Properties

Label 680.2.h.b.509.20
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.20
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.b.509.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0956273 + 1.41098i) q^{2} +2.33268i q^{3} +(-1.98171 - 0.269856i) q^{4} +(1.97601 - 1.04660i) q^{5} +(-3.29135 - 0.223067i) q^{6} +4.43533 q^{7} +(0.570266 - 2.77034i) q^{8} -2.44138 q^{9} +(1.28777 + 2.88819i) q^{10} -2.45819 q^{11} +(0.629486 - 4.62269i) q^{12} +3.83628 q^{13} +(-0.424138 + 6.25814i) q^{14} +(2.44138 + 4.60940i) q^{15} +(3.85436 + 1.06955i) q^{16} +(-3.53348 + 2.12474i) q^{17} +(0.233462 - 3.44473i) q^{18} +6.37197i q^{19} +(-4.19832 + 1.54082i) q^{20} +10.3462i q^{21} +(0.235070 - 3.46845i) q^{22} +6.99487 q^{23} +(6.46231 + 1.33025i) q^{24} +(2.80926 - 4.13619i) q^{25} +(-0.366853 + 5.41290i) q^{26} +1.30309i q^{27} +(-8.78954 - 1.19690i) q^{28} -9.25840 q^{29} +(-6.73722 + 3.00394i) q^{30} -7.14810i q^{31} +(-1.87770 + 5.33613i) q^{32} -5.73417i q^{33} +(-2.66007 - 5.18884i) q^{34} +(8.76427 - 4.64201i) q^{35} +(4.83810 + 0.658820i) q^{36} -1.05872i q^{37} +(-8.99070 - 0.609334i) q^{38} +8.94879i q^{39} +(-1.77259 - 6.07107i) q^{40} -5.40889i q^{41} +(-14.5982 - 0.989377i) q^{42} -1.71430 q^{43} +(4.87143 + 0.663358i) q^{44} +(-4.82419 + 2.55514i) q^{45} +(-0.668901 + 9.86960i) q^{46} +1.62850i q^{47} +(-2.49492 + 8.99096i) q^{48} +12.6721 q^{49} +(5.56742 + 4.35933i) q^{50} +(-4.95634 - 8.24246i) q^{51} +(-7.60239 - 1.03524i) q^{52} -3.10774 q^{53} +(-1.83862 - 0.124611i) q^{54} +(-4.85742 + 2.57274i) q^{55} +(2.52932 - 12.2874i) q^{56} -14.8637 q^{57} +(0.885356 - 13.0634i) q^{58} +0.215973i q^{59} +(-3.59423 - 9.79332i) q^{60} -4.70860 q^{61} +(10.0858 + 0.683553i) q^{62} -10.8283 q^{63} +(-7.34959 - 3.15966i) q^{64} +(7.58053 - 4.01504i) q^{65} +(8.09078 + 0.548343i) q^{66} +9.28922 q^{67} +(7.57571 - 3.25710i) q^{68} +16.3168i q^{69} +(5.71167 + 12.8101i) q^{70} -6.57476i q^{71} +(-1.39223 + 6.76345i) q^{72} -10.8445 q^{73} +(1.49383 + 0.101243i) q^{74} +(9.64839 + 6.55309i) q^{75} +(1.71951 - 12.6274i) q^{76} -10.9029 q^{77} +(-12.6265 - 0.855748i) q^{78} +3.29578i q^{79} +(8.73565 - 1.92052i) q^{80} -10.3638 q^{81} +(7.63182 + 0.517237i) q^{82} -2.67900 q^{83} +(2.79198 - 20.5031i) q^{84} +(-4.75845 + 7.89666i) q^{85} +(0.163933 - 2.41883i) q^{86} -21.5968i q^{87} +(-1.40182 + 6.81004i) q^{88} -4.86695 q^{89} +(-3.14392 - 7.05117i) q^{90} +17.0151 q^{91} +(-13.8618 - 1.88761i) q^{92} +16.6742 q^{93} +(-2.29777 - 0.155729i) q^{94} +(6.66890 + 12.5911i) q^{95} +(-12.4475 - 4.38005i) q^{96} +5.84892 q^{97} +(-1.21180 + 17.8801i) q^{98} +6.00138 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{4} - 56 q^{9} + 56 q^{15} - 4 q^{16} - 36 q^{26} - 28 q^{30} + 24 q^{34} + 88 q^{36} + 8 q^{49} - 16 q^{50} - 88 q^{55} - 88 q^{60} - 132 q^{64} + 208 q^{66} + 72 q^{70} - 20 q^{76} - 56 q^{81}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0956273 + 1.41098i −0.0676187 + 0.997711i
\(3\) 2.33268i 1.34677i 0.739291 + 0.673386i \(0.235161\pi\)
−0.739291 + 0.673386i \(0.764839\pi\)
\(4\) −1.98171 0.269856i −0.990855 0.134928i
\(5\) 1.97601 1.04660i 0.883700 0.468053i
\(6\) −3.29135 0.223067i −1.34369 0.0910669i
\(7\) 4.43533 1.67640 0.838198 0.545366i \(-0.183609\pi\)
0.838198 + 0.545366i \(0.183609\pi\)
\(8\) 0.570266 2.77034i 0.201619 0.979464i
\(9\) −2.44138 −0.813792
\(10\) 1.28777 + 2.88819i 0.407228 + 0.913327i
\(11\) −2.45819 −0.741173 −0.370587 0.928798i \(-0.620843\pi\)
−0.370587 + 0.928798i \(0.620843\pi\)
\(12\) 0.629486 4.62269i 0.181717 1.33446i
\(13\) 3.83628 1.06399 0.531996 0.846747i \(-0.321442\pi\)
0.531996 + 0.846747i \(0.321442\pi\)
\(14\) −0.424138 + 6.25814i −0.113356 + 1.67256i
\(15\) 2.44138 + 4.60940i 0.630361 + 1.19014i
\(16\) 3.85436 + 1.06955i 0.963589 + 0.267388i
\(17\) −3.53348 + 2.12474i −0.856994 + 0.515326i
\(18\) 0.233462 3.44473i 0.0550276 0.811930i
\(19\) 6.37197i 1.46183i 0.682468 + 0.730915i \(0.260907\pi\)
−0.682468 + 0.730915i \(0.739093\pi\)
\(20\) −4.19832 + 1.54082i −0.938773 + 0.344537i
\(21\) 10.3462i 2.25772i
\(22\) 0.235070 3.46845i 0.0501172 0.739477i
\(23\) 6.99487 1.45853 0.729266 0.684231i \(-0.239862\pi\)
0.729266 + 0.684231i \(0.239862\pi\)
\(24\) 6.46231 + 1.33025i 1.31911 + 0.271535i
\(25\) 2.80926 4.13619i 0.561852 0.827238i
\(26\) −0.366853 + 5.41290i −0.0719457 + 1.06156i
\(27\) 1.30309i 0.250779i
\(28\) −8.78954 1.19690i −1.66107 0.226193i
\(29\) −9.25840 −1.71924 −0.859621 0.510932i \(-0.829300\pi\)
−0.859621 + 0.510932i \(0.829300\pi\)
\(30\) −6.73722 + 3.00394i −1.23004 + 0.548442i
\(31\) 7.14810i 1.28384i −0.766773 0.641918i \(-0.778139\pi\)
0.766773 0.641918i \(-0.221861\pi\)
\(32\) −1.87770 + 5.33613i −0.331933 + 0.943303i
\(33\) 5.73417i 0.998190i
\(34\) −2.66007 5.18884i −0.456198 0.889878i
\(35\) 8.76427 4.64201i 1.48143 0.784643i
\(36\) 4.83810 + 0.658820i 0.806351 + 0.109803i
\(37\) 1.05872i 0.174053i −0.996206 0.0870265i \(-0.972264\pi\)
0.996206 0.0870265i \(-0.0277365\pi\)
\(38\) −8.99070 0.609334i −1.45848 0.0988471i
\(39\) 8.94879i 1.43295i
\(40\) −1.77259 6.07107i −0.280270 0.959921i
\(41\) 5.40889i 0.844727i −0.906427 0.422363i \(-0.861201\pi\)
0.906427 0.422363i \(-0.138799\pi\)
\(42\) −14.5982 0.989377i −2.25255 0.152664i
\(43\) −1.71430 −0.261428 −0.130714 0.991420i \(-0.541727\pi\)
−0.130714 + 0.991420i \(0.541727\pi\)
\(44\) 4.87143 + 0.663358i 0.734395 + 0.100005i
\(45\) −4.82419 + 2.55514i −0.719148 + 0.380898i
\(46\) −0.668901 + 9.86960i −0.0986240 + 1.45519i
\(47\) 1.62850i 0.237540i 0.992922 + 0.118770i \(0.0378952\pi\)
−0.992922 + 0.118770i \(0.962105\pi\)
\(48\) −2.49492 + 8.99096i −0.360111 + 1.29773i
\(49\) 12.6721 1.81030
\(50\) 5.56742 + 4.35933i 0.787353 + 0.616503i
\(51\) −4.95634 8.24246i −0.694026 1.15418i
\(52\) −7.60239 1.03524i −1.05426 0.143562i
\(53\) −3.10774 −0.426880 −0.213440 0.976956i \(-0.568467\pi\)
−0.213440 + 0.976956i \(0.568467\pi\)
\(54\) −1.83862 0.124611i −0.250205 0.0169574i
\(55\) −4.85742 + 2.57274i −0.654975 + 0.346909i
\(56\) 2.52932 12.2874i 0.337994 1.64197i
\(57\) −14.8637 −1.96875
\(58\) 0.885356 13.0634i 0.116253 1.71531i
\(59\) 0.215973i 0.0281172i 0.999901 + 0.0140586i \(0.00447514\pi\)
−0.999901 + 0.0140586i \(0.995525\pi\)
\(60\) −3.59423 9.79332i −0.464013 1.26431i
\(61\) −4.70860 −0.602874 −0.301437 0.953486i \(-0.597466\pi\)
−0.301437 + 0.953486i \(0.597466\pi\)
\(62\) 10.0858 + 0.683553i 1.28090 + 0.0868114i
\(63\) −10.8283 −1.36424
\(64\) −7.34959 3.15966i −0.918699 0.394958i
\(65\) 7.58053 4.01504i 0.940249 0.498005i
\(66\) 8.09078 + 0.548343i 0.995906 + 0.0674963i
\(67\) 9.28922 1.13486 0.567429 0.823422i \(-0.307938\pi\)
0.567429 + 0.823422i \(0.307938\pi\)
\(68\) 7.57571 3.25710i 0.918689 0.394981i
\(69\) 16.3168i 1.96431i
\(70\) 5.71167 + 12.8101i 0.682675 + 1.53110i
\(71\) 6.57476i 0.780281i −0.920755 0.390140i \(-0.872426\pi\)
0.920755 0.390140i \(-0.127574\pi\)
\(72\) −1.39223 + 6.76345i −0.164076 + 0.797080i
\(73\) −10.8445 −1.26926 −0.634629 0.772817i \(-0.718847\pi\)
−0.634629 + 0.772817i \(0.718847\pi\)
\(74\) 1.49383 + 0.101243i 0.173655 + 0.0117692i
\(75\) 9.64839 + 6.55309i 1.11410 + 0.756686i
\(76\) 1.71951 12.6274i 0.197242 1.44846i
\(77\) −10.9029 −1.24250
\(78\) −12.6265 0.855748i −1.42967 0.0968944i
\(79\) 3.29578i 0.370804i 0.982663 + 0.185402i \(0.0593587\pi\)
−0.982663 + 0.185402i \(0.940641\pi\)
\(80\) 8.73565 1.92052i 0.976676 0.214720i
\(81\) −10.3638 −1.15153
\(82\) 7.63182 + 0.517237i 0.842793 + 0.0571193i
\(83\) −2.67900 −0.294059 −0.147029 0.989132i \(-0.546971\pi\)
−0.147029 + 0.989132i \(0.546971\pi\)
\(84\) 2.79198 20.5031i 0.304630 2.23708i
\(85\) −4.75845 + 7.89666i −0.516126 + 0.856513i
\(86\) 0.163933 2.41883i 0.0176774 0.260829i
\(87\) 21.5968i 2.31543i
\(88\) −1.40182 + 6.81004i −0.149435 + 0.725952i
\(89\) −4.86695 −0.515895 −0.257948 0.966159i \(-0.583046\pi\)
−0.257948 + 0.966159i \(0.583046\pi\)
\(90\) −3.14392 7.05117i −0.331399 0.743258i
\(91\) 17.0151 1.78367
\(92\) −13.8618 1.88761i −1.44519 0.196797i
\(93\) 16.6742 1.72903
\(94\) −2.29777 0.155729i −0.236997 0.0160622i
\(95\) 6.66890 + 12.5911i 0.684215 + 1.29182i
\(96\) −12.4475 4.38005i −1.27041 0.447037i
\(97\) 5.84892 0.593868 0.296934 0.954898i \(-0.404036\pi\)
0.296934 + 0.954898i \(0.404036\pi\)
\(98\) −1.21180 + 17.8801i −0.122410 + 1.80616i
\(99\) 6.00138 0.603161
\(100\) −6.68332 + 7.43864i −0.668332 + 0.743864i
\(101\) 14.0872i 1.40172i −0.713297 0.700862i \(-0.752799\pi\)
0.713297 0.700862i \(-0.247201\pi\)
\(102\) 12.1039 6.20507i 1.19846 0.614394i
\(103\) 13.4039i 1.32073i 0.750945 + 0.660365i \(0.229598\pi\)
−0.750945 + 0.660365i \(0.770402\pi\)
\(104\) 2.18770 10.6278i 0.214521 1.04214i
\(105\) 10.8283 + 20.4442i 1.05673 + 1.99515i
\(106\) 0.297184 4.38494i 0.0288651 0.425903i
\(107\) 10.8518i 1.04909i −0.851384 0.524543i \(-0.824236\pi\)
0.851384 0.524543i \(-0.175764\pi\)
\(108\) 0.351645 2.58234i 0.0338371 0.248486i
\(109\) 3.07252 0.294294 0.147147 0.989115i \(-0.452991\pi\)
0.147147 + 0.989115i \(0.452991\pi\)
\(110\) −3.16558 7.09973i −0.301826 0.676933i
\(111\) 2.46966 0.234410
\(112\) 17.0953 + 4.74381i 1.61536 + 0.448248i
\(113\) 10.7302 1.00941 0.504707 0.863291i \(-0.331601\pi\)
0.504707 + 0.863291i \(0.331601\pi\)
\(114\) 1.42138 20.9724i 0.133124 1.96424i
\(115\) 13.8220 7.32083i 1.28890 0.682671i
\(116\) 18.3475 + 2.49843i 1.70352 + 0.231974i
\(117\) −9.36579 −0.865868
\(118\) −0.304732 0.0206529i −0.0280529 0.00190125i
\(119\) −15.6721 + 9.42393i −1.43666 + 0.863890i
\(120\) 14.1618 4.13487i 1.29279 0.377460i
\(121\) −4.95729 −0.450663
\(122\) 0.450270 6.64372i 0.0407656 0.601494i
\(123\) 12.6172 1.13765
\(124\) −1.92896 + 14.1655i −0.173225 + 1.27210i
\(125\) 1.22220 11.1133i 0.109317 0.994007i
\(126\) 1.03548 15.2785i 0.0922480 1.36112i
\(127\) 7.53988i 0.669056i −0.942386 0.334528i \(-0.891423\pi\)
0.942386 0.334528i \(-0.108577\pi\)
\(128\) 5.16103 10.0680i 0.456175 0.889890i
\(129\) 3.99890i 0.352083i
\(130\) 4.94023 + 11.0799i 0.433287 + 0.971772i
\(131\) 4.30482 0.376114 0.188057 0.982158i \(-0.439781\pi\)
0.188057 + 0.982158i \(0.439781\pi\)
\(132\) −1.54740 + 11.3635i −0.134684 + 0.989062i
\(133\) 28.2618i 2.45061i
\(134\) −0.888303 + 13.1069i −0.0767377 + 1.13226i
\(135\) 1.36381 + 2.57492i 0.117378 + 0.221614i
\(136\) 3.87124 + 11.0006i 0.331956 + 0.943295i
\(137\) 18.4366i 1.57514i 0.616225 + 0.787570i \(0.288661\pi\)
−0.616225 + 0.787570i \(0.711339\pi\)
\(138\) −23.0226 1.56033i −1.95981 0.132824i
\(139\) −14.8960 −1.26346 −0.631729 0.775189i \(-0.717655\pi\)
−0.631729 + 0.775189i \(0.717655\pi\)
\(140\) −18.6209 + 6.83404i −1.57375 + 0.577581i
\(141\) −3.79875 −0.319913
\(142\) 9.27684 + 0.628727i 0.778495 + 0.0527616i
\(143\) −9.43030 −0.788602
\(144\) −9.40994 2.61118i −0.784161 0.217598i
\(145\) −18.2947 + 9.68984i −1.51929 + 0.804697i
\(146\) 1.03703 15.3014i 0.0858255 1.26635i
\(147\) 29.5600i 2.43807i
\(148\) −0.285703 + 2.09808i −0.0234846 + 0.172461i
\(149\) 18.2481i 1.49494i 0.664296 + 0.747469i \(0.268731\pi\)
−0.664296 + 0.747469i \(0.731269\pi\)
\(150\) −10.1689 + 12.9870i −0.830288 + 1.06038i
\(151\) 6.44649 0.524608 0.262304 0.964985i \(-0.415518\pi\)
0.262304 + 0.964985i \(0.415518\pi\)
\(152\) 17.6525 + 3.63372i 1.43181 + 0.294733i
\(153\) 8.62655 5.18730i 0.697415 0.419368i
\(154\) 1.04261 15.3837i 0.0840162 1.23966i
\(155\) −7.48120 14.1247i −0.600904 1.13453i
\(156\) 2.41488 17.7339i 0.193345 1.41985i
\(157\) 15.6941 1.25253 0.626264 0.779611i \(-0.284583\pi\)
0.626264 + 0.779611i \(0.284583\pi\)
\(158\) −4.65026 0.315166i −0.369955 0.0250733i
\(159\) 7.24934i 0.574910i
\(160\) 1.87444 + 12.5095i 0.148187 + 0.988959i
\(161\) 31.0245 2.44508
\(162\) 0.991063 14.6231i 0.0778653 1.14890i
\(163\) 3.75801i 0.294350i −0.989110 0.147175i \(-0.952982\pi\)
0.989110 0.147175i \(-0.0470180\pi\)
\(164\) −1.45962 + 10.7189i −0.113977 + 0.837002i
\(165\) −6.00138 11.3308i −0.467206 0.882101i
\(166\) 0.256186 3.78001i 0.0198839 0.293386i
\(167\) −16.3629 −1.26620 −0.633099 0.774071i \(-0.718217\pi\)
−0.633099 + 0.774071i \(0.718217\pi\)
\(168\) 28.6625 + 5.90007i 2.21136 + 0.455201i
\(169\) 1.71701 0.132078
\(170\) −10.6870 7.46919i −0.819653 0.572861i
\(171\) 15.5564i 1.18963i
\(172\) 3.39724 + 0.462613i 0.259037 + 0.0352739i
\(173\) 18.2677i 1.38887i −0.719557 0.694434i \(-0.755655\pi\)
0.719557 0.694434i \(-0.244345\pi\)
\(174\) 30.4727 + 2.06525i 2.31013 + 0.156566i
\(175\) 12.4600 18.3454i 0.941887 1.38678i
\(176\) −9.47475 2.62917i −0.714186 0.198181i
\(177\) −0.503794 −0.0378675
\(178\) 0.465413 6.86715i 0.0348842 0.514715i
\(179\) 2.03423i 0.152046i −0.997106 0.0760229i \(-0.975778\pi\)
0.997106 0.0760229i \(-0.0242222\pi\)
\(180\) 10.2497 3.76172i 0.763966 0.280382i
\(181\) −1.03279 −0.0767664 −0.0383832 0.999263i \(-0.512221\pi\)
−0.0383832 + 0.999263i \(0.512221\pi\)
\(182\) −1.62711 + 24.0080i −0.120610 + 1.77959i
\(183\) 10.9836i 0.811933i
\(184\) 3.98894 19.3782i 0.294068 1.42858i
\(185\) −1.10806 2.09205i −0.0814661 0.153811i
\(186\) −1.59451 + 23.5269i −0.116915 + 1.72508i
\(187\) 8.68597 5.22303i 0.635181 0.381946i
\(188\) 0.439459 3.22721i 0.0320508 0.235368i
\(189\) 5.77962i 0.420405i
\(190\) −18.4035 + 8.20561i −1.33513 + 0.595298i
\(191\) 9.17203 0.663665 0.331832 0.943338i \(-0.392333\pi\)
0.331832 + 0.943338i \(0.392333\pi\)
\(192\) 7.37047 17.1442i 0.531918 1.23728i
\(193\) 8.34085 0.600387 0.300194 0.953878i \(-0.402949\pi\)
0.300194 + 0.953878i \(0.402949\pi\)
\(194\) −0.559316 + 8.25269i −0.0401566 + 0.592508i
\(195\) 9.36579 + 17.6829i 0.670698 + 1.26630i
\(196\) −25.1125 3.41965i −1.79375 0.244261i
\(197\) 15.1384i 1.07857i −0.842125 0.539283i \(-0.818695\pi\)
0.842125 0.539283i \(-0.181305\pi\)
\(198\) −0.573895 + 8.46780i −0.0407850 + 0.601780i
\(199\) 1.13639i 0.0805566i −0.999189 0.0402783i \(-0.987176\pi\)
0.999189 0.0402783i \(-0.0128245\pi\)
\(200\) −9.85663 10.1413i −0.696969 0.717101i
\(201\) 21.6687i 1.52839i
\(202\) 19.8767 + 1.34712i 1.39852 + 0.0947828i
\(203\) −41.0640 −2.88213
\(204\) 7.59775 + 17.6717i 0.531949 + 1.23726i
\(205\) −5.66094 10.6880i −0.395377 0.746485i
\(206\) −18.9127 1.28178i −1.31771 0.0893061i
\(207\) −17.0771 −1.18694
\(208\) 14.7864 + 4.10310i 1.02525 + 0.284499i
\(209\) 15.6635i 1.08347i
\(210\) −29.8818 + 13.3235i −2.06204 + 0.919407i
\(211\) 0.896057 0.0616871 0.0308436 0.999524i \(-0.490181\pi\)
0.0308436 + 0.999524i \(0.490181\pi\)
\(212\) 6.15864 + 0.838641i 0.422977 + 0.0575981i
\(213\) 15.3368 1.05086
\(214\) 15.3117 + 1.03773i 1.04669 + 0.0709379i
\(215\) −3.38747 + 1.79418i −0.231024 + 0.122362i
\(216\) 3.61000 + 0.743106i 0.245629 + 0.0505619i
\(217\) 31.7042i 2.15222i
\(218\) −0.293816 + 4.33525i −0.0198998 + 0.293620i
\(219\) 25.2968i 1.70940i
\(220\) 10.3203 3.78763i 0.695793 0.255362i
\(221\) −13.5554 + 8.15110i −0.911834 + 0.548302i
\(222\) −0.236167 + 3.48463i −0.0158505 + 0.233873i
\(223\) 21.4412i 1.43581i −0.696141 0.717905i \(-0.745101\pi\)
0.696141 0.717905i \(-0.254899\pi\)
\(224\) −8.32819 + 23.6675i −0.556451 + 1.58135i
\(225\) −6.85846 + 10.0980i −0.457231 + 0.673200i
\(226\) −1.02610 + 15.1401i −0.0682552 + 1.00710i
\(227\) 20.2679i 1.34523i 0.739993 + 0.672614i \(0.234829\pi\)
−0.739993 + 0.672614i \(0.765171\pi\)
\(228\) 29.4556 + 4.01107i 1.95075 + 0.265639i
\(229\) 17.8132i 1.17713i −0.808450 0.588565i \(-0.799693\pi\)
0.808450 0.588565i \(-0.200307\pi\)
\(230\) 9.00776 + 20.2025i 0.593954 + 1.33212i
\(231\) 25.4329i 1.67336i
\(232\) −5.27975 + 25.6489i −0.346633 + 1.68394i
\(233\) −2.38936 −0.156532 −0.0782661 0.996933i \(-0.524938\pi\)
−0.0782661 + 0.996933i \(0.524938\pi\)
\(234\) 0.895626 13.2149i 0.0585489 0.863886i
\(235\) 1.70438 + 3.21793i 0.111182 + 0.209915i
\(236\) 0.0582815 0.427995i 0.00379380 0.0278601i
\(237\) −7.68798 −0.499388
\(238\) −11.7983 23.0142i −0.764768 1.49179i
\(239\) 3.32924 0.215351 0.107675 0.994186i \(-0.465659\pi\)
0.107675 + 0.994186i \(0.465659\pi\)
\(240\) 4.47994 + 20.3774i 0.289179 + 1.31536i
\(241\) 18.0407i 1.16210i −0.813867 0.581052i \(-0.802641\pi\)
0.813867 0.581052i \(-0.197359\pi\)
\(242\) 0.474052 6.99462i 0.0304732 0.449631i
\(243\) 20.2661i 1.30007i
\(244\) 9.33108 + 1.27064i 0.597361 + 0.0813445i
\(245\) 25.0403 13.2626i 1.59977 0.847319i
\(246\) −1.20655 + 17.8026i −0.0769267 + 1.13505i
\(247\) 24.4446i 1.55537i
\(248\) −19.8027 4.07632i −1.25747 0.258846i
\(249\) 6.24924i 0.396030i
\(250\) 15.5638 + 2.78724i 0.984340 + 0.176280i
\(251\) 14.7881i 0.933419i −0.884411 0.466709i \(-0.845439\pi\)
0.884411 0.466709i \(-0.154561\pi\)
\(252\) 21.4586 + 2.92208i 1.35176 + 0.184074i
\(253\) −17.1947 −1.08102
\(254\) 10.6386 + 0.721019i 0.667525 + 0.0452407i
\(255\) −18.4203 11.0999i −1.15353 0.695103i
\(256\) 13.7121 + 8.24487i 0.857007 + 0.515304i
\(257\) 3.16673i 0.197535i −0.995111 0.0987676i \(-0.968510\pi\)
0.995111 0.0987676i \(-0.0314901\pi\)
\(258\) 5.64235 + 0.382404i 0.351277 + 0.0238074i
\(259\) 4.69579i 0.291782i
\(260\) −16.1059 + 5.91100i −0.998846 + 0.366585i
\(261\) 22.6032 1.39911
\(262\) −0.411658 + 6.07400i −0.0254323 + 0.375253i
\(263\) 21.0845i 1.30013i 0.759880 + 0.650063i \(0.225258\pi\)
−0.759880 + 0.650063i \(0.774742\pi\)
\(264\) −15.8856 3.27000i −0.977692 0.201255i
\(265\) −6.14093 + 3.25256i −0.377234 + 0.199803i
\(266\) −39.8767 2.70260i −2.44500 0.165707i
\(267\) 11.3530i 0.694793i
\(268\) −18.4085 2.50675i −1.12448 0.153124i
\(269\) 3.79202 0.231203 0.115602 0.993296i \(-0.463120\pi\)
0.115602 + 0.993296i \(0.463120\pi\)
\(270\) −3.76356 + 1.67807i −0.229043 + 0.102124i
\(271\) 20.2352 1.22920 0.614599 0.788839i \(-0.289318\pi\)
0.614599 + 0.788839i \(0.289318\pi\)
\(272\) −15.8918 + 4.41028i −0.963582 + 0.267412i
\(273\) 39.6908i 2.40220i
\(274\) −26.0135 1.76304i −1.57154 0.106509i
\(275\) −6.90570 + 10.1676i −0.416430 + 0.613126i
\(276\) 4.40317 32.3351i 0.265040 1.94635i
\(277\) 11.7708i 0.707241i 0.935389 + 0.353621i \(0.115050\pi\)
−0.935389 + 0.353621i \(0.884950\pi\)
\(278\) 1.42446 21.0178i 0.0854334 1.26057i
\(279\) 17.4512i 1.04478i
\(280\) −7.86200 26.9272i −0.469844 1.60921i
\(281\) −12.1576 −0.725262 −0.362631 0.931933i \(-0.618121\pi\)
−0.362631 + 0.931933i \(0.618121\pi\)
\(282\) 0.363264 5.35995i 0.0216321 0.319180i
\(283\) 0.633186i 0.0376390i 0.999823 + 0.0188195i \(0.00599079\pi\)
−0.999823 + 0.0188195i \(0.994009\pi\)
\(284\) −1.77424 + 13.0293i −0.105282 + 0.773145i
\(285\) −29.3710 + 15.5564i −1.73979 + 0.921481i
\(286\) 0.901795 13.3059i 0.0533242 0.786797i
\(287\) 23.9902i 1.41610i
\(288\) 4.58416 13.0275i 0.270124 0.767653i
\(289\) 7.97093 15.0155i 0.468878 0.883263i
\(290\) −11.9227 26.7400i −0.700123 1.57023i
\(291\) 13.6436i 0.799804i
\(292\) 21.4907 + 2.92646i 1.25765 + 0.171258i
\(293\) −24.3103 −1.42022 −0.710111 0.704090i \(-0.751355\pi\)
−0.710111 + 0.704090i \(0.751355\pi\)
\(294\) −41.7084 2.82674i −2.43249 0.164859i
\(295\) 0.226037 + 0.426765i 0.0131604 + 0.0248472i
\(296\) −2.93303 0.603754i −0.170479 0.0350925i
\(297\) 3.20324i 0.185871i
\(298\) −25.7476 1.74501i −1.49152 0.101086i
\(299\) 26.8343 1.55186
\(300\) −17.3519 15.5900i −1.00181 0.900090i
\(301\) −7.60346 −0.438256
\(302\) −0.616460 + 9.09585i −0.0354733 + 0.523407i
\(303\) 32.8608 1.88780
\(304\) −6.81516 + 24.5598i −0.390876 + 1.40860i
\(305\) −9.30425 + 4.92801i −0.532760 + 0.282177i
\(306\) 6.49422 + 12.6679i 0.371250 + 0.724176i
\(307\) 5.01197 0.286048 0.143024 0.989719i \(-0.454317\pi\)
0.143024 + 0.989719i \(0.454317\pi\)
\(308\) 21.6064 + 2.94221i 1.23114 + 0.167648i
\(309\) −31.2671 −1.77872
\(310\) 20.6451 9.20508i 1.17256 0.522814i
\(311\) 3.69611i 0.209587i 0.994494 + 0.104794i \(0.0334182\pi\)
−0.994494 + 0.104794i \(0.966582\pi\)
\(312\) 24.7912 + 5.10319i 1.40353 + 0.288911i
\(313\) 7.88878 0.445900 0.222950 0.974830i \(-0.428431\pi\)
0.222950 + 0.974830i \(0.428431\pi\)
\(314\) −1.50079 + 22.1440i −0.0846943 + 1.24966i
\(315\) −21.3969 + 11.3329i −1.20558 + 0.638537i
\(316\) 0.889384 6.53128i 0.0500318 0.367413i
\(317\) 11.9767i 0.672678i 0.941741 + 0.336339i \(0.109189\pi\)
−0.941741 + 0.336339i \(0.890811\pi\)
\(318\) 10.2287 + 0.693235i 0.573594 + 0.0388747i
\(319\) 22.7589 1.27426
\(320\) −17.8298 + 1.44854i −0.996716 + 0.0809759i
\(321\) 25.3138 1.41288
\(322\) −2.96679 + 43.7749i −0.165333 + 2.43948i
\(323\) −13.5388 22.5152i −0.753319 1.25278i
\(324\) 20.5381 + 2.79673i 1.14100 + 0.155374i
\(325\) 10.7771 15.8676i 0.597806 0.880174i
\(326\) 5.30246 + 0.359368i 0.293676 + 0.0199035i
\(327\) 7.16718i 0.396346i
\(328\) −14.9845 3.08451i −0.827379 0.170313i
\(329\) 7.22291i 0.398212i
\(330\) 16.5614 7.38427i 0.911674 0.406491i
\(331\) 15.3360i 0.842943i 0.906842 + 0.421472i \(0.138486\pi\)
−0.906842 + 0.421472i \(0.861514\pi\)
\(332\) 5.30900 + 0.722944i 0.291369 + 0.0396767i
\(333\) 2.58474i 0.141643i
\(334\) 1.56474 23.0876i 0.0856186 1.26330i
\(335\) 18.3556 9.72209i 1.00287 0.531174i
\(336\) −11.0658 + 39.8779i −0.603688 + 2.17552i
\(337\) −15.2572 −0.831112 −0.415556 0.909568i \(-0.636413\pi\)
−0.415556 + 0.909568i \(0.636413\pi\)
\(338\) −0.164193 + 2.42266i −0.00893091 + 0.131775i
\(339\) 25.0301i 1.35945i
\(340\) 11.5608 14.3648i 0.626974 0.779040i
\(341\) 17.5714i 0.951545i
\(342\) 21.9497 + 1.48761i 1.18690 + 0.0804410i
\(343\) 25.1578 1.35839
\(344\) −0.977604 + 4.74919i −0.0527089 + 0.256059i
\(345\) 17.0771 + 32.2422i 0.919401 + 1.73586i
\(346\) 25.7753 + 1.74689i 1.38569 + 0.0939134i
\(347\) 17.9160i 0.961781i −0.876781 0.480891i \(-0.840313\pi\)
0.876781 0.480891i \(-0.159687\pi\)
\(348\) −5.82803 + 42.7987i −0.312415 + 2.29425i
\(349\) 24.1567i 1.29308i −0.762881 0.646539i \(-0.776216\pi\)
0.762881 0.646539i \(-0.223784\pi\)
\(350\) 24.6934 + 19.3351i 1.31992 + 1.03350i
\(351\) 4.99900i 0.266827i
\(352\) 4.61574 13.1172i 0.246020 0.699151i
\(353\) 16.9274i 0.900953i −0.892788 0.450477i \(-0.851254\pi\)
0.892788 0.450477i \(-0.148746\pi\)
\(354\) 0.0481765 0.710842i 0.00256055 0.0377808i
\(355\) −6.88114 12.9918i −0.365213 0.689534i
\(356\) 9.64488 + 1.31337i 0.511178 + 0.0696087i
\(357\) −21.9830 36.5580i −1.16346 1.93485i
\(358\) 2.87026 + 0.194528i 0.151698 + 0.0102811i
\(359\) −19.3984 −1.02381 −0.511904 0.859043i \(-0.671059\pi\)
−0.511904 + 0.859043i \(0.671059\pi\)
\(360\) 4.32755 + 14.8218i 0.228082 + 0.781176i
\(361\) −21.6020 −1.13695
\(362\) 0.0987626 1.45724i 0.00519085 0.0765907i
\(363\) 11.5637i 0.606939i
\(364\) −33.7191 4.59163i −1.76736 0.240667i
\(365\) −21.4290 + 11.3499i −1.12164 + 0.594080i
\(366\) 15.4976 + 1.05033i 0.810075 + 0.0549019i
\(367\) −22.5468 −1.17694 −0.588468 0.808521i \(-0.700269\pi\)
−0.588468 + 0.808521i \(0.700269\pi\)
\(368\) 26.9607 + 7.48138i 1.40542 + 0.389994i
\(369\) 13.2051i 0.687432i
\(370\) 3.05780 1.36339i 0.158967 0.0708792i
\(371\) −13.7838 −0.715621
\(372\) −33.0434 4.49963i −1.71322 0.233295i
\(373\) 32.3191 1.67342 0.836710 0.547646i \(-0.184476\pi\)
0.836710 + 0.547646i \(0.184476\pi\)
\(374\) 6.53896 + 12.7552i 0.338121 + 0.659554i
\(375\) 25.9238 + 2.85100i 1.33870 + 0.147225i
\(376\) 4.51149 + 0.928675i 0.232662 + 0.0478928i
\(377\) −35.5178 −1.82926
\(378\) −8.15490 0.552689i −0.419443 0.0284273i
\(379\) 11.7582 0.603979 0.301989 0.953311i \(-0.402349\pi\)
0.301989 + 0.953311i \(0.402349\pi\)
\(380\) −9.81805 26.7516i −0.503655 1.37233i
\(381\) 17.5881 0.901066
\(382\) −0.877096 + 12.9415i −0.0448762 + 0.662146i
\(383\) 23.9366i 1.22311i 0.791204 + 0.611553i \(0.209455\pi\)
−0.791204 + 0.611553i \(0.790545\pi\)
\(384\) 23.4853 + 12.0390i 1.19848 + 0.614364i
\(385\) −21.5443 + 11.4110i −1.09800 + 0.581556i
\(386\) −0.797613 + 11.7687i −0.0405974 + 0.599013i
\(387\) 4.18524 0.212748
\(388\) −11.5909 1.57836i −0.588437 0.0801293i
\(389\) 1.72401i 0.0874106i −0.999044 0.0437053i \(-0.986084\pi\)
0.999044 0.0437053i \(-0.0139163\pi\)
\(390\) −25.8458 + 11.5239i −1.30875 + 0.583538i
\(391\) −24.7162 + 14.8623i −1.24995 + 0.751619i
\(392\) 7.22649 35.1061i 0.364993 1.77313i
\(393\) 10.0418i 0.506540i
\(394\) 21.3599 + 1.44764i 1.07610 + 0.0729312i
\(395\) 3.44936 + 6.51250i 0.173556 + 0.327679i
\(396\) −11.8930 1.61951i −0.597645 0.0813832i
\(397\) 0.572727i 0.0287444i −0.999897 0.0143722i \(-0.995425\pi\)
0.999897 0.0143722i \(-0.00457496\pi\)
\(398\) 1.60342 + 0.108670i 0.0803722 + 0.00544713i
\(399\) −65.9256 −3.30041
\(400\) 15.2518 12.9377i 0.762588 0.646885i
\(401\) 0.0285393i 0.00142518i 1.00000 0.000712592i \(0.000226825\pi\)
−1.00000 0.000712592i \(0.999773\pi\)
\(402\) −30.5741 2.07212i −1.52490 0.103348i
\(403\) 27.4221i 1.36599i
\(404\) −3.80150 + 27.9167i −0.189132 + 1.38891i
\(405\) −20.4790 + 10.8468i −1.01761 + 0.538980i
\(406\) 3.92684 57.9404i 0.194886 2.87553i
\(407\) 2.60255i 0.129003i
\(408\) −25.6609 + 9.03036i −1.27040 + 0.447069i
\(409\) 4.23076 0.209197 0.104599 0.994515i \(-0.466644\pi\)
0.104599 + 0.994515i \(0.466644\pi\)
\(410\) 15.6219 6.96539i 0.771511 0.343996i
\(411\) −43.0065 −2.12135
\(412\) 3.61713 26.5628i 0.178203 1.30865i
\(413\) 0.957909i 0.0471356i
\(414\) 1.63304 24.0954i 0.0802595 1.18423i
\(415\) −5.29374 + 2.80384i −0.259860 + 0.137635i
\(416\) −7.20335 + 20.4709i −0.353174 + 1.00367i
\(417\) 34.7474i 1.70159i
\(418\) 22.1009 + 1.49786i 1.08099 + 0.0732628i
\(419\) 24.3348 1.18883 0.594415 0.804158i \(-0.297383\pi\)
0.594415 + 0.804158i \(0.297383\pi\)
\(420\) −15.9416 43.4366i −0.777870 2.11949i
\(421\) 2.75894i 0.134463i −0.997737 0.0672313i \(-0.978583\pi\)
0.997737 0.0672313i \(-0.0214165\pi\)
\(422\) −0.0856875 + 1.26432i −0.00417120 + 0.0615459i
\(423\) 3.97577i 0.193309i
\(424\) −1.77224 + 8.60949i −0.0860674 + 0.418114i
\(425\) −1.13812 + 20.5841i −0.0552068 + 0.998475i
\(426\) −1.46662 + 21.6399i −0.0710578 + 1.04845i
\(427\) −20.8842 −1.01066
\(428\) −2.92843 + 21.5052i −0.141551 + 1.03949i
\(429\) 21.9978i 1.06207i
\(430\) −2.20761 4.95122i −0.106461 0.238769i
\(431\) 4.51067i 0.217272i −0.994082 0.108636i \(-0.965352\pi\)
0.994082 0.108636i \(-0.0346482\pi\)
\(432\) −1.39372 + 5.02256i −0.0670553 + 0.241648i
\(433\) 7.71397i 0.370710i 0.982672 + 0.185355i \(0.0593434\pi\)
−0.982672 + 0.185355i \(0.940657\pi\)
\(434\) 44.7338 + 3.03178i 2.14729 + 0.145530i
\(435\) −22.6032 42.6757i −1.08374 2.04614i
\(436\) −6.08884 0.829136i −0.291602 0.0397084i
\(437\) 44.5711i 2.13213i
\(438\) 35.6932 + 2.41906i 1.70549 + 0.115587i
\(439\) 35.7538i 1.70643i 0.521557 + 0.853217i \(0.325352\pi\)
−0.521557 + 0.853217i \(0.674648\pi\)
\(440\) 4.35736 + 14.9239i 0.207729 + 0.711468i
\(441\) −30.9375 −1.47321
\(442\) −10.2047 19.9058i −0.485390 0.946823i
\(443\) 0.775272 0.0368343 0.0184171 0.999830i \(-0.494137\pi\)
0.0184171 + 0.999830i \(0.494137\pi\)
\(444\) −4.89415 0.666452i −0.232266 0.0316284i
\(445\) −9.61715 + 5.09374i −0.455897 + 0.241467i
\(446\) 30.2530 + 2.05036i 1.43252 + 0.0970876i
\(447\) −42.5668 −2.01334
\(448\) −32.5979 14.0141i −1.54010 0.662106i
\(449\) 26.7849i 1.26406i −0.774945 0.632028i \(-0.782223\pi\)
0.774945 0.632028i \(-0.217777\pi\)
\(450\) −13.5922 10.6428i −0.640742 0.501705i
\(451\) 13.2961i 0.626089i
\(452\) −21.2642 2.89561i −1.00018 0.136198i
\(453\) 15.0376i 0.706527i
\(454\) −28.5976 1.93817i −1.34215 0.0909626i
\(455\) 33.6221 17.8080i 1.57623 0.834853i
\(456\) −8.47629 + 41.1777i −0.396938 + 1.92832i
\(457\) 20.5494i 0.961260i −0.876924 0.480630i \(-0.840408\pi\)
0.876924 0.480630i \(-0.159592\pi\)
\(458\) 25.1340 + 1.70343i 1.17444 + 0.0795960i
\(459\) −2.76872 4.60443i −0.129233 0.214916i
\(460\) −29.3667 + 10.7778i −1.36923 + 0.502519i
\(461\) 7.04005i 0.327888i −0.986470 0.163944i \(-0.947578\pi\)
0.986470 0.163944i \(-0.0524216\pi\)
\(462\) 35.8852 + 2.43208i 1.66953 + 0.113151i
\(463\) 13.1319i 0.610293i 0.952305 + 0.305147i \(0.0987054\pi\)
−0.952305 + 0.305147i \(0.901295\pi\)
\(464\) −35.6852 9.90234i −1.65664 0.459705i
\(465\) 32.9484 17.4512i 1.52795 0.809280i
\(466\) 0.228488 3.37133i 0.0105845 0.156174i
\(467\) −26.5329 −1.22779 −0.613897 0.789386i \(-0.710399\pi\)
−0.613897 + 0.789386i \(0.710399\pi\)
\(468\) 18.5603 + 2.52741i 0.857950 + 0.116830i
\(469\) 41.2007 1.90247
\(470\) −4.70341 + 2.09712i −0.216952 + 0.0967330i
\(471\) 36.6093i 1.68687i
\(472\) 0.598318 + 0.123162i 0.0275398 + 0.00566898i
\(473\) 4.21407 0.193763
\(474\) 0.735181 10.8476i 0.0337680 0.498245i
\(475\) 26.3557 + 17.9005i 1.20928 + 0.821332i
\(476\) 33.6007 14.4463i 1.54009 0.662145i
\(477\) 7.58716 0.347392
\(478\) −0.318367 + 4.69749i −0.0145618 + 0.214858i
\(479\) 36.7590i 1.67956i 0.542925 + 0.839781i \(0.317317\pi\)
−0.542925 + 0.839781i \(0.682683\pi\)
\(480\) −29.1805 + 4.37245i −1.33190 + 0.199574i
\(481\) 4.06156i 0.185191i
\(482\) 25.4550 + 1.72518i 1.15944 + 0.0785799i
\(483\) 72.3702i 3.29296i
\(484\) 9.82391 + 1.33775i 0.446541 + 0.0608069i
\(485\) 11.5575 6.12147i 0.524801 0.277962i
\(486\) 28.5951 + 1.93800i 1.29710 + 0.0879093i
\(487\) 34.4121 1.55936 0.779680 0.626178i \(-0.215382\pi\)
0.779680 + 0.626178i \(0.215382\pi\)
\(488\) −2.68515 + 13.0444i −0.121551 + 0.590493i
\(489\) 8.76621 0.396422
\(490\) 16.3187 + 36.5996i 0.737206 + 1.65340i
\(491\) 26.0606i 1.17610i 0.808825 + 0.588050i \(0.200104\pi\)
−0.808825 + 0.588050i \(0.799896\pi\)
\(492\) −25.0036 3.40482i −1.12725 0.153501i
\(493\) 32.7144 19.6717i 1.47338 0.885970i
\(494\) −34.4908 2.33757i −1.55181 0.105172i
\(495\) 11.8588 6.28104i 0.533013 0.282312i
\(496\) 7.64527 27.5513i 0.343283 1.23709i
\(497\) 29.1612i 1.30806i
\(498\) 8.81753 + 0.597598i 0.395123 + 0.0267790i
\(499\) −6.50237 −0.291086 −0.145543 0.989352i \(-0.546493\pi\)
−0.145543 + 0.989352i \(0.546493\pi\)
\(500\) −5.42105 + 21.6936i −0.242437 + 0.970167i
\(501\) 38.1693i 1.70528i
\(502\) 20.8657 + 1.41415i 0.931283 + 0.0631166i
\(503\) 0.744731 0.0332059 0.0166029 0.999862i \(-0.494715\pi\)
0.0166029 + 0.999862i \(0.494715\pi\)
\(504\) −6.17501 + 29.9981i −0.275057 + 1.33622i
\(505\) −14.7436 27.8364i −0.656082 1.23870i
\(506\) 1.64429 24.2614i 0.0730975 1.07855i
\(507\) 4.00522i 0.177878i
\(508\) −2.03468 + 14.9419i −0.0902744 + 0.662938i
\(509\) 18.3771i 0.814550i −0.913306 0.407275i \(-0.866479\pi\)
0.913306 0.407275i \(-0.133521\pi\)
\(510\) 17.4232 24.9292i 0.771513 1.10388i
\(511\) −48.0991 −2.12778
\(512\) −12.9446 + 18.5590i −0.572075 + 0.820202i
\(513\) −8.30323 −0.366596
\(514\) 4.46818 + 0.302826i 0.197083 + 0.0133571i
\(515\) 14.0286 + 26.4864i 0.618172 + 1.16713i
\(516\) −1.07913 + 7.92466i −0.0475058 + 0.348864i
\(517\) 4.00316i 0.176059i
\(518\) 6.62565 + 0.449045i 0.291114 + 0.0197299i
\(519\) 42.6126 1.87049
\(520\) −6.80012 23.2903i −0.298205 1.02135i
\(521\) 16.6952i 0.731431i −0.930727 0.365716i \(-0.880824\pi\)
0.930727 0.365716i \(-0.119176\pi\)
\(522\) −2.16149 + 31.8927i −0.0946057 + 1.39590i
\(523\) −16.4104 −0.717578 −0.358789 0.933419i \(-0.616810\pi\)
−0.358789 + 0.933419i \(0.616810\pi\)
\(524\) −8.53091 1.16168i −0.372675 0.0507483i
\(525\) 42.7938 + 29.0651i 1.86767 + 1.26851i
\(526\) −29.7498 2.01625i −1.29715 0.0879129i
\(527\) 15.1879 + 25.2577i 0.661594 + 1.10024i
\(528\) 6.13299 22.1015i 0.266904 0.961845i
\(529\) 25.9282 1.12731
\(530\) −4.00204 8.97574i −0.173837 0.389881i
\(531\) 0.527271i 0.0228816i
\(532\) 7.62660 56.0067i 0.330655 2.42820i
\(533\) 20.7500i 0.898782i
\(534\) 16.0188 + 1.08566i 0.693203 + 0.0469810i
\(535\) −11.3575 21.4434i −0.491029 0.927078i
\(536\) 5.29732 25.7343i 0.228810 1.11155i
\(537\) 4.74521 0.204771
\(538\) −0.362620 + 5.35045i −0.0156337 + 0.230674i
\(539\) −31.1505 −1.34175
\(540\) −2.00782 5.47077i −0.0864028 0.235425i
\(541\) 14.9643 0.643364 0.321682 0.946848i \(-0.395752\pi\)
0.321682 + 0.946848i \(0.395752\pi\)
\(542\) −1.93503 + 28.5514i −0.0831168 + 1.22639i
\(543\) 2.40916i 0.103387i
\(544\) −4.70311 22.8447i −0.201644 0.979459i
\(545\) 6.07133 3.21569i 0.260067 0.137745i
\(546\) −56.0028 3.79552i −2.39670 0.162433i
\(547\) 9.14081i 0.390833i 0.980720 + 0.195416i \(0.0626059\pi\)
−0.980720 + 0.195416i \(0.937394\pi\)
\(548\) 4.97521 36.5359i 0.212530 1.56074i
\(549\) 11.4955 0.490614
\(550\) −13.6858 10.7161i −0.583565 0.456935i
\(551\) 58.9943i 2.51324i
\(552\) 45.2030 + 9.30490i 1.92397 + 0.396043i
\(553\) 14.6178i 0.621614i
\(554\) −16.6084 1.12561i −0.705623 0.0478227i
\(555\) 4.88008 2.58474i 0.207148 0.109716i
\(556\) 29.5195 + 4.01976i 1.25190 + 0.170476i
\(557\) −17.6080 −0.746077 −0.373039 0.927816i \(-0.621684\pi\)
−0.373039 + 0.927816i \(0.621684\pi\)
\(558\) −24.6232 1.66881i −1.04239 0.0706464i
\(559\) −6.57651 −0.278157
\(560\) 38.7455 8.51812i 1.63730 0.359956i
\(561\) 12.1836 + 20.2616i 0.514393 + 0.855443i
\(562\) 1.16260 17.1541i 0.0490413 0.723602i
\(563\) 44.4958 1.87528 0.937638 0.347614i \(-0.113008\pi\)
0.937638 + 0.347614i \(0.113008\pi\)
\(564\) 7.52803 + 1.02512i 0.316987 + 0.0431651i
\(565\) 21.2030 11.2302i 0.892019 0.472459i
\(566\) −0.893411 0.0605499i −0.0375529 0.00254510i
\(567\) −45.9669 −1.93043
\(568\) −18.2143 3.74936i −0.764257 0.157320i
\(569\) 19.3399 0.810769 0.405384 0.914146i \(-0.367138\pi\)
0.405384 + 0.914146i \(0.367138\pi\)
\(570\) −19.1410 42.9294i −0.801729 1.79811i
\(571\) 19.0383 0.796729 0.398364 0.917227i \(-0.369578\pi\)
0.398364 + 0.917227i \(0.369578\pi\)
\(572\) 18.6881 + 2.54482i 0.781390 + 0.106404i
\(573\) 21.3954i 0.893805i
\(574\) 33.8496 + 2.29412i 1.41286 + 0.0957546i
\(575\) 19.6504 28.9321i 0.819479 1.20655i
\(576\) 17.9431 + 7.71393i 0.747630 + 0.321414i
\(577\) 46.2691i 1.92621i 0.269128 + 0.963104i \(0.413264\pi\)
−0.269128 + 0.963104i \(0.586736\pi\)
\(578\) 20.4242 + 12.6827i 0.849536 + 0.527530i
\(579\) 19.4565i 0.808584i
\(580\) 38.8697 14.2655i 1.61398 0.592343i
\(581\) −11.8822 −0.492959
\(582\) −19.2508 1.30470i −0.797973 0.0540817i
\(583\) 7.63942 0.316392
\(584\) −6.18427 + 30.0431i −0.255907 + 1.24319i
\(585\) −18.5069 + 9.80223i −0.765168 + 0.405272i
\(586\) 2.32473 34.3012i 0.0960335 1.41697i
\(587\) 10.5537 0.435597 0.217798 0.975994i \(-0.430113\pi\)
0.217798 + 0.975994i \(0.430113\pi\)
\(588\) 7.97693 58.5793i 0.328963 2.41577i
\(589\) 45.5475 1.87675
\(590\) −0.623771 + 0.278122i −0.0256802 + 0.0114501i
\(591\) 35.3130 1.45258
\(592\) 1.13236 4.08070i 0.0465397 0.167716i
\(593\) 21.9255i 0.900374i −0.892934 0.450187i \(-0.851357\pi\)
0.892934 0.450187i \(-0.148643\pi\)
\(594\) 4.51969 + 0.306317i 0.185445 + 0.0125683i
\(595\) −21.1053 + 35.0243i −0.865232 + 1.43585i
\(596\) 4.92434 36.1624i 0.201709 1.48127i
\(597\) 2.65083 0.108491
\(598\) −2.56609 + 37.8625i −0.104935 + 1.54831i
\(599\) −30.1539 −1.23205 −0.616027 0.787725i \(-0.711259\pi\)
−0.616027 + 0.787725i \(0.711259\pi\)
\(600\) 23.6565 22.9923i 0.965771 0.938658i
\(601\) 10.9973i 0.448589i 0.974521 + 0.224294i \(0.0720077\pi\)
−0.974521 + 0.224294i \(0.927992\pi\)
\(602\) 0.727099 10.7283i 0.0296343 0.437253i
\(603\) −22.6785 −0.923539
\(604\) −12.7751 1.73962i −0.519811 0.0707842i
\(605\) −9.79567 + 5.18829i −0.398251 + 0.210934i
\(606\) −3.14239 + 46.3658i −0.127651 + 1.88348i
\(607\) 14.5176 0.589250 0.294625 0.955613i \(-0.404805\pi\)
0.294625 + 0.955613i \(0.404805\pi\)
\(608\) −34.0017 11.9646i −1.37895 0.485229i
\(609\) 95.7891i 3.88157i
\(610\) −6.06357 13.5993i −0.245507 0.550621i
\(611\) 6.24736i 0.252741i
\(612\) −18.4952 + 7.95180i −0.747622 + 0.321433i
\(613\) −1.50630 −0.0608388 −0.0304194 0.999537i \(-0.509684\pi\)
−0.0304194 + 0.999537i \(0.509684\pi\)
\(614\) −0.479281 + 7.07178i −0.0193422 + 0.285394i
\(615\) 24.9317 13.2051i 1.00534 0.532483i
\(616\) −6.21755 + 30.2047i −0.250512 + 1.21698i
\(617\) −0.545393 −0.0219567 −0.0109783 0.999940i \(-0.503495\pi\)
−0.0109783 + 0.999940i \(0.503495\pi\)
\(618\) 2.98999 44.1171i 0.120275 1.77465i
\(619\) −44.4056 −1.78481 −0.892405 0.451235i \(-0.850984\pi\)
−0.892405 + 0.451235i \(0.850984\pi\)
\(620\) 11.0139 + 30.0100i 0.442330 + 1.20523i
\(621\) 9.11492i 0.365769i
\(622\) −5.21513 0.353449i −0.209107 0.0141720i
\(623\) −21.5865 −0.864845
\(624\) −9.57120 + 34.4918i −0.383154 + 1.38078i
\(625\) −9.21612 23.2393i −0.368645 0.929570i
\(626\) −0.754382 + 11.1309i −0.0301512 + 0.444879i
\(627\) 36.5379 1.45919
\(628\) −31.1012 4.23515i −1.24107 0.169001i
\(629\) 2.24952 + 3.74098i 0.0896941 + 0.149163i
\(630\) −13.9443 31.2742i −0.555555 1.24600i
\(631\) −10.3315 −0.411290 −0.205645 0.978627i \(-0.565929\pi\)
−0.205645 + 0.978627i \(0.565929\pi\)
\(632\) 9.13043 + 1.87947i 0.363189 + 0.0747613i
\(633\) 2.09021i 0.0830784i
\(634\) −16.8988 1.14530i −0.671139 0.0454856i
\(635\) −7.89124 14.8989i −0.313154 0.591245i
\(636\) −1.95628 + 14.3661i −0.0775714 + 0.569653i
\(637\) 48.6138 1.92615
\(638\) −2.17638 + 32.1123i −0.0861635 + 1.27134i
\(639\) 16.0515i 0.634987i
\(640\) −0.338843 25.2960i −0.0133939 0.999910i
\(641\) 18.9391i 0.748048i 0.927419 + 0.374024i \(0.122022\pi\)
−0.927419 + 0.374024i \(0.877978\pi\)
\(642\) −2.42069 + 35.7172i −0.0955371 + 1.40965i
\(643\) 37.5006i 1.47888i 0.673224 + 0.739439i \(0.264909\pi\)
−0.673224 + 0.739439i \(0.735091\pi\)
\(644\) −61.4817 8.37215i −2.42272 0.329909i
\(645\) −4.18524 7.90187i −0.164794 0.311136i
\(646\) 33.0631 16.9499i 1.30085 0.666884i
\(647\) 27.4611i 1.07961i −0.841791 0.539804i \(-0.818498\pi\)
0.841791 0.539804i \(-0.181502\pi\)
\(648\) −5.91013 + 28.7113i −0.232172 + 1.12789i
\(649\) 0.530902i 0.0208397i
\(650\) 21.3582 + 16.7236i 0.837736 + 0.655954i
\(651\) 73.9555 2.89855
\(652\) −1.01412 + 7.44728i −0.0397160 + 0.291658i
\(653\) 4.08558i 0.159881i −0.996800 0.0799406i \(-0.974527\pi\)
0.996800 0.0799406i \(-0.0254731\pi\)
\(654\) −10.1127 0.685378i −0.395439 0.0268004i
\(655\) 8.50639 4.50542i 0.332372 0.176041i
\(656\) 5.78509 20.8478i 0.225870 0.813969i
\(657\) 26.4756 1.03291
\(658\) −10.1914 0.690708i −0.397301 0.0269266i
\(659\) 38.3536i 1.49404i −0.664799 0.747022i \(-0.731483\pi\)
0.664799 0.747022i \(-0.268517\pi\)
\(660\) 8.83531 + 24.0739i 0.343914 + 0.937074i
\(661\) 14.3360i 0.557607i −0.960348 0.278804i \(-0.910062\pi\)
0.960348 0.278804i \(-0.0899378\pi\)
\(662\) −21.6387 1.46654i −0.841014 0.0569987i
\(663\) −19.0139 31.6203i −0.738438 1.22803i
\(664\) −1.52774 + 7.42175i −0.0592879 + 0.288020i
\(665\) 29.5788 + 55.8457i 1.14702 + 2.16560i
\(666\) −3.64701 0.247172i −0.141319 0.00957772i
\(667\) −64.7613 −2.50757
\(668\) 32.4265 + 4.41562i 1.25462 + 0.170845i
\(669\) 50.0154 1.93371
\(670\) 11.9623 + 26.8291i 0.462146 + 1.03650i
\(671\) 11.5746 0.446834
\(672\) −55.2086 19.4270i −2.12972 0.749412i
\(673\) 6.34888 0.244731 0.122366 0.992485i \(-0.460952\pi\)
0.122366 + 0.992485i \(0.460952\pi\)
\(674\) 1.45900 21.5275i 0.0561987 0.829210i
\(675\) 5.38981 + 3.66071i 0.207454 + 0.140901i
\(676\) −3.40261 0.463344i −0.130870 0.0178209i
\(677\) 21.7279i 0.835072i −0.908660 0.417536i \(-0.862894\pi\)
0.908660 0.417536i \(-0.137106\pi\)
\(678\) −35.3169 2.39356i −1.35634 0.0919242i
\(679\) 25.9419 0.995557
\(680\) 19.1629 + 17.6857i 0.734862 + 0.678216i
\(681\) −47.2785 −1.81171
\(682\) −24.7928 1.68031i −0.949367 0.0643423i
\(683\) 1.22743i 0.0469664i −0.999724 0.0234832i \(-0.992524\pi\)
0.999724 0.0234832i \(-0.00747562\pi\)
\(684\) −4.19798 + 30.8283i −0.160514 + 1.17875i
\(685\) 19.2957 + 36.4309i 0.737250 + 1.39195i
\(686\) −2.40577 + 35.4970i −0.0918527 + 1.35528i
\(687\) 41.5525 1.58533
\(688\) −6.60750 1.83353i −0.251909 0.0699026i
\(689\) −11.9221 −0.454197
\(690\) −47.1260 + 21.0122i −1.79405 + 0.799920i
\(691\) −45.6561 −1.73684 −0.868419 0.495831i \(-0.834864\pi\)
−0.868419 + 0.495831i \(0.834864\pi\)
\(692\) −4.92964 + 36.2013i −0.187397 + 1.37617i
\(693\) 26.6181 1.01114
\(694\) 25.2791 + 1.71326i 0.959580 + 0.0650344i
\(695\) −29.4346 + 15.5901i −1.11652 + 0.591366i
\(696\) −59.8307 12.3159i −2.26788 0.466835i
\(697\) 11.4925 + 19.1122i 0.435310 + 0.723926i
\(698\) 34.0845 + 2.31004i 1.29012 + 0.0874363i
\(699\) 5.57360i 0.210813i
\(700\) −29.6427 + 32.9928i −1.12039 + 1.24701i
\(701\) 12.9121i 0.487683i 0.969815 + 0.243841i \(0.0784077\pi\)
−0.969815 + 0.243841i \(0.921592\pi\)
\(702\) −7.05347 0.478041i −0.266216 0.0180425i
\(703\) 6.74616 0.254436
\(704\) 18.0667 + 7.76706i 0.680915 + 0.292732i
\(705\) −7.50639 + 3.97577i −0.282707 + 0.149736i
\(706\) 23.8841 + 1.61872i 0.898891 + 0.0609213i
\(707\) 62.4812i 2.34985i
\(708\) 0.998374 + 0.135952i 0.0375212 + 0.00510938i
\(709\) −50.9488 −1.91342 −0.956712 0.291036i \(-0.906000\pi\)
−0.956712 + 0.291036i \(0.906000\pi\)
\(710\) 18.9892 8.46676i 0.712651 0.317752i
\(711\) 8.04623i 0.301757i
\(712\) −2.77545 + 13.4831i −0.104015 + 0.505301i
\(713\) 50.0000i 1.87252i
\(714\) 53.6847 27.5215i 2.00910 1.02997i
\(715\) −18.6344 + 9.86975i −0.696887 + 0.369108i
\(716\) −0.548950 + 4.03126i −0.0205152 + 0.150655i
\(717\) 7.76605i 0.290028i
\(718\) 1.85501 27.3707i 0.0692285 1.02146i
\(719\) 21.2170i 0.791259i 0.918410 + 0.395630i \(0.129474\pi\)
−0.918410 + 0.395630i \(0.870526\pi\)
\(720\) −21.3270 + 4.68870i −0.794811 + 0.174738i
\(721\) 59.4509i 2.21407i
\(722\) 2.06574 30.4799i 0.0768790 1.13435i
\(723\) 42.0831 1.56509
\(724\) 2.04669 + 0.278704i 0.0760645 + 0.0103579i
\(725\) −26.0093 + 38.2945i −0.965959 + 1.42222i
\(726\) 16.3162 + 1.10581i 0.605550 + 0.0410405i
\(727\) 25.0074i 0.927473i 0.885973 + 0.463736i \(0.153492\pi\)
−0.885973 + 0.463736i \(0.846508\pi\)
\(728\) 9.70315 47.1378i 0.359623 1.74704i
\(729\) 16.1829 0.599368
\(730\) −13.9652 31.3211i −0.516876 1.15925i
\(731\) 6.05743 3.64244i 0.224042 0.134720i
\(732\) −2.96400 + 21.7664i −0.109552 + 0.804508i
\(733\) −13.6267 −0.503315 −0.251658 0.967816i \(-0.580976\pi\)
−0.251658 + 0.967816i \(0.580976\pi\)
\(734\) 2.15609 31.8131i 0.0795829 1.17424i
\(735\) 30.9375 + 58.4109i 1.14115 + 2.15452i
\(736\) −13.1342 + 37.3255i −0.484134 + 1.37584i
\(737\) −22.8347 −0.841127
\(738\) −18.6321 1.26277i −0.685859 0.0464833i
\(739\) 17.6145i 0.647960i 0.946064 + 0.323980i \(0.105021\pi\)
−0.946064 + 0.323980i \(0.894979\pi\)
\(740\) 1.63130 + 4.44486i 0.0599678 + 0.163396i
\(741\) −57.0214 −2.09473
\(742\) 1.31811 19.4487i 0.0483894 0.713983i
\(743\) 6.03503 0.221404 0.110702 0.993854i \(-0.464690\pi\)
0.110702 + 0.993854i \(0.464690\pi\)
\(744\) 9.50873 46.1932i 0.348607 1.69353i
\(745\) 19.0984 + 36.0584i 0.699711 + 1.32108i
\(746\) −3.09059 + 45.6015i −0.113154 + 1.66959i
\(747\) 6.54045 0.239303
\(748\) −18.6225 + 8.00657i −0.680908 + 0.292749i
\(749\) 48.1315i 1.75869i
\(750\) −6.50172 + 36.3053i −0.237409 + 1.32568i
\(751\) 20.3013i 0.740806i 0.928871 + 0.370403i \(0.120780\pi\)
−0.928871 + 0.370403i \(0.879220\pi\)
\(752\) −1.74176 + 6.27680i −0.0635155 + 0.228891i
\(753\) 34.4959 1.25710
\(754\) 3.39647 50.1148i 0.123692 1.82507i
\(755\) 12.7384 6.74689i 0.463596 0.245545i
\(756\) 1.55966 11.4535i 0.0567244 0.416561i
\(757\) 17.5220 0.636847 0.318424 0.947949i \(-0.396847\pi\)
0.318424 + 0.947949i \(0.396847\pi\)
\(758\) −1.12441 + 16.5906i −0.0408403 + 0.602596i
\(759\) 40.1098i 1.45589i
\(760\) 38.6847 11.2949i 1.40324 0.409708i
\(761\) −49.0266 −1.77721 −0.888607 0.458670i \(-0.848326\pi\)
−0.888607 + 0.458670i \(0.848326\pi\)
\(762\) −1.68190 + 24.8164i −0.0609289 + 0.899003i
\(763\) 13.6276 0.493353
\(764\) −18.1763 2.47513i −0.657596 0.0895469i
\(765\) 11.6172 19.2787i 0.420019 0.697023i
\(766\) −33.7740 2.28900i −1.22031 0.0827048i
\(767\) 0.828530i 0.0299165i
\(768\) −19.2326 + 31.9859i −0.693997 + 1.15419i
\(769\) −11.7225 −0.422724 −0.211362 0.977408i \(-0.567790\pi\)
−0.211362 + 0.977408i \(0.567790\pi\)
\(770\) −14.0404 31.4897i −0.505980 1.13481i
\(771\) 7.38696 0.266035
\(772\) −16.5292 2.25083i −0.594897 0.0810090i
\(773\) −38.4421 −1.38267 −0.691334 0.722536i \(-0.742976\pi\)
−0.691334 + 0.722536i \(0.742976\pi\)
\(774\) −0.400223 + 5.90528i −0.0143857 + 0.212261i
\(775\) −29.5659 20.0809i −1.06204 0.721326i
\(776\) 3.33544 16.2035i 0.119735 0.581672i
\(777\) 10.9537 0.392964
\(778\) 2.43253 + 0.164862i 0.0872105 + 0.00591059i
\(779\) 34.4653 1.23485
\(780\) −13.7885 37.5699i −0.493706 1.34522i
\(781\) 16.1620i 0.578323i
\(782\) −18.6068 36.2953i −0.665379 1.29792i
\(783\) 12.0645i 0.431150i
\(784\) 48.8429 + 13.5535i 1.74439 + 0.484054i
\(785\) 31.0118 16.4255i 1.10686 0.586250i
\(786\) −14.1687 0.960266i −0.505380 0.0342515i
\(787\) 7.70519i 0.274661i −0.990525 0.137330i \(-0.956148\pi\)
0.990525 0.137330i \(-0.0438522\pi\)
\(788\) −4.08518 + 29.9999i −0.145529 + 1.06870i
\(789\) −49.1833 −1.75097
\(790\) −9.51884 + 4.24419i −0.338665 + 0.151002i
\(791\) 47.5920 1.69218
\(792\) 3.42238 16.6259i 0.121609 0.590774i
\(793\) −18.0635 −0.641453
\(794\) 0.808105 + 0.0547684i 0.0286786 + 0.00194366i
\(795\) −7.58716 14.3248i −0.269089 0.508048i
\(796\) −0.306662 + 2.25200i −0.0108693 + 0.0798199i
\(797\) 0.584825 0.0207156 0.0103578 0.999946i \(-0.496703\pi\)
0.0103578 + 0.999946i \(0.496703\pi\)
\(798\) 6.30428 93.0194i 0.223169 3.29285i
\(799\) −3.46013 5.75425i −0.122411 0.203571i
\(800\) 16.7963 + 22.7571i 0.593839 + 0.804584i
\(801\) 11.8821 0.419832
\(802\) −0.0402683 0.00272913i −0.00142192 9.63691e-5i
\(803\) 26.6580 0.940739
\(804\) 5.84743 42.9412i 0.206223 1.51442i
\(805\) 61.3049 32.4703i 2.16071 1.14443i
\(806\) 38.6919 + 2.62230i 1.36286 + 0.0923666i
\(807\) 8.84555i 0.311378i
\(808\) −39.0263 8.03343i −1.37294 0.282615i
\(809\) 9.44747i 0.332155i −0.986113 0.166078i \(-0.946890\pi\)
0.986113 0.166078i \(-0.0531102\pi\)
\(810\) −13.3462 29.9327i −0.468936 1.05173i
\(811\) −50.4495 −1.77152 −0.885761 0.464142i \(-0.846363\pi\)
−0.885761 + 0.464142i \(0.846363\pi\)
\(812\) 81.3771 + 11.0814i 2.85577 + 0.388880i
\(813\) 47.2021i 1.65545i
\(814\) −3.67213 0.248875i −0.128708 0.00872305i
\(815\) −3.93313 7.42587i −0.137771 0.260117i
\(816\) −10.2877 37.0704i −0.360143 1.29772i
\(817\) 10.9234i 0.382163i
\(818\) −0.404576 + 5.96950i −0.0141457 + 0.208719i
\(819\) −41.5404 −1.45154
\(820\) 8.33412 + 22.7082i 0.291040 + 0.793006i
\(821\) 28.4106 0.991537 0.495769 0.868455i \(-0.334886\pi\)
0.495769 + 0.868455i \(0.334886\pi\)
\(822\) 4.11260 60.6812i 0.143443 2.11650i
\(823\) −2.79256 −0.0973425 −0.0486712 0.998815i \(-0.515499\pi\)
−0.0486712 + 0.998815i \(0.515499\pi\)
\(824\) 37.1335 + 7.64381i 1.29361 + 0.266285i
\(825\) −23.7176 16.1088i −0.825741 0.560835i
\(826\) −1.35159 0.0916023i −0.0470278 0.00318725i
\(827\) 19.6144i 0.682061i 0.940052 + 0.341030i \(0.110776\pi\)
−0.940052 + 0.341030i \(0.889224\pi\)
\(828\) 33.8419 + 4.60836i 1.17609 + 0.160152i
\(829\) 25.3514i 0.880489i −0.897878 0.440245i \(-0.854892\pi\)
0.897878 0.440245i \(-0.145108\pi\)
\(830\) −3.44993 7.73747i −0.119749 0.268572i
\(831\) −27.4576 −0.952492
\(832\) −28.1951 12.1213i −0.977488 0.420232i
\(833\) −44.7767 + 26.9250i −1.55142 + 0.932897i
\(834\) 49.0278 + 3.32280i 1.69769 + 0.115059i
\(835\) −32.3333 + 17.1254i −1.11894 + 0.592648i
\(836\) −4.22689 + 31.0406i −0.146190 + 1.07356i
\(837\) 9.31459 0.321959
\(838\) −2.32707 + 34.3358i −0.0803872 + 1.18611i
\(839\) 2.75256i 0.0950291i −0.998871 0.0475145i \(-0.984870\pi\)
0.998871 0.0475145i \(-0.0151300\pi\)
\(840\) 62.8124 18.3395i 2.16724 0.632773i
\(841\) 56.7180 1.95579
\(842\) 3.89280 + 0.263830i 0.134155 + 0.00909219i
\(843\) 28.3597i 0.976761i
\(844\) −1.77573 0.241806i −0.0611230 0.00832331i
\(845\) 3.39283 1.79702i 0.116717 0.0618193i
\(846\) 5.60972 + 0.380192i 0.192866 + 0.0130713i
\(847\) −21.9872 −0.755489
\(848\) −11.9783 3.32389i −0.411337 0.114143i
\(849\) −1.47702 −0.0506911
\(850\) −28.9348 3.57426i −0.992457 0.122596i
\(851\) 7.40564i 0.253862i
\(852\) −30.3931 4.13872i −1.04125 0.141790i
\(853\) 47.7663i 1.63549i −0.575583 0.817743i \(-0.695225\pi\)
0.575583 0.817743i \(-0.304775\pi\)
\(854\) 1.99710 29.4671i 0.0683392 1.00834i
\(855\) −16.2813 30.7396i −0.556809 1.05127i
\(856\) −30.0633 6.18843i −1.02754 0.211516i
\(857\) 39.9732 1.36546 0.682729 0.730672i \(-0.260793\pi\)
0.682729 + 0.730672i \(0.260793\pi\)
\(858\) 31.0384 + 2.10359i 1.05964 + 0.0718155i
\(859\) 27.0787i 0.923913i 0.886902 + 0.461957i \(0.152852\pi\)
−0.886902 + 0.461957i \(0.847148\pi\)
\(860\) 7.19716 2.64142i 0.245421 0.0900716i
\(861\) 55.9614 1.90716
\(862\) 6.36446 + 0.431344i 0.216774 + 0.0146916i
\(863\) 1.87893i 0.0639594i −0.999489 0.0319797i \(-0.989819\pi\)
0.999489 0.0319797i \(-0.0101812\pi\)
\(864\) −6.95344 2.44680i −0.236561 0.0832418i
\(865\) −19.1190 36.0972i −0.650064 1.22734i
\(866\) −10.8842 0.737666i −0.369861 0.0250669i
\(867\) 35.0262 + 18.5936i 1.18955 + 0.631472i
\(868\) −8.55555 + 62.8285i −0.290394 + 2.13254i
\(869\) 8.10165i 0.274830i
\(870\) 62.3759 27.8117i 2.11474 0.942905i
\(871\) 35.6360 1.20748
\(872\) 1.75215 8.51192i 0.0593353 0.288250i
\(873\) −14.2794 −0.483285
\(874\) −62.8888 4.26222i −2.12725 0.144172i
\(875\) 5.42087 49.2913i 0.183259 1.66635i
\(876\) −6.82649 + 50.1309i −0.230646 + 1.69377i
\(877\) 34.9661i 1.18072i 0.807139 + 0.590361i \(0.201015\pi\)
−0.807139 + 0.590361i \(0.798985\pi\)
\(878\) −50.4477 3.41903i −1.70253 0.115387i
\(879\) 56.7080i 1.91271i
\(880\) −21.4739 + 4.72100i −0.723886 + 0.159145i
\(881\) 58.8637i 1.98317i 0.129466 + 0.991584i \(0.458674\pi\)
−0.129466 + 0.991584i \(0.541326\pi\)
\(882\) 2.95847 43.6520i 0.0996167 1.46984i
\(883\) 12.7513 0.429115 0.214558 0.976711i \(-0.431169\pi\)
0.214558 + 0.976711i \(0.431169\pi\)
\(884\) 29.0625 12.4951i 0.977477 0.420256i
\(885\) −0.995504 + 0.527271i −0.0334635 + 0.0177240i
\(886\) −0.0741372 + 1.09389i −0.00249069 + 0.0367500i
\(887\) −17.4369 −0.585474 −0.292737 0.956193i \(-0.594566\pi\)
−0.292737 + 0.956193i \(0.594566\pi\)
\(888\) 1.40836 6.84180i 0.0472615 0.229596i
\(889\) 33.4418i 1.12160i
\(890\) −6.26749 14.0567i −0.210087 0.471181i
\(891\) 25.4762 0.853486
\(892\) −5.78603 + 42.4903i −0.193731 + 1.42268i
\(893\) −10.3767 −0.347244
\(894\) 4.07055 60.0608i 0.136139 2.00873i
\(895\) −2.12903 4.01967i −0.0711655 0.134363i
\(896\) 22.8909 44.6547i 0.764730 1.49181i
\(897\) 62.5956i 2.09001i
\(898\) 37.7928 + 2.56137i 1.26116 + 0.0854739i
\(899\) 66.1800i 2.20723i
\(900\) 16.3165 18.1605i 0.543883 0.605350i
\(901\) 10.9811 6.60314i 0.365834 0.219983i
\(902\) −18.7605 1.27147i −0.624656 0.0423353i
\(903\) 17.7364i 0.590231i
\(904\) 6.11907 29.7264i 0.203517 0.988684i
\(905\) −2.04080 + 1.08091i −0.0678385 + 0.0359308i
\(906\) −21.2177 1.43800i −0.704910 0.0477744i
\(907\) 16.1397i 0.535910i 0.963431 + 0.267955i \(0.0863478\pi\)
−0.963431 + 0.267955i \(0.913652\pi\)
\(908\) 5.46941 40.1651i 0.181509 1.33293i
\(909\) 34.3921i 1.14071i
\(910\) 21.9115 + 49.1430i 0.726360 + 1.62907i
\(911\) 28.4224i 0.941675i 0.882220 + 0.470837i \(0.156048\pi\)
−0.882220 + 0.470837i \(0.843952\pi\)
\(912\) −57.2902 15.8975i −1.89707 0.526420i
\(913\) 6.58550 0.217948
\(914\) 28.9947 + 1.96508i 0.959060 + 0.0649991i
\(915\) −11.4955 21.7038i −0.380028 0.717506i
\(916\) −4.80700 + 35.3006i −0.158828 + 1.16637i
\(917\) 19.0933 0.630516
\(918\) 6.76151 3.46630i 0.223163 0.114405i
\(919\) −48.7201 −1.60713 −0.803565 0.595217i \(-0.797066\pi\)
−0.803565 + 0.595217i \(0.797066\pi\)
\(920\) −12.3990 42.4664i −0.408783 1.40008i
\(921\) 11.6913i 0.385242i
\(922\) 9.93334 + 0.673221i 0.327137 + 0.0221713i
\(923\) 25.2226i 0.830212i
\(924\) −6.86322 + 50.4007i −0.225783 + 1.65806i
\(925\) −4.37908 2.97423i −0.143983 0.0977921i
\(926\) −18.5289 1.25577i −0.608896 0.0412672i
\(927\) 32.7241i 1.07480i
\(928\) 17.3845 49.4040i 0.570673 1.62177i
\(929\) 53.8045i 1.76527i 0.470061 + 0.882634i \(0.344232\pi\)
−0.470061 + 0.882634i \(0.655768\pi\)
\(930\) 21.4725 + 48.1583i 0.704110 + 1.57917i
\(931\) 80.7465i 2.64636i
\(932\) 4.73502 + 0.644783i 0.155101 + 0.0211206i
\(933\) −8.62183 −0.282266
\(934\) 2.53727 37.4373i 0.0830219 1.22498i
\(935\) 11.6972 19.4115i 0.382539 0.634824i
\(936\) −5.34099 + 25.9465i −0.174576 + 0.848086i
\(937\) 17.3019i 0.565230i −0.959233 0.282615i \(-0.908798\pi\)
0.959233 0.282615i \(-0.0912019\pi\)
\(938\) −3.93991 + 58.1333i −0.128643 + 1.89812i
\(939\) 18.4020i 0.600525i
\(940\) −2.50922 6.83694i −0.0818416 0.222997i
\(941\) −31.7594 −1.03533 −0.517663 0.855585i \(-0.673198\pi\)
−0.517663 + 0.855585i \(0.673198\pi\)
\(942\) −51.6549 3.50085i −1.68301 0.114064i
\(943\) 37.8345i 1.23206i
\(944\) −0.230994 + 0.832435i −0.00751821 + 0.0270935i
\(945\) 6.04894 + 11.4206i 0.196772 + 0.371512i
\(946\) −0.402980 + 5.94595i −0.0131020 + 0.193320i
\(947\) 6.57610i 0.213694i 0.994275 + 0.106847i \(0.0340756\pi\)
−0.994275 + 0.106847i \(0.965924\pi\)
\(948\) 15.2354 + 2.07465i 0.494821 + 0.0673814i
\(949\) −41.6026 −1.35048
\(950\) −27.7775 + 35.4755i −0.901222 + 1.15098i
\(951\) −27.9377 −0.905943
\(952\) 17.1702 + 48.7913i 0.556491 + 1.58134i
\(953\) 0.331815i 0.0107486i −0.999986 0.00537428i \(-0.998289\pi\)
0.999986 0.00537428i \(-0.00171069\pi\)
\(954\) −0.725539 + 10.7053i −0.0234902 + 0.346597i
\(955\) 18.1241 9.59944i 0.586481 0.310631i
\(956\) −6.59760 0.898416i −0.213382 0.0290568i
\(957\) 53.0892i 1.71613i
\(958\) −51.8661 3.51517i −1.67572 0.113570i
\(959\) 81.7722i 2.64056i
\(960\) −3.37898 41.5911i −0.109056 1.34235i
\(961\) −20.0953 −0.648237
\(962\) 5.73076 + 0.388396i 0.184767 + 0.0125224i
\(963\) 26.4934i 0.853739i
\(964\) −4.86838 + 35.7514i −0.156800 + 1.15148i
\(965\) 16.4816 8.72953i 0.530562 0.281013i
\(966\) −102.113 6.92057i −3.28542 0.222666i
\(967\) 26.9044i 0.865188i −0.901589 0.432594i \(-0.857598\pi\)
0.901589 0.432594i \(-0.142402\pi\)
\(968\) −2.82697 + 13.7334i −0.0908623 + 0.441408i
\(969\) 52.5207 31.5816i 1.68721 1.01455i
\(970\) 7.53204 + 16.8928i 0.241839 + 0.542395i
\(971\) 23.4854i 0.753681i 0.926278 + 0.376841i \(0.122990\pi\)
−0.926278 + 0.376841i \(0.877010\pi\)
\(972\) −5.46894 + 40.1616i −0.175416 + 1.28819i
\(973\) −66.0684 −2.11806
\(974\) −3.29073 + 48.5547i −0.105442 + 1.55579i
\(975\) 37.0139 + 25.1395i 1.18539 + 0.805107i
\(976\) −18.1486 5.03609i −0.580923 0.161201i
\(977\) 22.0297i 0.704793i 0.935851 + 0.352396i \(0.114633\pi\)
−0.935851 + 0.352396i \(0.885367\pi\)
\(978\) −0.838289 + 12.3689i −0.0268055 + 0.395514i
\(979\) 11.9639 0.382368
\(980\) −53.2017 + 19.5255i −1.69946 + 0.623718i
\(981\) −7.50117 −0.239494
\(982\) −36.7709 2.49211i −1.17341 0.0795264i
\(983\) −55.0949 −1.75725 −0.878627 0.477508i \(-0.841540\pi\)
−0.878627 + 0.477508i \(0.841540\pi\)
\(984\) 7.19515 34.9539i 0.229373 1.11429i
\(985\) −15.8438 29.9137i −0.504826 0.953128i
\(986\) 24.6280 + 48.0403i 0.784314 + 1.52992i
\(987\) −16.8487 −0.536300
\(988\) 6.59653 48.4422i 0.209863 1.54115i
\(989\) −11.9913 −0.381300
\(990\) 7.72837 + 17.3331i 0.245624 + 0.550883i
\(991\) 22.4296i 0.712501i −0.934391 0.356250i \(-0.884055\pi\)
0.934391 0.356250i \(-0.115945\pi\)
\(992\) 38.1432 + 13.4220i 1.21105 + 0.426147i
\(993\) −35.7739 −1.13525
\(994\) 41.1458 + 2.78861i 1.30507 + 0.0884493i
\(995\) −1.18935 2.24552i −0.0377048 0.0711879i
\(996\) −1.68639 + 12.3842i −0.0534354 + 0.392408i
\(997\) 37.3152i 1.18178i 0.806750 + 0.590892i \(0.201224\pi\)
−0.806750 + 0.590892i \(0.798776\pi\)
\(998\) 0.621805 9.17470i 0.0196829 0.290420i
\(999\) 1.37961 0.0436489
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.b.509.20 yes 40
5.4 even 2 inner 680.2.h.b.509.21 yes 40
8.5 even 2 inner 680.2.h.b.509.23 yes 40
17.16 even 2 inner 680.2.h.b.509.19 yes 40
40.29 even 2 inner 680.2.h.b.509.18 yes 40
85.84 even 2 inner 680.2.h.b.509.22 yes 40
136.101 even 2 inner 680.2.h.b.509.24 yes 40
680.509 even 2 inner 680.2.h.b.509.17 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.b.509.17 40 680.509 even 2 inner
680.2.h.b.509.18 yes 40 40.29 even 2 inner
680.2.h.b.509.19 yes 40 17.16 even 2 inner
680.2.h.b.509.20 yes 40 1.1 even 1 trivial
680.2.h.b.509.21 yes 40 5.4 even 2 inner
680.2.h.b.509.22 yes 40 85.84 even 2 inner
680.2.h.b.509.23 yes 40 8.5 even 2 inner
680.2.h.b.509.24 yes 40 136.101 even 2 inner