\(555\) −48.5219 15.6848i −2.05964 0.665781i
\(556\) −10.8563 11.6794i −0.460410 0.495316i
\(557\) 5.98141 0.253441 0.126720 0.991938i \(-0.459555\pi\)
0.126720 + 0.991938i \(0.459555\pi\)
\(558\) 0.599700 1.37620i 0.0253873 0.0582594i
\(559\) −36.1001 −1.52687
\(560\) −7.28892 + 17.9533i −0.308013 + 0.758664i
\(561\) 16.0572 + 1.24975i 0.677935 + 0.0527645i
\(562\) 19.7122 + 8.58986i 0.831508 + 0.362341i
\(563\) 15.0294 0.633415 0.316707 0.948523i \(-0.397423\pi\)
0.316707 + 0.948523i \(0.397423\pi\)
\(564\) −10.9993 11.8332i −0.463152 0.498266i
\(565\) 25.8622 + 8.35998i 1.08803 + 0.351707i
\(566\) 13.4636 30.8964i 0.565916 1.29867i
\(567\) −24.3663 −1.02329
\(568\) −29.7417 + 10.4518i −1.24793 + 0.438548i
\(569\) 4.62940 0.194075 0.0970373 0.995281i \(-0.469063\pi\)
0.0970373 + 0.995281i \(0.469063\pi\)
\(570\) −12.0205 10.6197i −0.503485 0.444809i
\(571\) −30.2968 −1.26788 −0.633941 0.773381i \(-0.718564\pi\)
−0.633941 + 0.773381i \(0.718564\pi\)
\(572\) −15.4172 16.5861i −0.644626 0.693498i
\(573\) 7.34145i 0.306694i
\(574\) 5.75145 13.1985i 0.240061 0.550896i
\(575\) −20.9776 15.1445i −0.874826 0.631571i
\(576\) 9.05621 7.26187i 0.377342 0.302578i
\(577\) 2.37981i 0.0990727i 0.998772 + 0.0495364i \(0.0157744\pi\)
−0.998772 + 0.0495364i \(0.984226\pi\)
\(578\) −20.2885 12.8987i −0.843891 0.536515i
\(579\) 34.3865i 1.42905i
\(580\) −6.35571 13.6331i −0.263906 0.566083i
\(581\) −22.8732 −0.948938
\(582\) −12.9793 + 29.7851i −0.538009 + 1.23463i
\(583\) −12.9408 −0.535953
\(584\) −4.52771 12.8841i −0.187358 0.533146i
\(585\) 18.8795 + 6.10282i 0.780570 + 0.252320i
\(586\) 17.3984 + 7.58160i 0.718721 + 0.313193i
\(587\) −15.6420 −0.645614 −0.322807 0.946465i \(-0.604626\pi\)
−0.322807 + 0.946465i \(0.604626\pi\)
\(588\) −7.12956 + 6.62713i −0.294018 + 0.273298i
\(589\) 1.75879 0.0724695
\(590\) 2.83832 3.21273i 0.116852 0.132266i
\(591\) 36.1089 1.48532
\(592\) 43.1227 + 3.15415i 1.77233 + 0.129635i
\(593\) 19.7700i 0.811855i 0.913905 + 0.405928i \(0.133052\pi\)
−0.913905 + 0.405928i \(0.866948\pi\)
\(594\) 3.41833 7.84446i 0.140256 0.321862i
\(595\) −7.59942 + 18.4706i −0.311546 + 0.757220i
\(596\) −32.1229 + 29.8591i −1.31580 + 1.22308i
\(597\) −40.1498 −1.64322
\(598\) 41.0253 + 17.8774i 1.67765 + 0.731059i
\(599\) 15.1584 0.619354 0.309677 0.950842i \(-0.399779\pi\)
0.309677 + 0.950842i \(0.399779\pi\)
\(600\) 28.6129 + 8.45624i 1.16812 + 0.345225i
\(601\) 25.8190i 1.05318i 0.850119 + 0.526590i \(0.176530\pi\)
−0.850119 + 0.526590i \(0.823470\pi\)
\(602\) 16.5801 + 7.22501i 0.675754 + 0.294470i
\(603\) −17.1144 −0.696952
\(604\) 19.9184 + 21.4285i 0.810469 + 0.871914i
\(605\) −16.1105 5.20774i −0.654985 0.211725i
\(606\) 3.04181 + 1.32551i 0.123565 + 0.0538453i
\(607\) −0.167507 −0.00679890 −0.00339945 0.999994i \(-0.501082\pi\)
−0.00339945 + 0.999994i \(0.501082\pi\)
\(608\) 12.0382 + 6.32801i 0.488212 + 0.256635i
\(609\) 15.3725i 0.622925i
\(610\) 8.81031 + 7.78357i 0.356719 + 0.315147i
\(611\) 23.4142i 0.947236i
\(612\) 9.36972 7.44177i 0.378748 0.300816i
\(613\) −15.2387 −0.615485 −0.307742 0.951470i \(-0.599573\pi\)
−0.307742 + 0.951470i \(0.599573\pi\)
\(614\) 37.6434 + 16.4036i 1.51916 + 0.661997i
\(615\) −21.0944 6.81880i −0.850610 0.274961i
\(616\) 3.76133 + 10.7033i 0.151548 + 0.431246i
\(617\) 16.8431 0.678076 0.339038 0.940773i \(-0.389898\pi\)
0.339038 + 0.940773i \(0.389898\pi\)
\(618\) 25.9788 + 11.3206i 1.04502 + 0.455383i
\(619\) −46.2447 −1.85873 −0.929366 0.369159i \(-0.879646\pi\)
−0.929366 + 0.369159i \(0.879646\pi\)
\(620\) −2.96522 + 1.38238i −0.119086 + 0.0555176i
\(621\) 16.9104i 0.678590i
\(622\) −2.07854 + 4.76987i −0.0833417 + 0.191254i
\(623\) 21.6755 0.868412
\(624\) −51.4687 3.76461i −2.06040 0.150705i
\(625\) 7.86888 + 23.7293i 0.314755 + 0.949173i
\(626\) 18.7134 + 8.15463i 0.747938 + 0.325924i
\(627\) −9.39122 −0.375049
\(628\) 10.1462 + 10.9154i 0.404877 + 0.435573i
\(629\) 44.4342 + 3.45837i 1.77171 + 0.137894i
\(630\) −7.44959 6.58142i −0.296799 0.262210i
\(631\) 38.9878 1.55208 0.776040 0.630684i \(-0.217225\pi\)
0.776040 + 0.630684i \(0.217225\pi\)
\(632\) −0.300028 + 0.105436i −0.0119345 + 0.00419401i
\(633\) 6.92236i 0.275139i
\(634\) −0.0775214 + 0.177898i −0.00307877 + 0.00706522i
\(635\) −5.29520 + 16.3811i −0.210134 + 0.650063i
\(636\) −21.6008 + 20.0785i −0.856526 + 0.796165i
\(637\) 14.1072 0.558948
\(638\) −8.07370 3.51823i −0.319641 0.139288i
\(639\) 16.1726i 0.639778i
\(640\) −25.2694 1.20688i −0.998861 0.0477060i
\(641\) 44.8043i 1.76966i −0.465910 0.884832i \(-0.654273\pi\)
0.465910 0.884832i \(-0.345727\pi\)
\(642\) −26.7491 11.6563i −1.05570 0.460038i
\(643\) 12.7986i 0.504727i 0.967633 + 0.252363i \(0.0812079\pi\)
−0.967633 + 0.252363i \(0.918792\pi\)
\(644\) −15.2642 16.4215i −0.601495 0.647097i
\(645\) 8.56583 26.4990i 0.337279 1.04340i
\(646\) 12.3781 + 6.58053i 0.487011 + 0.258908i
\(647\) 2.44724i 0.0962109i 0.998842 + 0.0481054i \(0.0153183\pi\)
−0.998842 + 0.0481054i \(0.984682\pi\)
\(648\) −10.5474 30.0137i −0.414341 1.17905i
\(649\) 2.50999i 0.0985257i
\(650\) −22.0292 37.2090i −0.864056 1.45946i
\(651\) 3.34355 0.131044
\(652\) −20.2918 + 18.8618i −0.794687 + 0.738683i
\(653\) 16.4974i 0.645591i 0.946469 + 0.322796i \(0.104623\pi\)
−0.946469 + 0.322796i \(0.895377\pi\)
\(654\) −20.9662 + 48.1137i −0.819844 + 1.88139i
\(655\) 18.1870 + 5.87897i 0.710625 + 0.229710i
\(656\) 18.7472 + 1.37124i 0.731954 + 0.0535377i
\(657\) 7.00596 0.273328
\(658\) 4.68608 10.7537i 0.182682 0.419223i
\(659\) 47.2155i 1.83925i −0.392794 0.919627i \(-0.628491\pi\)
0.392794 0.919627i \(-0.371509\pi\)
\(660\) 15.8331 7.38134i 0.616302 0.287318i
\(661\) 24.8352i 0.965977i −0.875627 0.482989i \(-0.839551\pi\)
0.875627 0.482989i \(-0.160449\pi\)
\(662\) −12.7139 + 29.1761i −0.494139 + 1.13396i
\(663\) −53.0341 4.12771i −2.05967 0.160307i
\(664\) −9.90105 28.1744i −0.384235 1.09338i
\(665\) 3.58212 11.0815i 0.138908 0.429723i
\(666\) −8.86117 + 20.3348i −0.343363 + 0.787957i
\(667\) 17.4045 0.673907
\(668\) 22.0286 + 23.6987i 0.852311 + 0.916929i
\(669\) −61.2546 −2.36824
\(670\) 27.9522 + 24.6947i 1.07989 + 0.954039i
\(671\) 6.88318 0.265722
\(672\) 22.8852 + 12.0299i 0.882816 + 0.464063i
\(673\) −41.8116 −1.61172 −0.805859 0.592108i \(-0.798296\pi\)
−0.805859 + 0.592108i \(0.798296\pi\)
\(674\) 16.7065 + 7.28009i 0.643510 + 0.280419i
\(675\) 9.56430 13.2481i 0.368130 0.509918i
\(676\) 33.2188 + 35.7373i 1.27765 + 1.37451i
\(677\) 42.5535i 1.63547i −0.575598 0.817733i \(-0.695231\pi\)
0.575598 0.817733i \(-0.304769\pi\)
\(678\) 14.4879 33.2470i 0.556403 1.27684i
\(679\) −23.5906 −0.905322
\(680\) −26.0410 1.36541i −0.998628 0.0523612i
\(681\) 42.4013 1.62482
\(682\) −0.765221 + 1.75604i −0.0293018 + 0.0672424i
\(683\) 38.1275i 1.45891i −0.684030 0.729454i \(-0.739774\pi\)
0.684030 0.729454i \(-0.260226\pi\)
\(684\) −5.11027 + 4.75014i −0.195396 + 0.181626i
\(685\) −6.57989 + 20.3553i −0.251405 + 0.777737i
\(686\) −26.1395 11.3906i −0.998009 0.434896i
\(687\) −39.5319 −1.50824
\(688\) −1.72256 + 23.5503i −0.0656718 + 0.897848i
\(689\) 42.7412 1.62831
\(690\) −22.8572 + 25.8724i −0.870160 + 0.984945i
\(691\) −33.7650 −1.28448 −0.642240 0.766503i \(-0.721995\pi\)
−0.642240 + 0.766503i \(0.721995\pi\)
\(692\) 9.11028 8.46826i 0.346321 0.321915i
\(693\) −5.82010 −0.221087
\(694\) −9.60505 + 22.0419i −0.364603 + 0.836698i
\(695\) −16.9636 5.48351i −0.643467 0.208002i
\(696\) −18.9354 + 6.65426i −0.717744 + 0.252229i
\(697\) 19.3173 + 1.50349i 0.731696 + 0.0569488i
\(698\) −20.1160 + 46.1626i −0.761403 + 1.74728i
\(699\) 8.74217i 0.330659i
\(700\) 2.67064 + 21.4983i 0.100941 + 0.812560i
\(701\) 17.0754i 0.644930i −0.946581 0.322465i \(-0.895488\pi\)
0.946581 0.322465i \(-0.104512\pi\)
\(702\) −11.2902 + 25.9089i −0.426120 + 0.977868i
\(703\) −25.9878 −0.980149
\(704\) −11.5558 + 9.26618i −0.435525 + 0.349232i
\(705\) −17.1870 5.55572i −0.647300 0.209241i
\(706\) 13.1253 30.1202i 0.493977 1.13359i
\(707\) 2.40919i 0.0906069i
\(708\) −3.89441 4.18967i −0.146361 0.157457i
\(709\) −5.77448 −0.216865 −0.108433 0.994104i \(-0.534583\pi\)
−0.108433 + 0.994104i \(0.534583\pi\)
\(710\) −23.3358 + 26.4140i −0.875775 + 0.991301i
\(711\) 0.163146i 0.00611846i
\(712\) 9.38264 + 26.6992i 0.351629 + 1.00060i
\(713\) 3.78552i 0.141769i
\(714\) 23.5315 + 12.5099i 0.880644 + 0.468173i
\(715\) −24.0903 7.78723i −0.900927 0.291226i
\(716\) 20.6538 19.1983i 0.771869 0.717473i
\(717\) 20.1062i 0.750879i
\(718\) −19.4017 8.45457i −0.724065 0.315522i
\(719\) 1.08606i 0.0405032i 0.999795 + 0.0202516i \(0.00644672\pi\)
−0.999795 + 0.0202516i \(0.993553\pi\)
\(720\) 4.88211 12.0251i 0.181945 0.448148i
\(721\) 20.5759i 0.766285i
\(722\) 17.1392 + 7.46867i 0.637856 + 0.277955i
\(723\) −2.32917 −0.0866226
\(724\) −24.5415 26.4021i −0.912076 0.981225i
\(725\) −13.6352 9.84380i −0.506399 0.365590i
\(726\) −9.02502 + 20.7108i −0.334950 + 0.768649i
\(727\) 4.16080i 0.154315i 0.997019 + 0.0771577i \(0.0245845\pi\)
−0.997019 + 0.0771577i \(0.975416\pi\)
\(728\) −12.4230 35.3510i −0.460428 1.31019i
\(729\) −4.36309 −0.161596
\(730\) −11.4425 10.1090i −0.423507 0.374152i
\(731\) −1.88870 + 24.2666i −0.0698560 + 0.897532i
\(732\) 11.4894 10.6797i 0.424660 0.394733i
\(733\) 4.33241 0.160021 0.0800106 0.996794i \(-0.474505\pi\)
0.0800106 + 0.996794i \(0.474505\pi\)
\(734\) −30.3284 13.2160i −1.11944 0.487813i
\(735\) −3.34736 + 10.3553i −0.123469 + 0.381961i
\(736\) 13.6201 25.9103i 0.502043 0.955068i
\(737\) 21.8381 0.804416
\(738\) −3.85231 + 8.84035i −0.141805 + 0.325418i
\(739\) 15.8244i 0.582110i 0.956706 + 0.291055i \(0.0940062\pi\)
−0.956706 + 0.291055i \(0.905994\pi\)
\(740\) 43.8140 20.4260i 1.61064 0.750874i
\(741\) 31.0176 1.13946
\(742\) −19.6303 8.55416i −0.720650 0.314033i
\(743\) 18.2459 0.669377 0.334688 0.942329i \(-0.391369\pi\)
0.334688 + 0.942329i \(0.391369\pi\)
\(744\) 1.44731 + 4.11848i 0.0530611 + 0.150991i
\(745\) −15.0818 + 46.6566i −0.552555 + 1.70937i
\(746\) −42.0742 18.3344i −1.54045 0.671272i
\(747\) 15.3204 0.560544
\(748\) −11.9558 + 9.49574i −0.437148 + 0.347199i
\(749\) 21.1860i 0.774118i
\(750\) 32.5401 7.34140i 1.18820 0.268070i
\(751\) 31.8283i 1.16143i −0.814106 0.580716i \(-0.802773\pi\)
0.814106 0.580716i \(-0.197227\pi\)
\(752\) 15.2745 + 1.11723i 0.557005 + 0.0407413i
\(753\) −50.1211 −1.82652
\(754\) 26.6660 + 11.6201i 0.971120 + 0.423179i
\(755\) 31.1237 + 10.0608i 1.13271 + 0.366150i
\(756\) 10.3707 9.63989i 0.377180 0.350599i
\(757\) 29.8842 1.08616 0.543079 0.839681i \(-0.317258\pi\)
0.543079 + 0.839681i \(0.317258\pi\)
\(758\) −33.5456 14.6180i −1.21843 0.530949i
\(759\) 20.2132i 0.733691i
\(760\) 15.2005 0.384493i 0.551379 0.0139470i
\(761\) −22.4335 −0.813212 −0.406606 0.913604i \(-0.633288\pi\)
−0.406606 + 0.913604i \(0.633288\pi\)
\(762\) 21.0586 + 9.17659i 0.762874 + 0.332433i
\(763\) −38.1072 −1.37957
\(764\) 4.73826 + 5.09749i 0.171424 + 0.184421i
\(765\) 5.09008 12.3716i 0.184032 0.447295i
\(766\) −6.40685 + 14.7026i −0.231489 + 0.531225i
\(767\) 8.29006i 0.299337i
\(768\) −4.91178 + 33.3966i −0.177239 + 1.20510i
\(769\) −4.31813 −0.155716 −0.0778578 0.996964i \(-0.524808\pi\)
−0.0778578 + 0.996964i \(0.524808\pi\)
\(770\) 9.50572 + 8.39793i 0.342562 + 0.302640i
\(771\) 19.6292 0.706929
\(772\) 22.1935 + 23.8761i 0.798760 + 0.859318i
\(773\) 21.7080 0.780784 0.390392 0.920649i \(-0.372340\pi\)
0.390392 + 0.920649i \(0.372340\pi\)
\(774\) −11.1053 4.83930i −0.399173 0.173945i
\(775\) −2.14104 + 2.96568i −0.0769085 + 0.106531i
\(776\) −10.2116 29.0581i −0.366575 1.04313i
\(777\) −49.4042 −1.77237
\(778\) −8.42339 + 19.3302i −0.301993 + 0.693020i
\(779\) −11.2980 −0.404791
\(780\) −52.2939 + 24.3793i −1.87242 + 0.872919i
\(781\) 20.6363i 0.738426i
\(782\) 14.1636 26.6420i 0.506489 0.952717i
\(783\) 10.9916i 0.392807i
\(784\) 0.673141 9.20301i 0.0240408 0.328679i
\(785\) 15.8540 + 5.12484i 0.565855 + 0.182913i
\(786\) 10.1883 23.3802i 0.363403 0.833945i
\(787\) 39.6960i 1.41501i 0.706708 + 0.707505i \(0.250179\pi\)
−0.706708 + 0.707505i \(0.749821\pi\)
\(788\) −25.0720 + 23.3051i −0.893152 + 0.830210i
\(789\) 12.6489 0.450313
\(790\) −0.235407 + 0.266460i −0.00837539 + 0.00948021i
\(791\) 26.3325 0.936274
\(792\) −2.51933 7.16902i −0.0895206 0.254740i
\(793\) −22.7340 −0.807306
\(794\) 10.3364 23.7201i 0.366824 0.841795i
\(795\) −10.1416 + 31.3739i −0.359687 + 1.11272i
\(796\) 27.8778 25.9132i 0.988102 0.918469i
\(797\) −39.4371 −1.39693 −0.698466 0.715643i \(-0.746134\pi\)
−0.698466 + 0.715643i \(0.746134\pi\)
\(798\) −14.2458 6.20781i −0.504296 0.219754i
\(799\) 15.7391 + 1.22499i 0.556809 + 0.0433371i
\(800\) −25.3249 + 12.5955i −0.895372 + 0.445320i
\(801\) −14.5182 −0.512976
\(802\) −9.00652 + 20.6683i −0.318031 + 0.729824i
\(803\) −8.93964 −0.315473
\(804\) 36.4521 33.8832i 1.28557 1.19497i
\(805\) −23.8513 7.70996i −0.840647 0.271740i
\(806\) 2.52739 5.79991i 0.0890236 0.204293i
\(807\) 27.7202i 0.975796i
\(808\) −2.96757 + 1.04286i −0.104399 + 0.0366877i
\(809\) 16.9543i 0.596082i 0.954553 + 0.298041i \(0.0963333\pi\)
−0.954553 + 0.298041i \(0.903667\pi\)
\(810\) −26.6556 23.5492i −0.936583 0.827434i
\(811\) −0.243229 −0.00854091 −0.00427045 0.999991i \(-0.501359\pi\)
−0.00427045 + 0.999991i \(0.501359\pi\)
\(812\) −9.92160 10.6738i −0.348180 0.374577i
\(813\) 18.9901i 0.666010i
\(814\) 11.3069 25.9473i 0.396307 0.909452i
\(815\) −9.52707 + 29.4726i −0.333719 + 1.03238i
\(816\) −5.22335 + 34.4005i −0.182854 + 1.20426i
\(817\) 14.1926i 0.496535i
\(818\) −12.6508 5.51277i −0.442326 0.192750i
\(819\) 19.2228 0.671698
\(820\) 19.0477 8.88001i 0.665176 0.310103i
\(821\) −12.8973 −0.450119 −0.225060 0.974345i \(-0.572258\pi\)
−0.225060 + 0.974345i \(0.572258\pi\)
\(822\) 26.1677 + 11.4030i 0.912704 + 0.397724i
\(823\) 54.7637 1.90894 0.954471 0.298305i \(-0.0964212\pi\)
0.954471 + 0.298305i \(0.0964212\pi\)
\(824\) −25.3447 + 8.90663i −0.882925 + 0.310277i
\(825\) 11.4323 15.8356i 0.398022 0.551324i
\(826\) 1.65916 3.80747i 0.0577296 0.132479i
\(827\) 6.47155i 0.225038i −0.993650 0.112519i \(-0.964108\pi\)
0.993650 0.112519i \(-0.0358919\pi\)
\(828\) 10.2240 + 10.9991i 0.355307 + 0.382244i
\(829\) 11.7897i 0.409472i 0.978817 + 0.204736i \(0.0656336\pi\)
−0.978817 + 0.204736i \(0.934366\pi\)
\(830\) −25.0222 22.1061i −0.868532 0.767314i
\(831\) 50.3762 1.74753
\(832\) 38.1667 30.6046i 1.32319 1.06102i
\(833\) 0.738066 9.48291i 0.0255725 0.328563i
\(834\) −9.50293 + 21.8075i −0.329060 + 0.755133i
\(835\) 34.4210 + 11.1266i 1.19119 + 0.385053i
\(836\) 6.52073 6.06120i 0.225524 0.209631i
\(837\) 2.39069 0.0826342
\(838\) −0.870079 0.379149i −0.0300564 0.0130975i
\(839\) 25.5582i 0.882366i 0.897417 + 0.441183i \(0.145441\pi\)
−0.897417 + 0.441183i \(0.854559\pi\)
\(840\) 28.8969 0.730943i 0.997037 0.0252199i
\(841\) −17.6872 −0.609904
\(842\) −15.0828 + 34.6124i −0.519789 + 1.19282i
\(843\) 32.0777i 1.10481i
\(844\) 4.46777 + 4.80650i 0.153787 + 0.165446i
\(845\) 51.9065 + 16.7788i 1.78564 + 0.577209i
\(846\) −3.13873 + 7.20281i −0.107912 + 0.247638i
\(847\) −16.4034 −0.563629
\(848\) 2.03945 27.8828i 0.0700349 0.957498i
\(849\) −50.2779 −1.72553
\(850\) −26.1646 + 12.8614i −0.897438 + 0.441142i
\(851\) 55.9348i 1.91742i
\(852\) 32.0186 + 34.4461i 1.09694 + 1.18010i
\(853\) 39.1503i 1.34048i −0.742144 0.670240i \(-0.766191\pi\)
0.742144 0.670240i \(-0.233809\pi\)
\(854\) 10.4413 + 4.54994i 0.357294 + 0.155696i
\(855\) −2.39929 + 7.42238i −0.0820541 + 0.253840i
\(856\) 26.0962 9.17072i 0.891950 0.313449i
\(857\) 17.0651 0.582932 0.291466 0.956581i \(-0.405857\pi\)
0.291466 + 0.956581i \(0.405857\pi\)
\(858\) −13.4953 + 30.9692i −0.460721 + 1.05727i
\(859\) 21.7162i 0.740946i −0.928843 0.370473i \(-0.879196\pi\)
0.928843 0.370473i \(-0.120804\pi\)
\(860\) 11.1551 + 23.9279i 0.380387 + 0.815935i
\(861\) −21.4780 −0.731969
\(862\) 1.56751 3.59716i 0.0533897 0.122520i
\(863\) 6.55592i 0.223166i −0.993755 0.111583i \(-0.964408\pi\)
0.993755 0.111583i \(-0.0355921\pi\)
\(864\) 16.3633 + 8.60156i 0.556690 + 0.292631i
\(865\) 4.27731 13.2322i 0.145433 0.449907i
\(866\) 6.64679 15.2532i 0.225867 0.518324i
\(867\) −5.54932 + 35.4337i −0.188465 + 1.20339i
\(868\) −2.32157 + 2.15796i −0.0787992 + 0.0732461i
\(869\) 0.208175i 0.00706186i
\(870\) −14.8570 + 16.8168i −0.503699 + 0.570143i
\(871\) −72.1274 −2.44394
\(872\) −16.4954 46.9393i −0.558604 1.58956i
\(873\) 15.8009 0.534780
\(874\) −7.02840 + 16.1289i −0.237739 + 0.545569i
\(875\) 14.3251 + 19.5302i 0.484278 + 0.660241i
\(876\) −14.9220 + 13.8704i −0.504169 + 0.468639i
\(877\) 9.71283i 0.327979i −0.986462 0.163990i \(-0.947564\pi\)
0.986462 0.163990i \(-0.0524363\pi\)
\(878\) 17.6914 40.5987i 0.597057 1.37014i
\(879\) 28.3125i 0.954955i
\(880\) −6.22959 + 15.3440i −0.210000 + 0.517248i
\(881\) 18.1997i 0.613163i 0.951844 + 0.306581i \(0.0991851\pi\)
−0.951844 + 0.306581i \(0.900815\pi\)
\(882\) 4.33974 + 1.89110i 0.146127 + 0.0636768i
\(883\) −37.1100 −1.24885 −0.624426 0.781084i \(-0.714667\pi\)
−0.624426 + 0.781084i \(0.714667\pi\)
\(884\) 39.4880 31.3628i 1.32812 1.05484i
\(885\) −6.08526 1.96707i −0.204554 0.0661223i
\(886\) 45.0959 + 19.6512i 1.51502 + 0.660193i
\(887\) −15.0022 −0.503726 −0.251863 0.967763i \(-0.581043\pi\)
−0.251863 + 0.967763i \(0.581043\pi\)
\(888\) −21.3855 60.8546i −0.717650 2.04215i
\(889\) 16.6789i 0.559394i
\(890\) 23.7120 + 20.9486i 0.794828 + 0.702200i
\(891\) −20.8251 −0.697666
\(892\) 42.5317 39.5344i 1.42407 1.32371i
\(893\) −9.20517 −0.308039
\(894\) 59.9792 + 26.1368i 2.00601 + 0.874145i
\(895\) 9.69705 29.9985i 0.324137 1.00274i
\(896\) −23.6544 + 6.41751i −0.790239 + 0.214394i
\(897\) 66.7606i 2.22907i
\(898\) 11.0961 25.4635i 0.370281 0.849728i
\(899\) 2.46055i 0.0820640i
\(900\) −1.78879 14.3995i −0.0596264 0.479985i
\(901\) 2.23615 28.7308i 0.0744971 0.957162i
\(902\) 4.91557 11.2803i 0.163670 0.375594i
\(903\) 26.9808i 0.897866i
\(904\) 11.3985 + 32.4355i 0.379108 + 1.07879i
\(905\) −38.3475 12.3959i −1.27471 0.412053i
\(906\) 17.4354 40.0110i 0.579251 1.32928i
\(907\) 23.7320i 0.788009i −0.919108 0.394005i \(-0.871089\pi\)
0.919108 0.394005i \(-0.128911\pi\)
\(908\) −29.4411 + 27.3663i −0.977036 + 0.908182i
\(909\) 1.61367i 0.0535221i
\(910\) −31.3958 27.7369i −1.04076 0.919470i
\(911\) 39.2283i 1.29969i −0.760067 0.649845i \(-0.774834\pi\)
0.760067 0.649845i \(-0.225166\pi\)
\(912\) 1.48004 20.2347i 0.0490090 0.670038i
\(913\) −19.5489 −0.646974
\(914\) 1.96377 4.50650i 0.0649558 0.149062i
\(915\) 5.39432 16.6877i 0.178331 0.551678i
\(916\) 27.4487 25.5144i 0.906931 0.843018i
\(917\) 18.5177 0.611509
\(918\) 16.8254 + 8.94480i 0.555320 + 0.295222i
\(919\) −14.5875 −0.481198 −0.240599 0.970625i \(-0.577344\pi\)
−0.240599 + 0.970625i \(0.577344\pi\)
\(920\) −0.827564 32.7167i −0.0272840 1.07864i
\(921\) 61.2572i 2.01849i
\(922\) −2.73328 + 6.27238i −0.0900157 + 0.206570i
\(923\) 68.1582i 2.24346i
\(924\) 12.3963 11.5227i 0.407807 0.379068i
\(925\) 31.6360 43.8209i 1.04019 1.44082i
\(926\) 16.5195 37.9094i 0.542866 1.24578i
\(927\) 13.7817i 0.452650i
\(928\) 8.85292 16.8415i 0.290611 0.552848i
\(929\) 18.3897i 0.603348i 0.953411 + 0.301674i \(0.0975454\pi\)
−0.953411 + 0.301674i \(0.902455\pi\)
\(930\) 3.65768 + 3.23142i 0.119940 + 0.105962i
\(931\) 5.54618i 0.181769i
\(932\) 5.64230 + 6.07008i 0.184820 + 0.198832i
\(933\) 7.76202 0.254117
\(934\) 4.83493 + 2.10689i 0.158204 + 0.0689395i
\(935\) −6.49497 + 15.7862i −0.212408 + 0.516263i
\(936\) 8.32092 + 23.6780i 0.271978 + 0.773940i
\(937\) 31.7597i 1.03754i 0.854912 + 0.518772i \(0.173611\pi\)
−0.854912 + 0.518772i \(0.826389\pi\)
\(938\) 33.1268 + 14.4355i 1.08163 + 0.471335i
\(939\) 30.4524i 0.993775i
\(940\) 15.5194 7.23512i 0.506188 0.235983i
\(941\) 4.49157 0.146421 0.0732105 0.997317i \(-0.476676\pi\)
0.0732105 + 0.997317i \(0.476676\pi\)
\(942\) 8.88135 20.3811i 0.289370 0.664052i
\(943\) 24.3171i 0.791874i
\(944\) 5.40813 + 0.395570i 0.176020 + 0.0128747i
\(945\) 4.86911 15.0629i 0.158392 0.489997i
\(946\) 14.1704 + 6.17497i 0.460721 + 0.200766i
\(947\) 39.2638i 1.27590i 0.770077 + 0.637951i \(0.220218\pi\)
−0.770077 + 0.637951i \(0.779782\pi\)
\(948\) 0.322998 + 0.347486i 0.0104905 + 0.0112858i
\(949\) 29.5261 0.958457
\(950\) 14.6286 8.66068i 0.474613 0.280989i
\(951\) 0.289493 0.00938746
\(952\) −24.4130 + 6.50129i −0.791230 + 0.210708i
\(953\) 16.3843i 0.530739i 0.964147 + 0.265370i \(0.0854940\pi\)
−0.964147 + 0.265370i \(0.914506\pi\)
\(954\) 13.1483 + 5.72956i 0.425692 + 0.185501i
\(955\) 7.40382 + 2.39330i 0.239582 + 0.0774452i
\(956\) 12.9768 + 13.9606i 0.419698 + 0.451518i
\(957\) 13.1384i 0.424703i
\(958\) 16.8450 38.6562i 0.544237 1.24893i
\(959\) 20.7255i 0.669260i
\(960\) 13.4089 + 35.2779i 0.432770 + 1.13859i
\(961\) 30.4648 0.982736
\(962\) −37.3447 + 85.6994i −1.20404 + 2.76306i
\(963\) 14.1903i 0.457277i
\(964\) 1.61724 1.50327i 0.0520879 0.0484171i
\(965\) 34.6786 + 11.2099i 1.11634 + 0.360860i
\(966\) −13.3614 + 30.6619i −0.429895 + 0.986531i
\(967\) 33.3204i 1.07151i 0.844373 + 0.535756i \(0.179973\pi\)
−0.844373 + 0.535756i \(0.820027\pi\)
\(968\) −7.10052 20.2053i −0.228219 0.649422i
\(969\) 1.62279 20.8501i 0.0521315 0.669802i
\(970\) −25.8070 22.7994i −0.828612 0.732046i
\(971\) 55.2049i 1.77161i 0.464058 + 0.885805i \(0.346393\pi\)
−0.464058 + 0.885805i \(0.653607\pi\)
\(972\) −20.3996 + 18.9620i −0.654318 + 0.608207i
\(973\) −17.2721 −0.553718
\(974\) −22.3986 9.76049i −0.717696 0.312746i
\(975\) −37.7590 + 52.3022i −1.20925 + 1.67501i
\(976\) −1.08478 + 14.8308i −0.0347229 + 0.474722i
\(977\) 30.9280i 0.989476i −0.869042 0.494738i \(-0.835264\pi\)
0.869042 0.494738i \(-0.164736\pi\)
\(978\) 37.8884 + 16.5104i 1.21154 + 0.527945i
\(979\) 18.5253 0.592072
\(980\) −4.35921 9.35056i −0.139250 0.298693i
\(981\) 25.5241 0.814923
\(982\) 7.22847 16.5880i 0.230670 0.529345i
\(983\) 42.0498 1.34118 0.670590 0.741828i \(-0.266041\pi\)
0.670590 + 0.741828i \(0.266041\pi\)
\(984\) −9.29714 26.4559i −0.296382 0.843385i
\(985\) −11.7714 + 36.4156i −0.375068 + 1.16030i
\(986\) 9.20620 17.3171i 0.293185 0.551488i
\(987\) −17.4995 −0.557016
\(988\) −21.5369 + 20.0191i −0.685179 + 0.636893i
\(989\) −30.5474 −0.971349
\(990\) −6.36691 5.62492i −0.202354 0.178772i
\(991\) 15.3276i 0.486898i −0.969914 0.243449i \(-0.921721\pi\)
0.969914 0.243449i \(-0.0782788\pi\)
\(992\) −3.66305 1.92553i −0.116302 0.0611355i
\(993\) 47.4783 1.50668
\(994\) −13.6411 + 31.3038i −0.432669 + 0.992897i
\(995\) 13.0887 40.4909i 0.414941 1.28365i
\(996\) −32.6310 + 30.3314i −1.03395 + 0.961088i
\(997\) 17.8287i 0.564639i −0.959320 0.282320i \(-0.908896\pi\)
0.959320 0.282320i \(-0.0911039\pi\)
\(998\) 25.3750 + 11.0575i 0.803233 + 0.350020i
\(999\) −35.3248 −1.11763
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.b.509.35 yes 40
5.4 even 2 inner 680.2.h.b.509.6 yes 40
8.5 even 2 inner 680.2.h.b.509.8 yes 40
17.16 even 2 inner 680.2.h.b.509.36 yes 40
40.29 even 2 inner 680.2.h.b.509.33 yes 40
85.84 even 2 inner 680.2.h.b.509.5 40
136.101 even 2 inner 680.2.h.b.509.7 yes 40
680.509 even 2 inner 680.2.h.b.509.34 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.b.509.5 40 85.84 even 2 inner
680.2.h.b.509.6 yes 40 5.4 even 2 inner
680.2.h.b.509.7 yes 40 136.101 even 2 inner
680.2.h.b.509.8 yes 40 8.5 even 2 inner
680.2.h.b.509.33 yes 40 40.29 even 2 inner
680.2.h.b.509.34 yes 40 680.509 even 2 inner
680.2.h.b.509.35 yes 40 1.1 even 1 trivial
680.2.h.b.509.36 yes 40 17.16 even 2 inner