Properties

Label 680.2.h.b.509.18
Level $680$
Weight $2$
Character 680.509
Analytic conductor $5.430$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(509,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.509"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 509.18
Character \(\chi\) \(=\) 680.509
Dual form 680.2.h.b.509.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0956273 - 1.41098i) q^{2} +2.33268i q^{3} +(-1.98171 + 0.269856i) q^{4} +(-1.97601 - 1.04660i) q^{5} +(3.29135 - 0.223067i) q^{6} -4.43533 q^{7} +(0.570266 + 2.77034i) q^{8} -2.44138 q^{9} +(-1.28777 + 2.88819i) q^{10} +2.45819 q^{11} +(-0.629486 - 4.62269i) q^{12} +3.83628 q^{13} +(0.424138 + 6.25814i) q^{14} +(2.44138 - 4.60940i) q^{15} +(3.85436 - 1.06955i) q^{16} +(3.53348 - 2.12474i) q^{17} +(0.233462 + 3.44473i) q^{18} -6.37197i q^{19} +(4.19832 + 1.54082i) q^{20} -10.3462i q^{21} +(-0.235070 - 3.46845i) q^{22} -6.99487 q^{23} +(-6.46231 + 1.33025i) q^{24} +(2.80926 + 4.13619i) q^{25} +(-0.366853 - 5.41290i) q^{26} +1.30309i q^{27} +(8.78954 - 1.19690i) q^{28} +9.25840 q^{29} +(-6.73722 - 3.00394i) q^{30} -7.14810i q^{31} +(-1.87770 - 5.33613i) q^{32} +5.73417i q^{33} +(-3.33586 - 4.78247i) q^{34} +(8.76427 + 4.64201i) q^{35} +(4.83810 - 0.658820i) q^{36} -1.05872i q^{37} +(-8.99070 + 0.609334i) q^{38} +8.94879i q^{39} +(1.77259 - 6.07107i) q^{40} -5.40889i q^{41} +(-14.5982 + 0.989377i) q^{42} -1.71430 q^{43} +(-4.87143 + 0.663358i) q^{44} +(4.82419 + 2.55514i) q^{45} +(0.668901 + 9.86960i) q^{46} -1.62850i q^{47} +(2.49492 + 8.99096i) q^{48} +12.6721 q^{49} +(5.56742 - 4.35933i) q^{50} +(4.95634 + 8.24246i) q^{51} +(-7.60239 + 1.03524i) q^{52} -3.10774 q^{53} +(1.83862 - 0.124611i) q^{54} +(-4.85742 - 2.57274i) q^{55} +(-2.52932 - 12.2874i) q^{56} +14.8637 q^{57} +(-0.885356 - 13.0634i) q^{58} -0.215973i q^{59} +(-3.59423 + 9.79332i) q^{60} +4.70860 q^{61} +(-10.0858 + 0.683553i) q^{62} +10.8283 q^{63} +(-7.34959 + 3.15966i) q^{64} +(-7.58053 - 4.01504i) q^{65} +(8.09078 - 0.548343i) q^{66} +9.28922 q^{67} +(-6.42896 + 5.16416i) q^{68} -16.3168i q^{69} +(5.71167 - 12.8101i) q^{70} -6.57476i q^{71} +(-1.39223 - 6.76345i) q^{72} +10.8445 q^{73} +(-1.49383 + 0.101243i) q^{74} +(-9.64839 + 6.55309i) q^{75} +(1.71951 + 12.6274i) q^{76} -10.9029 q^{77} +(12.6265 - 0.855748i) q^{78} +3.29578i q^{79} +(-8.73565 - 1.92052i) q^{80} -10.3638 q^{81} +(-7.63182 + 0.517237i) q^{82} -2.67900 q^{83} +(2.79198 + 20.5031i) q^{84} +(-9.20596 + 0.500386i) q^{85} +(0.163933 + 2.41883i) q^{86} +21.5968i q^{87} +(1.40182 + 6.81004i) q^{88} -4.86695 q^{89} +(3.14392 - 7.05117i) q^{90} -17.0151 q^{91} +(13.8618 - 1.88761i) q^{92} +16.6742 q^{93} +(-2.29777 + 0.155729i) q^{94} +(-6.66890 + 12.5911i) q^{95} +(12.4475 - 4.38005i) q^{96} -5.84892 q^{97} +(-1.21180 - 17.8801i) q^{98} -6.00138 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 12 q^{4} - 56 q^{9} + 56 q^{15} - 4 q^{16} - 36 q^{26} - 28 q^{30} + 24 q^{34} + 88 q^{36} + 8 q^{49} - 16 q^{50} - 88 q^{55} - 88 q^{60} - 132 q^{64} + 208 q^{66} + 72 q^{70} - 20 q^{76} - 56 q^{81}+ \cdots - 36 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0956273 1.41098i −0.0676187 0.997711i
\(3\) 2.33268i 1.34677i 0.739291 + 0.673386i \(0.235161\pi\)
−0.739291 + 0.673386i \(0.764839\pi\)
\(4\) −1.98171 + 0.269856i −0.990855 + 0.134928i
\(5\) −1.97601 1.04660i −0.883700 0.468053i
\(6\) 3.29135 0.223067i 1.34369 0.0910669i
\(7\) −4.43533 −1.67640 −0.838198 0.545366i \(-0.816391\pi\)
−0.838198 + 0.545366i \(0.816391\pi\)
\(8\) 0.570266 + 2.77034i 0.201619 + 0.979464i
\(9\) −2.44138 −0.813792
\(10\) −1.28777 + 2.88819i −0.407228 + 0.913327i
\(11\) 2.45819 0.741173 0.370587 0.928798i \(-0.379157\pi\)
0.370587 + 0.928798i \(0.379157\pi\)
\(12\) −0.629486 4.62269i −0.181717 1.33446i
\(13\) 3.83628 1.06399 0.531996 0.846747i \(-0.321442\pi\)
0.531996 + 0.846747i \(0.321442\pi\)
\(14\) 0.424138 + 6.25814i 0.113356 + 1.67256i
\(15\) 2.44138 4.60940i 0.630361 1.19014i
\(16\) 3.85436 1.06955i 0.963589 0.267388i
\(17\) 3.53348 2.12474i 0.856994 0.515326i
\(18\) 0.233462 + 3.44473i 0.0550276 + 0.811930i
\(19\) 6.37197i 1.46183i −0.682468 0.730915i \(-0.739093\pi\)
0.682468 0.730915i \(-0.260907\pi\)
\(20\) 4.19832 + 1.54082i 0.938773 + 0.344537i
\(21\) 10.3462i 2.25772i
\(22\) −0.235070 3.46845i −0.0501172 0.739477i
\(23\) −6.99487 −1.45853 −0.729266 0.684231i \(-0.760138\pi\)
−0.729266 + 0.684231i \(0.760138\pi\)
\(24\) −6.46231 + 1.33025i −1.31911 + 0.271535i
\(25\) 2.80926 + 4.13619i 0.561852 + 0.827238i
\(26\) −0.366853 5.41290i −0.0719457 1.06156i
\(27\) 1.30309i 0.250779i
\(28\) 8.78954 1.19690i 1.66107 0.226193i
\(29\) 9.25840 1.71924 0.859621 0.510932i \(-0.170700\pi\)
0.859621 + 0.510932i \(0.170700\pi\)
\(30\) −6.73722 3.00394i −1.23004 0.548442i
\(31\) 7.14810i 1.28384i −0.766773 0.641918i \(-0.778139\pi\)
0.766773 0.641918i \(-0.221861\pi\)
\(32\) −1.87770 5.33613i −0.331933 0.943303i
\(33\) 5.73417i 0.998190i
\(34\) −3.33586 4.78247i −0.572095 0.820187i
\(35\) 8.76427 + 4.64201i 1.48143 + 0.784643i
\(36\) 4.83810 0.658820i 0.806351 0.109803i
\(37\) 1.05872i 0.174053i −0.996206 0.0870265i \(-0.972264\pi\)
0.996206 0.0870265i \(-0.0277365\pi\)
\(38\) −8.99070 + 0.609334i −1.45848 + 0.0988471i
\(39\) 8.94879i 1.43295i
\(40\) 1.77259 6.07107i 0.280270 0.959921i
\(41\) 5.40889i 0.844727i −0.906427 0.422363i \(-0.861201\pi\)
0.906427 0.422363i \(-0.138799\pi\)
\(42\) −14.5982 + 0.989377i −2.25255 + 0.152664i
\(43\) −1.71430 −0.261428 −0.130714 0.991420i \(-0.541727\pi\)
−0.130714 + 0.991420i \(0.541727\pi\)
\(44\) −4.87143 + 0.663358i −0.734395 + 0.100005i
\(45\) 4.82419 + 2.55514i 0.719148 + 0.380898i
\(46\) 0.668901 + 9.86960i 0.0986240 + 1.45519i
\(47\) 1.62850i 0.237540i −0.992922 0.118770i \(-0.962105\pi\)
0.992922 0.118770i \(-0.0378952\pi\)
\(48\) 2.49492 + 8.99096i 0.360111 + 1.29773i
\(49\) 12.6721 1.81030
\(50\) 5.56742 4.35933i 0.787353 0.616503i
\(51\) 4.95634 + 8.24246i 0.694026 + 1.15418i
\(52\) −7.60239 + 1.03524i −1.05426 + 0.143562i
\(53\) −3.10774 −0.426880 −0.213440 0.976956i \(-0.568467\pi\)
−0.213440 + 0.976956i \(0.568467\pi\)
\(54\) 1.83862 0.124611i 0.250205 0.0169574i
\(55\) −4.85742 2.57274i −0.654975 0.346909i
\(56\) −2.52932 12.2874i −0.337994 1.64197i
\(57\) 14.8637 1.96875
\(58\) −0.885356 13.0634i −0.116253 1.71531i
\(59\) 0.215973i 0.0281172i −0.999901 0.0140586i \(-0.995525\pi\)
0.999901 0.0140586i \(-0.00447514\pi\)
\(60\) −3.59423 + 9.79332i −0.464013 + 1.26431i
\(61\) 4.70860 0.602874 0.301437 0.953486i \(-0.402534\pi\)
0.301437 + 0.953486i \(0.402534\pi\)
\(62\) −10.0858 + 0.683553i −1.28090 + 0.0868114i
\(63\) 10.8283 1.36424
\(64\) −7.34959 + 3.15966i −0.918699 + 0.394958i
\(65\) −7.58053 4.01504i −0.940249 0.498005i
\(66\) 8.09078 0.548343i 0.995906 0.0674963i
\(67\) 9.28922 1.13486 0.567429 0.823422i \(-0.307938\pi\)
0.567429 + 0.823422i \(0.307938\pi\)
\(68\) −6.42896 + 5.16416i −0.779626 + 0.626246i
\(69\) 16.3168i 1.96431i
\(70\) 5.71167 12.8101i 0.682675 1.53110i
\(71\) 6.57476i 0.780281i −0.920755 0.390140i \(-0.872426\pi\)
0.920755 0.390140i \(-0.127574\pi\)
\(72\) −1.39223 6.76345i −0.164076 0.797080i
\(73\) 10.8445 1.26926 0.634629 0.772817i \(-0.281153\pi\)
0.634629 + 0.772817i \(0.281153\pi\)
\(74\) −1.49383 + 0.101243i −0.173655 + 0.0117692i
\(75\) −9.64839 + 6.55309i −1.11410 + 0.756686i
\(76\) 1.71951 + 12.6274i 0.197242 + 1.44846i
\(77\) −10.9029 −1.24250
\(78\) 12.6265 0.855748i 1.42967 0.0968944i
\(79\) 3.29578i 0.370804i 0.982663 + 0.185402i \(0.0593587\pi\)
−0.982663 + 0.185402i \(0.940641\pi\)
\(80\) −8.73565 1.92052i −0.976676 0.214720i
\(81\) −10.3638 −1.15153
\(82\) −7.63182 + 0.517237i −0.842793 + 0.0571193i
\(83\) −2.67900 −0.294059 −0.147029 0.989132i \(-0.546971\pi\)
−0.147029 + 0.989132i \(0.546971\pi\)
\(84\) 2.79198 + 20.5031i 0.304630 + 2.23708i
\(85\) −9.20596 + 0.500386i −0.998526 + 0.0542745i
\(86\) 0.163933 + 2.41883i 0.0176774 + 0.260829i
\(87\) 21.5968i 2.31543i
\(88\) 1.40182 + 6.81004i 0.149435 + 0.725952i
\(89\) −4.86695 −0.515895 −0.257948 0.966159i \(-0.583046\pi\)
−0.257948 + 0.966159i \(0.583046\pi\)
\(90\) 3.14392 7.05117i 0.331399 0.743258i
\(91\) −17.0151 −1.78367
\(92\) 13.8618 1.88761i 1.44519 0.196797i
\(93\) 16.6742 1.72903
\(94\) −2.29777 + 0.155729i −0.236997 + 0.0160622i
\(95\) −6.66890 + 12.5911i −0.684215 + 1.29182i
\(96\) 12.4475 4.38005i 1.27041 0.447037i
\(97\) −5.84892 −0.593868 −0.296934 0.954898i \(-0.595964\pi\)
−0.296934 + 0.954898i \(0.595964\pi\)
\(98\) −1.21180 17.8801i −0.122410 1.80616i
\(99\) −6.00138 −0.603161
\(100\) −6.68332 7.43864i −0.668332 0.743864i
\(101\) 14.0872i 1.40172i 0.713297 + 0.700862i \(0.247201\pi\)
−0.713297 + 0.700862i \(0.752799\pi\)
\(102\) 11.1560 7.78148i 1.10460 0.770481i
\(103\) 13.4039i 1.32073i −0.750945 0.660365i \(-0.770402\pi\)
0.750945 0.660365i \(-0.229598\pi\)
\(104\) 2.18770 + 10.6278i 0.214521 + 1.04214i
\(105\) −10.8283 + 20.4442i −1.05673 + 1.99515i
\(106\) 0.297184 + 4.38494i 0.0288651 + 0.425903i
\(107\) 10.8518i 1.04909i −0.851384 0.524543i \(-0.824236\pi\)
0.851384 0.524543i \(-0.175764\pi\)
\(108\) −0.351645 2.58234i −0.0338371 0.248486i
\(109\) −3.07252 −0.294294 −0.147147 0.989115i \(-0.547009\pi\)
−0.147147 + 0.989115i \(0.547009\pi\)
\(110\) −3.16558 + 7.09973i −0.301826 + 0.676933i
\(111\) 2.46966 0.234410
\(112\) −17.0953 + 4.74381i −1.61536 + 0.448248i
\(113\) −10.7302 −1.00941 −0.504707 0.863291i \(-0.668399\pi\)
−0.504707 + 0.863291i \(0.668399\pi\)
\(114\) −1.42138 20.9724i −0.133124 1.96424i
\(115\) 13.8220 + 7.32083i 1.28890 + 0.682671i
\(116\) −18.3475 + 2.49843i −1.70352 + 0.231974i
\(117\) −9.36579 −0.865868
\(118\) −0.304732 + 0.0206529i −0.0280529 + 0.00190125i
\(119\) −15.6721 + 9.42393i −1.43666 + 0.863890i
\(120\) 14.1618 + 4.13487i 1.29279 + 0.377460i
\(121\) −4.95729 −0.450663
\(122\) −0.450270 6.64372i −0.0407656 0.601494i
\(123\) 12.6172 1.13765
\(124\) 1.92896 + 14.1655i 0.173225 + 1.27210i
\(125\) −1.22220 11.1133i −0.109317 0.994007i
\(126\) −1.03548 15.2785i −0.0922480 1.36112i
\(127\) 7.53988i 0.669056i 0.942386 + 0.334528i \(0.108577\pi\)
−0.942386 + 0.334528i \(0.891423\pi\)
\(128\) 5.16103 + 10.0680i 0.456175 + 0.889890i
\(129\) 3.99890i 0.352083i
\(130\) −4.94023 + 11.0799i −0.433287 + 0.971772i
\(131\) −4.30482 −0.376114 −0.188057 0.982158i \(-0.560219\pi\)
−0.188057 + 0.982158i \(0.560219\pi\)
\(132\) −1.54740 11.3635i −0.134684 0.989062i
\(133\) 28.2618i 2.45061i
\(134\) −0.888303 13.1069i −0.0767377 1.13226i
\(135\) 1.36381 2.57492i 0.117378 0.221614i
\(136\) 7.90129 + 8.57728i 0.677530 + 0.735495i
\(137\) 18.4366i 1.57514i −0.616225 0.787570i \(-0.711339\pi\)
0.616225 0.787570i \(-0.288661\pi\)
\(138\) −23.0226 + 1.56033i −1.95981 + 0.132824i
\(139\) 14.8960 1.26346 0.631729 0.775189i \(-0.282345\pi\)
0.631729 + 0.775189i \(0.282345\pi\)
\(140\) −18.6209 6.83404i −1.57375 0.577581i
\(141\) 3.79875 0.319913
\(142\) −9.27684 + 0.628727i −0.778495 + 0.0527616i
\(143\) 9.43030 0.788602
\(144\) −9.40994 + 2.61118i −0.784161 + 0.217598i
\(145\) −18.2947 9.68984i −1.51929 0.804697i
\(146\) −1.03703 15.3014i −0.0858255 1.26635i
\(147\) 29.5600i 2.43807i
\(148\) 0.285703 + 2.09808i 0.0234846 + 0.172461i
\(149\) 18.2481i 1.49494i −0.664296 0.747469i \(-0.731269\pi\)
0.664296 0.747469i \(-0.268731\pi\)
\(150\) 10.1689 + 12.9870i 0.830288 + 1.06038i
\(151\) 6.44649 0.524608 0.262304 0.964985i \(-0.415518\pi\)
0.262304 + 0.964985i \(0.415518\pi\)
\(152\) 17.6525 3.63372i 1.43181 0.294733i
\(153\) −8.62655 + 5.18730i −0.697415 + 0.419368i
\(154\) 1.04261 + 15.3837i 0.0840162 + 1.23966i
\(155\) −7.48120 + 14.1247i −0.600904 + 1.13453i
\(156\) −2.41488 17.7339i −0.193345 1.41985i
\(157\) 15.6941 1.25253 0.626264 0.779611i \(-0.284583\pi\)
0.626264 + 0.779611i \(0.284583\pi\)
\(158\) 4.65026 0.315166i 0.369955 0.0250733i
\(159\) 7.24934i 0.574910i
\(160\) −1.87444 + 12.5095i −0.148187 + 0.988959i
\(161\) 31.0245 2.44508
\(162\) 0.991063 + 14.6231i 0.0778653 + 1.14890i
\(163\) 3.75801i 0.294350i −0.989110 0.147175i \(-0.952982\pi\)
0.989110 0.147175i \(-0.0470180\pi\)
\(164\) 1.45962 + 10.7189i 0.113977 + 0.837002i
\(165\) 6.00138 11.3308i 0.467206 0.882101i
\(166\) 0.256186 + 3.78001i 0.0198839 + 0.293386i
\(167\) 16.3629 1.26620 0.633099 0.774071i \(-0.281783\pi\)
0.633099 + 0.774071i \(0.281783\pi\)
\(168\) 28.6625 5.90007i 2.21136 0.455201i
\(169\) 1.71701 0.132078
\(170\) 1.58637 + 12.9415i 0.121669 + 0.992571i
\(171\) 15.5564i 1.18963i
\(172\) 3.39724 0.462613i 0.259037 0.0352739i
\(173\) 18.2677i 1.38887i −0.719557 0.694434i \(-0.755655\pi\)
0.719557 0.694434i \(-0.244345\pi\)
\(174\) 30.4727 2.06525i 2.31013 0.156566i
\(175\) −12.4600 18.3454i −0.941887 1.38678i
\(176\) 9.47475 2.62917i 0.714186 0.198181i
\(177\) 0.503794 0.0378675
\(178\) 0.465413 + 6.86715i 0.0348842 + 0.514715i
\(179\) 2.03423i 0.152046i 0.997106 + 0.0760229i \(0.0242222\pi\)
−0.997106 + 0.0760229i \(0.975778\pi\)
\(180\) −10.2497 3.76172i −0.763966 0.280382i
\(181\) 1.03279 0.0767664 0.0383832 0.999263i \(-0.487779\pi\)
0.0383832 + 0.999263i \(0.487779\pi\)
\(182\) 1.62711 + 24.0080i 0.120610 + 1.77959i
\(183\) 10.9836i 0.811933i
\(184\) −3.98894 19.3782i −0.294068 1.42858i
\(185\) −1.10806 + 2.09205i −0.0814661 + 0.153811i
\(186\) −1.59451 23.5269i −0.116915 1.72508i
\(187\) 8.68597 5.22303i 0.635181 0.381946i
\(188\) 0.439459 + 3.22721i 0.0320508 + 0.235368i
\(189\) 5.77962i 0.420405i
\(190\) 18.4035 + 8.20561i 1.33513 + 0.595298i
\(191\) 9.17203 0.663665 0.331832 0.943338i \(-0.392333\pi\)
0.331832 + 0.943338i \(0.392333\pi\)
\(192\) −7.37047 17.1442i −0.531918 1.23728i
\(193\) −8.34085 −0.600387 −0.300194 0.953878i \(-0.597051\pi\)
−0.300194 + 0.953878i \(0.597051\pi\)
\(194\) 0.559316 + 8.25269i 0.0401566 + 0.592508i
\(195\) 9.36579 17.6829i 0.670698 1.26630i
\(196\) −25.1125 + 3.41965i −1.79375 + 0.244261i
\(197\) 15.1384i 1.07857i −0.842125 0.539283i \(-0.818695\pi\)
0.842125 0.539283i \(-0.181305\pi\)
\(198\) 0.573895 + 8.46780i 0.0407850 + 0.601780i
\(199\) 1.13639i 0.0805566i −0.999189 0.0402783i \(-0.987176\pi\)
0.999189 0.0402783i \(-0.0128245\pi\)
\(200\) −9.85663 + 10.1413i −0.696969 + 0.717101i
\(201\) 21.6687i 1.52839i
\(202\) 19.8767 1.34712i 1.39852 0.0947828i
\(203\) −41.0640 −2.88213
\(204\) −12.0463 14.9967i −0.843410 1.04998i
\(205\) −5.66094 + 10.6880i −0.395377 + 0.746485i
\(206\) −18.9127 + 1.28178i −1.31771 + 0.0893061i
\(207\) 17.0771 1.18694
\(208\) 14.7864 4.10310i 1.02525 0.284499i
\(209\) 15.6635i 1.08347i
\(210\) 29.8818 + 13.3235i 2.06204 + 0.919407i
\(211\) −0.896057 −0.0616871 −0.0308436 0.999524i \(-0.509819\pi\)
−0.0308436 + 0.999524i \(0.509819\pi\)
\(212\) 6.15864 0.838641i 0.422977 0.0575981i
\(213\) 15.3368 1.05086
\(214\) −15.3117 + 1.03773i −1.04669 + 0.0709379i
\(215\) 3.38747 + 1.79418i 0.231024 + 0.122362i
\(216\) −3.61000 + 0.743106i −0.245629 + 0.0505619i
\(217\) 31.7042i 2.15222i
\(218\) 0.293816 + 4.33525i 0.0198998 + 0.293620i
\(219\) 25.2968i 1.70940i
\(220\) 10.3203 + 3.78763i 0.695793 + 0.255362i
\(221\) 13.5554 8.15110i 0.911834 0.548302i
\(222\) −0.236167 3.48463i −0.0158505 0.233873i
\(223\) 21.4412i 1.43581i 0.696141 + 0.717905i \(0.254899\pi\)
−0.696141 + 0.717905i \(0.745101\pi\)
\(224\) 8.32819 + 23.6675i 0.556451 + 1.58135i
\(225\) −6.85846 10.0980i −0.457231 0.673200i
\(226\) 1.02610 + 15.1401i 0.0682552 + 1.00710i
\(227\) 20.2679i 1.34523i 0.739993 + 0.672614i \(0.234829\pi\)
−0.739993 + 0.672614i \(0.765171\pi\)
\(228\) −29.4556 + 4.01107i −1.95075 + 0.265639i
\(229\) 17.8132i 1.17713i 0.808450 + 0.588565i \(0.200307\pi\)
−0.808450 + 0.588565i \(0.799693\pi\)
\(230\) 9.00776 20.2025i 0.593954 1.33212i
\(231\) 25.4329i 1.67336i
\(232\) 5.27975 + 25.6489i 0.346633 + 1.68394i
\(233\) 2.38936 0.156532 0.0782661 0.996933i \(-0.475062\pi\)
0.0782661 + 0.996933i \(0.475062\pi\)
\(234\) 0.895626 + 13.2149i 0.0585489 + 0.863886i
\(235\) −1.70438 + 3.21793i −0.111182 + 0.209915i
\(236\) 0.0582815 + 0.427995i 0.00379380 + 0.0278601i
\(237\) −7.68798 −0.499388
\(238\) 14.7956 + 21.2118i 0.959058 + 1.37496i
\(239\) 3.32924 0.215351 0.107675 0.994186i \(-0.465659\pi\)
0.107675 + 0.994186i \(0.465659\pi\)
\(240\) 4.47994 20.3774i 0.289179 1.31536i
\(241\) 18.0407i 1.16210i −0.813867 0.581052i \(-0.802641\pi\)
0.813867 0.581052i \(-0.197359\pi\)
\(242\) 0.474052 + 6.99462i 0.0304732 + 0.449631i
\(243\) 20.2661i 1.30007i
\(244\) −9.33108 + 1.27064i −0.597361 + 0.0813445i
\(245\) −25.0403 13.2626i −1.59977 0.847319i
\(246\) −1.20655 17.8026i −0.0769267 1.13505i
\(247\) 24.4446i 1.55537i
\(248\) 19.8027 4.07632i 1.25747 0.258846i
\(249\) 6.24924i 0.396030i
\(250\) −15.5638 + 2.78724i −0.984340 + 0.176280i
\(251\) 14.7881i 0.933419i 0.884411 + 0.466709i \(0.154561\pi\)
−0.884411 + 0.466709i \(0.845439\pi\)
\(252\) −21.4586 + 2.92208i −1.35176 + 0.184074i
\(253\) −17.1947 −1.08102
\(254\) 10.6386 0.721019i 0.667525 0.0452407i
\(255\) −1.16724 21.4745i −0.0730953 1.34479i
\(256\) 13.7121 8.24487i 0.857007 0.515304i
\(257\) 3.16673i 0.197535i 0.995111 + 0.0987676i \(0.0314901\pi\)
−0.995111 + 0.0987676i \(0.968510\pi\)
\(258\) −5.64235 + 0.382404i −0.351277 + 0.0238074i
\(259\) 4.69579i 0.291782i
\(260\) 16.1059 + 5.91100i 0.998846 + 0.366585i
\(261\) −22.6032 −1.39911
\(262\) 0.411658 + 6.07400i 0.0254323 + 0.375253i
\(263\) 21.0845i 1.30013i −0.759880 0.650063i \(-0.774742\pi\)
0.759880 0.650063i \(-0.225258\pi\)
\(264\) −15.8856 + 3.27000i −0.977692 + 0.201255i
\(265\) 6.14093 + 3.25256i 0.377234 + 0.199803i
\(266\) 39.8767 2.70260i 2.44500 0.165707i
\(267\) 11.3530i 0.694793i
\(268\) −18.4085 + 2.50675i −1.12448 + 0.153124i
\(269\) −3.79202 −0.231203 −0.115602 0.993296i \(-0.536880\pi\)
−0.115602 + 0.993296i \(0.536880\pi\)
\(270\) −3.76356 1.67807i −0.229043 0.102124i
\(271\) 20.2352 1.22920 0.614599 0.788839i \(-0.289318\pi\)
0.614599 + 0.788839i \(0.289318\pi\)
\(272\) 11.3468 11.9688i 0.687998 0.725712i
\(273\) 39.6908i 2.40220i
\(274\) −26.0135 + 1.76304i −1.57154 + 0.106509i
\(275\) 6.90570 + 10.1676i 0.416430 + 0.613126i
\(276\) 4.40317 + 32.3351i 0.265040 + 1.94635i
\(277\) 11.7708i 0.707241i 0.935389 + 0.353621i \(0.115050\pi\)
−0.935389 + 0.353621i \(0.884950\pi\)
\(278\) −1.42446 21.0178i −0.0854334 1.26057i
\(279\) 17.4512i 1.04478i
\(280\) −7.86200 + 26.9272i −0.469844 + 1.60921i
\(281\) −12.1576 −0.725262 −0.362631 0.931933i \(-0.618121\pi\)
−0.362631 + 0.931933i \(0.618121\pi\)
\(282\) −0.363264 5.35995i −0.0216321 0.319180i
\(283\) 0.633186i 0.0376390i 0.999823 + 0.0188195i \(0.00599079\pi\)
−0.999823 + 0.0188195i \(0.994009\pi\)
\(284\) 1.77424 + 13.0293i 0.105282 + 0.773145i
\(285\) −29.3710 15.5564i −1.73979 0.921481i
\(286\) −0.901795 13.3059i −0.0533242 0.786797i
\(287\) 23.9902i 1.41610i
\(288\) 4.58416 + 13.0275i 0.270124 + 0.767653i
\(289\) 7.97093 15.0155i 0.468878 0.883263i
\(290\) −11.9227 + 26.7400i −0.700123 + 1.57023i
\(291\) 13.6436i 0.799804i
\(292\) −21.4907 + 2.92646i −1.25765 + 0.171258i
\(293\) −24.3103 −1.42022 −0.710111 0.704090i \(-0.751355\pi\)
−0.710111 + 0.704090i \(0.751355\pi\)
\(294\) 41.7084 2.82674i 2.43249 0.164859i
\(295\) −0.226037 + 0.426765i −0.0131604 + 0.0248472i
\(296\) 2.93303 0.603754i 0.170479 0.0350925i
\(297\) 3.20324i 0.185871i
\(298\) −25.7476 + 1.74501i −1.49152 + 0.101086i
\(299\) −26.8343 −1.55186
\(300\) 17.3519 15.5900i 1.00181 0.900090i
\(301\) 7.60346 0.438256
\(302\) −0.616460 9.09585i −0.0354733 0.523407i
\(303\) −32.8608 −1.88780
\(304\) −6.81516 24.5598i −0.390876 1.40860i
\(305\) −9.30425 4.92801i −0.532760 0.282177i
\(306\) 8.14409 + 11.6758i 0.465567 + 0.667462i
\(307\) 5.01197 0.286048 0.143024 0.989719i \(-0.454317\pi\)
0.143024 + 0.989719i \(0.454317\pi\)
\(308\) 21.6064 2.94221i 1.23114 0.167648i
\(309\) 31.2671 1.77872
\(310\) 20.6451 + 9.20508i 1.17256 + 0.522814i
\(311\) 3.69611i 0.209587i 0.994494 + 0.104794i \(0.0334182\pi\)
−0.994494 + 0.104794i \(0.966582\pi\)
\(312\) −24.7912 + 5.10319i −1.40353 + 0.288911i
\(313\) −7.88878 −0.445900 −0.222950 0.974830i \(-0.571569\pi\)
−0.222950 + 0.974830i \(0.571569\pi\)
\(314\) −1.50079 22.1440i −0.0846943 1.24966i
\(315\) −21.3969 11.3329i −1.20558 0.638537i
\(316\) −0.889384 6.53128i −0.0500318 0.367413i
\(317\) 11.9767i 0.672678i 0.941741 + 0.336339i \(0.109189\pi\)
−0.941741 + 0.336339i \(0.890811\pi\)
\(318\) −10.2287 + 0.693235i −0.573594 + 0.0388747i
\(319\) 22.7589 1.27426
\(320\) 17.8298 + 1.44854i 0.996716 + 0.0809759i
\(321\) 25.3138 1.41288
\(322\) −2.96679 43.7749i −0.165333 2.43948i
\(323\) −13.5388 22.5152i −0.753319 1.25278i
\(324\) 20.5381 2.79673i 1.14100 0.155374i
\(325\) 10.7771 + 15.8676i 0.597806 + 0.880174i
\(326\) −5.30246 + 0.359368i −0.293676 + 0.0199035i
\(327\) 7.16718i 0.396346i
\(328\) 14.9845 3.08451i 0.827379 0.170313i
\(329\) 7.22291i 0.398212i
\(330\) −16.5614 7.38427i −0.911674 0.406491i
\(331\) 15.3360i 0.842943i −0.906842 0.421472i \(-0.861514\pi\)
0.906842 0.421472i \(-0.138486\pi\)
\(332\) 5.30900 0.722944i 0.291369 0.0396767i
\(333\) 2.58474i 0.141643i
\(334\) −1.56474 23.0876i −0.0856186 1.26330i
\(335\) −18.3556 9.72209i −1.00287 0.531174i
\(336\) −11.0658 39.8779i −0.603688 2.17552i
\(337\) 15.2572 0.831112 0.415556 0.909568i \(-0.363587\pi\)
0.415556 + 0.909568i \(0.363587\pi\)
\(338\) −0.164193 2.42266i −0.00893091 0.131775i
\(339\) 25.0301i 1.35945i
\(340\) 18.1085 3.47590i 0.982072 0.188507i
\(341\) 17.5714i 0.951545i
\(342\) 21.9497 1.48761i 1.18690 0.0804410i
\(343\) −25.1578 −1.35839
\(344\) −0.977604 4.74919i −0.0527089 0.256059i
\(345\) −17.0771 + 32.2422i −0.919401 + 1.73586i
\(346\) −25.7753 + 1.74689i −1.38569 + 0.0939134i
\(347\) 17.9160i 0.961781i −0.876781 0.480891i \(-0.840313\pi\)
0.876781 0.480891i \(-0.159687\pi\)
\(348\) −5.82803 42.7987i −0.312415 2.29425i
\(349\) 24.1567i 1.29308i 0.762881 + 0.646539i \(0.223784\pi\)
−0.762881 + 0.646539i \(0.776216\pi\)
\(350\) −24.6934 + 19.3351i −1.31992 + 1.03350i
\(351\) 4.99900i 0.266827i
\(352\) −4.61574 13.1172i −0.246020 0.699151i
\(353\) 16.9274i 0.900953i 0.892788 + 0.450477i \(0.148746\pi\)
−0.892788 + 0.450477i \(0.851254\pi\)
\(354\) −0.0481765 0.710842i −0.00256055 0.0377808i
\(355\) −6.88114 + 12.9918i −0.365213 + 0.689534i
\(356\) 9.64488 1.31337i 0.511178 0.0696087i
\(357\) −21.9830 36.5580i −1.16346 1.93485i
\(358\) 2.87026 0.194528i 0.151698 0.0102811i
\(359\) −19.3984 −1.02381 −0.511904 0.859043i \(-0.671059\pi\)
−0.511904 + 0.859043i \(0.671059\pi\)
\(360\) −4.32755 + 14.8218i −0.228082 + 0.781176i
\(361\) −21.6020 −1.13695
\(362\) −0.0987626 1.45724i −0.00519085 0.0765907i
\(363\) 11.5637i 0.606939i
\(364\) 33.7191 4.59163i 1.76736 0.240667i
\(365\) −21.4290 11.3499i −1.12164 0.594080i
\(366\) 15.4976 1.05033i 0.810075 0.0549019i
\(367\) 22.5468 1.17694 0.588468 0.808521i \(-0.299731\pi\)
0.588468 + 0.808521i \(0.299731\pi\)
\(368\) −26.9607 + 7.48138i −1.40542 + 0.389994i
\(369\) 13.2051i 0.687432i
\(370\) 3.05780 + 1.36339i 0.158967 + 0.0708792i
\(371\) 13.7838 0.715621
\(372\) −33.0434 + 4.49963i −1.71322 + 0.233295i
\(373\) 32.3191 1.67342 0.836710 0.547646i \(-0.184476\pi\)
0.836710 + 0.547646i \(0.184476\pi\)
\(374\) −8.20019 11.7562i −0.424022 0.607901i
\(375\) 25.9238 2.85100i 1.33870 0.147225i
\(376\) 4.51149 0.928675i 0.232662 0.0478928i
\(377\) 35.5178 1.82926
\(378\) −8.15490 + 0.552689i −0.419443 + 0.0284273i
\(379\) −11.7582 −0.603979 −0.301989 0.953311i \(-0.597651\pi\)
−0.301989 + 0.953311i \(0.597651\pi\)
\(380\) 9.81805 26.7516i 0.503655 1.37233i
\(381\) −17.5881 −0.901066
\(382\) −0.877096 12.9415i −0.0448762 0.662146i
\(383\) 23.9366i 1.22311i −0.791204 0.611553i \(-0.790545\pi\)
0.791204 0.611553i \(-0.209455\pi\)
\(384\) −23.4853 + 12.0390i −1.19848 + 0.614364i
\(385\) 21.5443 + 11.4110i 1.09800 + 0.581556i
\(386\) 0.797613 + 11.7687i 0.0405974 + 0.599013i
\(387\) 4.18524 0.212748
\(388\) 11.5909 1.57836i 0.588437 0.0801293i
\(389\) 1.72401i 0.0874106i 0.999044 + 0.0437053i \(0.0139163\pi\)
−0.999044 + 0.0437053i \(0.986084\pi\)
\(390\) −25.8458 11.5239i −1.30875 0.583538i
\(391\) −24.7162 + 14.8623i −1.24995 + 0.751619i
\(392\) 7.22649 + 35.1061i 0.364993 + 1.77313i
\(393\) 10.0418i 0.506540i
\(394\) −21.3599 + 1.44764i −1.07610 + 0.0729312i
\(395\) 3.44936 6.51250i 0.173556 0.327679i
\(396\) 11.8930 1.61951i 0.597645 0.0813832i
\(397\) 0.572727i 0.0287444i −0.999897 0.0143722i \(-0.995425\pi\)
0.999897 0.0143722i \(-0.00457496\pi\)
\(398\) −1.60342 + 0.108670i −0.0803722 + 0.00544713i
\(399\) −65.9256 −3.30041
\(400\) 15.2518 + 12.9377i 0.762588 + 0.646885i
\(401\) 0.0285393i 0.00142518i 1.00000 0.000712592i \(0.000226825\pi\)
−1.00000 0.000712592i \(0.999773\pi\)
\(402\) 30.5741 2.07212i 1.52490 0.103348i
\(403\) 27.4221i 1.36599i
\(404\) −3.80150 27.9167i −0.189132 1.38891i
\(405\) 20.4790 + 10.8468i 1.01761 + 0.538980i
\(406\) 3.92684 + 57.9404i 0.194886 + 2.87553i
\(407\) 2.60255i 0.129003i
\(408\) −20.0080 + 18.4311i −0.990544 + 0.912478i
\(409\) 4.23076 0.209197 0.104599 0.994515i \(-0.466644\pi\)
0.104599 + 0.994515i \(0.466644\pi\)
\(410\) 15.6219 + 6.96539i 0.771511 + 0.343996i
\(411\) 43.0065 2.12135
\(412\) 3.61713 + 26.5628i 0.178203 + 1.30865i
\(413\) 0.957909i 0.0471356i
\(414\) −1.63304 24.0954i −0.0802595 1.18423i
\(415\) 5.29374 + 2.80384i 0.259860 + 0.137635i
\(416\) −7.20335 20.4709i −0.353174 1.00367i
\(417\) 34.7474i 1.70159i
\(418\) −22.1009 + 1.49786i −1.08099 + 0.0732628i
\(419\) −24.3348 −1.18883 −0.594415 0.804158i \(-0.702617\pi\)
−0.594415 + 0.804158i \(0.702617\pi\)
\(420\) 15.9416 43.4366i 0.777870 2.11949i
\(421\) 2.75894i 0.134463i 0.997737 + 0.0672313i \(0.0214165\pi\)
−0.997737 + 0.0672313i \(0.978583\pi\)
\(422\) 0.0856875 + 1.26432i 0.00417120 + 0.0615459i
\(423\) 3.97577i 0.193309i
\(424\) −1.77224 8.60949i −0.0860674 0.418114i
\(425\) 18.7148 + 8.64618i 0.907801 + 0.419401i
\(426\) −1.46662 21.6399i −0.0710578 1.04845i
\(427\) −20.8842 −1.01066
\(428\) 2.92843 + 21.5052i 0.141551 + 1.03949i
\(429\) 21.9978i 1.06207i
\(430\) 2.20761 4.95122i 0.106461 0.238769i
\(431\) 4.51067i 0.217272i −0.994082 0.108636i \(-0.965352\pi\)
0.994082 0.108636i \(-0.0346482\pi\)
\(432\) 1.39372 + 5.02256i 0.0670553 + 0.241648i
\(433\) 7.71397i 0.370710i −0.982672 0.185355i \(-0.940657\pi\)
0.982672 0.185355i \(-0.0593434\pi\)
\(434\) 44.7338 3.03178i 2.14729 0.145530i
\(435\) 22.6032 42.6757i 1.08374 2.04614i
\(436\) 6.08884 0.829136i 0.291602 0.0397084i
\(437\) 44.5711i 2.13213i
\(438\) 35.6932 2.41906i 1.70549 0.115587i
\(439\) 35.7538i 1.70643i 0.521557 + 0.853217i \(0.325352\pi\)
−0.521557 + 0.853217i \(0.674648\pi\)
\(440\) 4.35736 14.9239i 0.207729 0.711468i
\(441\) −30.9375 −1.47321
\(442\) −12.7973 18.3469i −0.608704 0.872672i
\(443\) 0.775272 0.0368343 0.0184171 0.999830i \(-0.494137\pi\)
0.0184171 + 0.999830i \(0.494137\pi\)
\(444\) −4.89415 + 0.666452i −0.232266 + 0.0316284i
\(445\) 9.61715 + 5.09374i 0.455897 + 0.241467i
\(446\) 30.2530 2.05036i 1.43252 0.0970876i
\(447\) 42.5668 2.01334
\(448\) 32.5979 14.0141i 1.54010 0.662106i
\(449\) 26.7849i 1.26406i −0.774945 0.632028i \(-0.782223\pi\)
0.774945 0.632028i \(-0.217777\pi\)
\(450\) −13.5922 + 10.6428i −0.640742 + 0.501705i
\(451\) 13.2961i 0.626089i
\(452\) 21.2642 2.89561i 1.00018 0.136198i
\(453\) 15.0376i 0.706527i
\(454\) 28.5976 1.93817i 1.34215 0.0909626i
\(455\) 33.6221 + 17.8080i 1.57623 + 0.834853i
\(456\) 8.47629 + 41.1777i 0.396938 + 1.92832i
\(457\) 20.5494i 0.961260i 0.876924 + 0.480630i \(0.159592\pi\)
−0.876924 + 0.480630i \(0.840408\pi\)
\(458\) 25.1340 1.70343i 1.17444 0.0795960i
\(459\) 2.76872 + 4.60443i 0.129233 + 0.214916i
\(460\) −29.3667 10.7778i −1.36923 0.502519i
\(461\) 7.04005i 0.327888i 0.986470 + 0.163944i \(0.0524216\pi\)
−0.986470 + 0.163944i \(0.947578\pi\)
\(462\) −35.8852 + 2.43208i −1.66953 + 0.113151i
\(463\) 13.1319i 0.610293i −0.952305 0.305147i \(-0.901295\pi\)
0.952305 0.305147i \(-0.0987054\pi\)
\(464\) 35.6852 9.90234i 1.65664 0.459705i
\(465\) −32.9484 17.4512i −1.52795 0.809280i
\(466\) −0.228488 3.37133i −0.0105845 0.156174i
\(467\) −26.5329 −1.22779 −0.613897 0.789386i \(-0.710399\pi\)
−0.613897 + 0.789386i \(0.710399\pi\)
\(468\) 18.5603 2.52741i 0.857950 0.116830i
\(469\) −41.2007 −1.90247
\(470\) 4.70341 + 2.09712i 0.216952 + 0.0967330i
\(471\) 36.6093i 1.68687i
\(472\) 0.598318 0.123162i 0.0275398 0.00566898i
\(473\) −4.21407 −0.193763
\(474\) 0.735181 + 10.8476i 0.0337680 + 0.498245i
\(475\) 26.3557 17.9005i 1.20928 0.821332i
\(476\) 28.5145 22.9047i 1.30696 1.04984i
\(477\) 7.58716 0.347392
\(478\) −0.318367 4.69749i −0.0145618 0.214858i
\(479\) 36.7590i 1.67956i 0.542925 + 0.839781i \(0.317317\pi\)
−0.542925 + 0.839781i \(0.682683\pi\)
\(480\) −29.1805 4.37245i −1.33190 0.199574i
\(481\) 4.06156i 0.185191i
\(482\) −25.4550 + 1.72518i −1.15944 + 0.0785799i
\(483\) 72.3702i 3.29296i
\(484\) 9.82391 1.33775i 0.446541 0.0608069i
\(485\) 11.5575 + 6.12147i 0.524801 + 0.277962i
\(486\) −28.5951 + 1.93800i −1.29710 + 0.0879093i
\(487\) −34.4121 −1.55936 −0.779680 0.626178i \(-0.784618\pi\)
−0.779680 + 0.626178i \(0.784618\pi\)
\(488\) 2.68515 + 13.0444i 0.121551 + 0.590493i
\(489\) 8.76621 0.396422
\(490\) −16.3187 + 36.5996i −0.737206 + 1.65340i
\(491\) 26.0606i 1.17610i −0.808825 0.588050i \(-0.799896\pi\)
0.808825 0.588050i \(-0.200104\pi\)
\(492\) −25.0036 + 3.40482i −1.12725 + 0.153501i
\(493\) 32.7144 19.6717i 1.47338 0.885970i
\(494\) −34.4908 + 2.33757i −1.55181 + 0.105172i
\(495\) 11.8588 + 6.28104i 0.533013 + 0.282312i
\(496\) −7.64527 27.5513i −0.343283 1.23709i
\(497\) 29.1612i 1.30806i
\(498\) −8.81753 + 0.597598i −0.395123 + 0.0267790i
\(499\) 6.50237 0.291086 0.145543 0.989352i \(-0.453507\pi\)
0.145543 + 0.989352i \(0.453507\pi\)
\(500\) 5.42105 + 21.6936i 0.242437 + 0.970167i
\(501\) 38.1693i 1.70528i
\(502\) 20.8657 1.41415i 0.931283 0.0631166i
\(503\) −0.744731 −0.0332059 −0.0166029 0.999862i \(-0.505285\pi\)
−0.0166029 + 0.999862i \(0.505285\pi\)
\(504\) 6.17501 + 29.9981i 0.275057 + 1.33622i
\(505\) 14.7436 27.8364i 0.656082 1.23870i
\(506\) 1.64429 + 24.2614i 0.0730975 + 1.07855i
\(507\) 4.00522i 0.177878i
\(508\) −2.03468 14.9419i −0.0902744 0.662938i
\(509\) 18.3771i 0.814550i 0.913306 + 0.407275i \(0.133521\pi\)
−0.913306 + 0.407275i \(0.866479\pi\)
\(510\) −30.1884 + 3.70050i −1.33677 + 0.163861i
\(511\) −48.0991 −2.12778
\(512\) −12.9446 18.5590i −0.572075 0.820202i
\(513\) 8.30323 0.366596
\(514\) 4.46818 0.302826i 0.197083 0.0133571i
\(515\) −14.0286 + 26.4864i −0.618172 + 1.16713i
\(516\) 1.07913 + 7.92466i 0.0475058 + 0.348864i
\(517\) 4.00316i 0.176059i
\(518\) 6.62565 0.449045i 0.291114 0.0197299i
\(519\) 42.6126 1.87049
\(520\) 6.80012 23.2903i 0.298205 1.02135i
\(521\) 16.6952i 0.731431i −0.930727 0.365716i \(-0.880824\pi\)
0.930727 0.365716i \(-0.119176\pi\)
\(522\) 2.16149 + 31.8927i 0.0946057 + 1.39590i
\(523\) −16.4104 −0.717578 −0.358789 0.933419i \(-0.616810\pi\)
−0.358789 + 0.933419i \(0.616810\pi\)
\(524\) 8.53091 1.16168i 0.372675 0.0507483i
\(525\) 42.7938 29.0651i 1.86767 1.26851i
\(526\) −29.7498 + 2.01625i −1.29715 + 0.0879129i
\(527\) −15.1879 25.2577i −0.661594 1.10024i
\(528\) 6.13299 + 22.1015i 0.266904 + 0.961845i
\(529\) 25.9282 1.12731
\(530\) 4.00204 8.97574i 0.173837 0.389881i
\(531\) 0.527271i 0.0228816i
\(532\) −7.62660 56.0067i −0.330655 2.42820i
\(533\) 20.7500i 0.898782i
\(534\) −16.0188 + 1.08566i −0.693203 + 0.0469810i
\(535\) −11.3575 + 21.4434i −0.491029 + 0.927078i
\(536\) 5.29732 + 25.7343i 0.228810 + 1.11155i
\(537\) −4.74521 −0.204771
\(538\) 0.362620 + 5.35045i 0.0156337 + 0.230674i
\(539\) 31.1505 1.34175
\(540\) −2.00782 + 5.47077i −0.0864028 + 0.235425i
\(541\) −14.9643 −0.643364 −0.321682 0.946848i \(-0.604248\pi\)
−0.321682 + 0.946848i \(0.604248\pi\)
\(542\) −1.93503 28.5514i −0.0831168 1.22639i
\(543\) 2.40916i 0.103387i
\(544\) −17.9727 14.8655i −0.770573 0.637352i
\(545\) 6.07133 + 3.21569i 0.260067 + 0.137745i
\(546\) −56.0028 + 3.79552i −2.39670 + 0.162433i
\(547\) 9.14081i 0.390833i 0.980720 + 0.195416i \(0.0626059\pi\)
−0.980720 + 0.195416i \(0.937394\pi\)
\(548\) 4.97521 + 36.5359i 0.212530 + 1.56074i
\(549\) −11.4955 −0.490614
\(550\) 13.6858 10.7161i 0.583565 0.456935i
\(551\) 58.9943i 2.51324i
\(552\) 45.2030 9.30490i 1.92397 0.396043i
\(553\) 14.6178i 0.621614i
\(554\) 16.6084 1.12561i 0.705623 0.0478227i
\(555\) −4.88008 2.58474i −0.207148 0.109716i
\(556\) −29.5195 + 4.01976i −1.25190 + 0.170476i
\(557\) −17.6080 −0.746077 −0.373039 0.927816i \(-0.621684\pi\)
−0.373039 + 0.927816i \(0.621684\pi\)
\(558\) 24.6232 1.66881i 1.04239 0.0706464i
\(559\) −6.57651 −0.278157
\(560\) 38.7455 + 8.51812i 1.63730 + 0.359956i
\(561\) 12.1836 + 20.2616i 0.514393 + 0.855443i
\(562\) 1.16260 + 17.1541i 0.0490413 + 0.723602i
\(563\) 44.4958 1.87528 0.937638 0.347614i \(-0.113008\pi\)
0.937638 + 0.347614i \(0.113008\pi\)
\(564\) −7.52803 + 1.02512i −0.316987 + 0.0431651i
\(565\) 21.2030 + 11.2302i 0.892019 + 0.472459i
\(566\) 0.893411 0.0605499i 0.0375529 0.00254510i
\(567\) 45.9669 1.93043
\(568\) 18.2143 3.74936i 0.764257 0.157320i
\(569\) 19.3399 0.810769 0.405384 0.914146i \(-0.367138\pi\)
0.405384 + 0.914146i \(0.367138\pi\)
\(570\) −19.1410 + 42.9294i −0.801729 + 1.79811i
\(571\) −19.0383 −0.796729 −0.398364 0.917227i \(-0.630422\pi\)
−0.398364 + 0.917227i \(0.630422\pi\)
\(572\) −18.6881 + 2.54482i −0.781390 + 0.106404i
\(573\) 21.3954i 0.893805i
\(574\) 33.8496 2.29412i 1.41286 0.0957546i
\(575\) −19.6504 28.9321i −0.819479 1.20655i
\(576\) 17.9431 7.71393i 0.747630 0.321414i
\(577\) 46.2691i 1.92621i −0.269128 0.963104i \(-0.586736\pi\)
0.269128 0.963104i \(-0.413264\pi\)
\(578\) −21.9487 9.81091i −0.912946 0.408080i
\(579\) 19.4565i 0.808584i
\(580\) 38.8697 + 14.2655i 1.61398 + 0.592343i
\(581\) 11.8822 0.492959
\(582\) −19.2508 + 1.30470i −0.797973 + 0.0540817i
\(583\) −7.63942 −0.316392
\(584\) 6.18427 + 30.0431i 0.255907 + 1.24319i
\(585\) 18.5069 + 9.80223i 0.765168 + 0.405272i
\(586\) 2.32473 + 34.3012i 0.0960335 + 1.41697i
\(587\) 10.5537 0.435597 0.217798 0.975994i \(-0.430113\pi\)
0.217798 + 0.975994i \(0.430113\pi\)
\(588\) −7.97693 58.5793i −0.328963 2.41577i
\(589\) −45.5475 −1.87675
\(590\) 0.623771 + 0.278122i 0.0256802 + 0.0114501i
\(591\) 35.3130 1.45258
\(592\) −1.13236 4.08070i −0.0465397 0.167716i
\(593\) 21.9255i 0.900374i 0.892934 + 0.450187i \(0.148643\pi\)
−0.892934 + 0.450187i \(0.851357\pi\)
\(594\) 4.51969 0.306317i 0.185445 0.0125683i
\(595\) 40.8314 2.21938i 1.67393 0.0909855i
\(596\) 4.92434 + 36.1624i 0.201709 + 1.48127i
\(597\) 2.65083 0.108491
\(598\) 2.56609 + 37.8625i 0.104935 + 1.54831i
\(599\) −30.1539 −1.23205 −0.616027 0.787725i \(-0.711259\pi\)
−0.616027 + 0.787725i \(0.711259\pi\)
\(600\) −23.6565 22.9923i −0.965771 0.938658i
\(601\) 10.9973i 0.448589i 0.974521 + 0.224294i \(0.0720077\pi\)
−0.974521 + 0.224294i \(0.927992\pi\)
\(602\) −0.727099 10.7283i −0.0296343 0.437253i
\(603\) −22.6785 −0.923539
\(604\) −12.7751 + 1.73962i −0.519811 + 0.0707842i
\(605\) 9.79567 + 5.18829i 0.398251 + 0.210934i
\(606\) 3.14239 + 46.3658i 0.127651 + 1.88348i
\(607\) −14.5176 −0.589250 −0.294625 0.955613i \(-0.595195\pi\)
−0.294625 + 0.955613i \(0.595195\pi\)
\(608\) −34.0017 + 11.9646i −1.37895 + 0.485229i
\(609\) 95.7891i 3.88157i
\(610\) −6.06357 + 13.5993i −0.245507 + 0.550621i
\(611\) 6.24736i 0.252741i
\(612\) 15.6955 12.6077i 0.634453 0.509634i
\(613\) −1.50630 −0.0608388 −0.0304194 0.999537i \(-0.509684\pi\)
−0.0304194 + 0.999537i \(0.509684\pi\)
\(614\) −0.479281 7.07178i −0.0193422 0.285394i
\(615\) −24.9317 13.2051i −1.00534 0.532483i
\(616\) −6.21755 30.2047i −0.250512 1.21698i
\(617\) 0.545393 0.0219567 0.0109783 0.999940i \(-0.496505\pi\)
0.0109783 + 0.999940i \(0.496505\pi\)
\(618\) −2.98999 44.1171i −0.120275 1.77465i
\(619\) 44.4056 1.78481 0.892405 0.451235i \(-0.149016\pi\)
0.892405 + 0.451235i \(0.149016\pi\)
\(620\) 11.0139 30.0100i 0.442330 1.20523i
\(621\) 9.11492i 0.365769i
\(622\) 5.21513 0.353449i 0.209107 0.0141720i
\(623\) 21.5865 0.864845
\(624\) 9.57120 + 34.4918i 0.383154 + 1.38078i
\(625\) −9.21612 + 23.2393i −0.368645 + 0.929570i
\(626\) 0.754382 + 11.1309i 0.0301512 + 0.444879i
\(627\) 36.5379 1.45919
\(628\) −31.1012 + 4.23515i −1.24107 + 0.169001i
\(629\) −2.24952 3.74098i −0.0896941 0.149163i
\(630\) −13.9443 + 31.2742i −0.555555 + 1.24600i
\(631\) −10.3315 −0.411290 −0.205645 0.978627i \(-0.565929\pi\)
−0.205645 + 0.978627i \(0.565929\pi\)
\(632\) −9.13043 + 1.87947i −0.363189 + 0.0747613i
\(633\) 2.09021i 0.0830784i
\(634\) 16.8988 1.14530i 0.671139 0.0454856i
\(635\) 7.89124 14.8989i 0.313154 0.591245i
\(636\) 1.95628 + 14.3661i 0.0775714 + 0.569653i
\(637\) 48.6138 1.92615
\(638\) −2.17638 32.1123i −0.0861635 1.27134i
\(639\) 16.0515i 0.634987i
\(640\) 0.338843 25.2960i 0.0133939 0.999910i
\(641\) 18.9391i 0.748048i 0.927419 + 0.374024i \(0.122022\pi\)
−0.927419 + 0.374024i \(0.877978\pi\)
\(642\) −2.42069 35.7172i −0.0955371 1.40965i
\(643\) 37.5006i 1.47888i 0.673224 + 0.739439i \(0.264909\pi\)
−0.673224 + 0.739439i \(0.735091\pi\)
\(644\) −61.4817 + 8.37215i −2.42272 + 0.329909i
\(645\) −4.18524 + 7.90187i −0.164794 + 0.311136i
\(646\) −30.4738 + 21.2560i −1.19897 + 0.836306i
\(647\) 27.4611i 1.07961i 0.841791 + 0.539804i \(0.181502\pi\)
−0.841791 + 0.539804i \(0.818498\pi\)
\(648\) −5.91013 28.7113i −0.232172 1.12789i
\(649\) 0.530902i 0.0208397i
\(650\) 21.3582 16.7236i 0.837736 0.655954i
\(651\) −73.9555 −2.89855
\(652\) 1.01412 + 7.44728i 0.0397160 + 0.291658i
\(653\) 4.08558i 0.159881i −0.996800 0.0799406i \(-0.974527\pi\)
0.996800 0.0799406i \(-0.0254731\pi\)
\(654\) −10.1127 + 0.685378i −0.395439 + 0.0268004i
\(655\) 8.50639 + 4.50542i 0.332372 + 0.176041i
\(656\) −5.78509 20.8478i −0.225870 0.813969i
\(657\) −26.4756 −1.03291
\(658\) 10.1914 0.690708i 0.397301 0.0269266i
\(659\) 38.3536i 1.49404i 0.664799 + 0.747022i \(0.268517\pi\)
−0.664799 + 0.747022i \(0.731483\pi\)
\(660\) −8.83531 + 24.0739i −0.343914 + 0.937074i
\(661\) 14.3360i 0.557607i 0.960348 + 0.278804i \(0.0899378\pi\)
−0.960348 + 0.278804i \(0.910062\pi\)
\(662\) −21.6387 + 1.46654i −0.841014 + 0.0569987i
\(663\) 19.0139 + 31.6203i 0.738438 + 1.22803i
\(664\) −1.52774 7.42175i −0.0592879 0.288020i
\(665\) 29.5788 55.8457i 1.14702 2.16560i
\(666\) 3.64701 0.247172i 0.141319 0.00957772i
\(667\) −64.7613 −2.50757
\(668\) −32.4265 + 4.41562i −1.25462 + 0.170845i
\(669\) −50.0154 −1.93371
\(670\) −11.9623 + 26.8291i −0.462146 + 1.03650i
\(671\) 11.5746 0.446834
\(672\) −55.2086 + 19.4270i −2.12972 + 0.749412i
\(673\) −6.34888 −0.244731 −0.122366 0.992485i \(-0.539048\pi\)
−0.122366 + 0.992485i \(0.539048\pi\)
\(674\) −1.45900 21.5275i −0.0561987 0.829210i
\(675\) −5.38981 + 3.66071i −0.207454 + 0.140901i
\(676\) −3.40261 + 0.463344i −0.130870 + 0.0178209i
\(677\) 21.7279i 0.835072i −0.908660 0.417536i \(-0.862894\pi\)
0.908660 0.417536i \(-0.137106\pi\)
\(678\) −35.3169 + 2.39356i −1.35634 + 0.0919242i
\(679\) 25.9419 0.995557
\(680\) −6.63608 25.2183i −0.254482 0.967077i
\(681\) −47.2785 −1.81171
\(682\) −24.7928 + 1.68031i −0.949367 + 0.0643423i
\(683\) 1.22743i 0.0469664i −0.999724 0.0234832i \(-0.992524\pi\)
0.999724 0.0234832i \(-0.00747562\pi\)
\(684\) −4.19798 30.8283i −0.160514 1.17875i
\(685\) −19.2957 + 36.4309i −0.737250 + 1.39195i
\(686\) 2.40577 + 35.4970i 0.0918527 + 1.35528i
\(687\) −41.5525 −1.58533
\(688\) −6.60750 + 1.83353i −0.251909 + 0.0699026i
\(689\) −11.9221 −0.454197
\(690\) 47.1260 + 21.0122i 1.79405 + 0.799920i
\(691\) 45.6561 1.73684 0.868419 0.495831i \(-0.165136\pi\)
0.868419 + 0.495831i \(0.165136\pi\)
\(692\) 4.92964 + 36.2013i 0.187397 + 1.37617i
\(693\) 26.6181 1.01114
\(694\) −25.2791 + 1.71326i −0.959580 + 0.0650344i
\(695\) −29.4346 15.5901i −1.11652 0.591366i
\(696\) −59.8307 + 12.3159i −2.26788 + 0.466835i
\(697\) −11.4925 19.1122i −0.435310 0.723926i
\(698\) 34.0845 2.31004i 1.29012 0.0874363i
\(699\) 5.57360i 0.210813i
\(700\) 29.6427 + 32.9928i 1.12039 + 1.24701i
\(701\) 12.9121i 0.487683i −0.969815 0.243841i \(-0.921592\pi\)
0.969815 0.243841i \(-0.0784077\pi\)
\(702\) 7.05347 0.478041i 0.266216 0.0180425i
\(703\) −6.74616 −0.254436
\(704\) −18.0667 + 7.76706i −0.680915 + 0.292732i
\(705\) −7.50639 3.97577i −0.282707 0.149736i
\(706\) 23.8841 1.61872i 0.898891 0.0609213i
\(707\) 62.4812i 2.34985i
\(708\) −0.998374 + 0.135952i −0.0375212 + 0.00510938i
\(709\) 50.9488 1.91342 0.956712 0.291036i \(-0.0940001\pi\)
0.956712 + 0.291036i \(0.0940001\pi\)
\(710\) 18.9892 + 8.46676i 0.712651 + 0.317752i
\(711\) 8.04623i 0.301757i
\(712\) −2.77545 13.4831i −0.104015 0.505301i
\(713\) 50.0000i 1.87252i
\(714\) −49.4803 + 34.5134i −1.85175 + 1.29163i
\(715\) −18.6344 9.86975i −0.696887 0.369108i
\(716\) −0.548950 4.03126i −0.0205152 0.150655i
\(717\) 7.76605i 0.290028i
\(718\) 1.85501 + 27.3707i 0.0692285 + 1.02146i
\(719\) 21.2170i 0.791259i 0.918410 + 0.395630i \(0.129474\pi\)
−0.918410 + 0.395630i \(0.870526\pi\)
\(720\) 21.3270 + 4.68870i 0.794811 + 0.174738i
\(721\) 59.4509i 2.21407i
\(722\) 2.06574 + 30.4799i 0.0768790 + 1.13435i
\(723\) 42.0831 1.56509
\(724\) −2.04669 + 0.278704i −0.0760645 + 0.0103579i
\(725\) 26.0093 + 38.2945i 0.965959 + 1.42222i
\(726\) −16.3162 + 1.10581i −0.605550 + 0.0410405i
\(727\) 25.0074i 0.927473i −0.885973 0.463736i \(-0.846508\pi\)
0.885973 0.463736i \(-0.153492\pi\)
\(728\) −9.70315 47.1378i −0.359623 1.74704i
\(729\) 16.1829 0.599368
\(730\) −13.9652 + 31.3211i −0.516876 + 1.15925i
\(731\) −6.05743 + 3.64244i −0.224042 + 0.134720i
\(732\) −2.96400 21.7664i −0.109552 0.804508i
\(733\) −13.6267 −0.503315 −0.251658 0.967816i \(-0.580976\pi\)
−0.251658 + 0.967816i \(0.580976\pi\)
\(734\) −2.15609 31.8131i −0.0795829 1.17424i
\(735\) 30.9375 58.4109i 1.14115 2.15452i
\(736\) 13.1342 + 37.3255i 0.484134 + 1.37584i
\(737\) 22.8347 0.841127
\(738\) 18.6321 1.26277i 0.685859 0.0464833i
\(739\) 17.6145i 0.647960i −0.946064 0.323980i \(-0.894979\pi\)
0.946064 0.323980i \(-0.105021\pi\)
\(740\) 1.63130 4.44486i 0.0599678 0.163396i
\(741\) 57.0214 2.09473
\(742\) −1.31811 19.4487i −0.0483894 0.713983i
\(743\) −6.03503 −0.221404 −0.110702 0.993854i \(-0.535310\pi\)
−0.110702 + 0.993854i \(0.535310\pi\)
\(744\) 9.50873 + 46.1932i 0.348607 + 1.69353i
\(745\) −19.0984 + 36.0584i −0.699711 + 1.32108i
\(746\) −3.09059 45.6015i −0.113154 1.66959i
\(747\) 6.54045 0.239303
\(748\) −15.8036 + 12.6945i −0.577837 + 0.464157i
\(749\) 48.1315i 1.75869i
\(750\) −6.50172 36.3053i −0.237409 1.32568i
\(751\) 20.3013i 0.740806i 0.928871 + 0.370403i \(0.120780\pi\)
−0.928871 + 0.370403i \(0.879220\pi\)
\(752\) −1.74176 6.27680i −0.0635155 0.228891i
\(753\) −34.4959 −1.25710
\(754\) −3.39647 50.1148i −0.123692 1.82507i
\(755\) −12.7384 6.74689i −0.463596 0.245545i
\(756\) 1.55966 + 11.4535i 0.0567244 + 0.416561i
\(757\) 17.5220 0.636847 0.318424 0.947949i \(-0.396847\pi\)
0.318424 + 0.947949i \(0.396847\pi\)
\(758\) 1.12441 + 16.5906i 0.0408403 + 0.602596i
\(759\) 40.1098i 1.45589i
\(760\) −38.6847 11.2949i −1.40324 0.409708i
\(761\) −49.0266 −1.77721 −0.888607 0.458670i \(-0.848326\pi\)
−0.888607 + 0.458670i \(0.848326\pi\)
\(762\) 1.68190 + 24.8164i 0.0609289 + 0.899003i
\(763\) 13.6276 0.493353
\(764\) −18.1763 + 2.47513i −0.657596 + 0.0895469i
\(765\) 22.4752 1.22163i 0.812593 0.0441682i
\(766\) −33.7740 + 2.28900i −1.22031 + 0.0827048i
\(767\) 0.828530i 0.0299165i
\(768\) 19.2326 + 31.9859i 0.693997 + 1.15419i
\(769\) −11.7225 −0.422724 −0.211362 0.977408i \(-0.567790\pi\)
−0.211362 + 0.977408i \(0.567790\pi\)
\(770\) 14.0404 31.4897i 0.505980 1.13481i
\(771\) −7.38696 −0.266035
\(772\) 16.5292 2.25083i 0.594897 0.0810090i
\(773\) −38.4421 −1.38267 −0.691334 0.722536i \(-0.742976\pi\)
−0.691334 + 0.722536i \(0.742976\pi\)
\(774\) −0.400223 5.90528i −0.0143857 0.212261i
\(775\) 29.5659 20.0809i 1.06204 0.721326i
\(776\) −3.33544 16.2035i −0.119735 0.581672i
\(777\) −10.9537 −0.392964
\(778\) 2.43253 0.164862i 0.0872105 0.00591059i
\(779\) −34.4653 −1.23485
\(780\) −13.7885 + 37.5699i −0.493706 + 1.34522i
\(781\) 16.1620i 0.578323i
\(782\) 23.3339 + 33.4528i 0.834419 + 1.19627i
\(783\) 12.0645i 0.431150i
\(784\) 48.8429 13.5535i 1.74439 0.484054i
\(785\) −31.0118 16.4255i −1.10686 0.586250i
\(786\) −14.1687 + 0.960266i −0.505380 + 0.0342515i
\(787\) 7.70519i 0.274661i −0.990525 0.137330i \(-0.956148\pi\)
0.990525 0.137330i \(-0.0438522\pi\)
\(788\) 4.08518 + 29.9999i 0.145529 + 1.06870i
\(789\) 49.1833 1.75097
\(790\) −9.51884 4.24419i −0.338665 0.151002i
\(791\) 47.5920 1.69218
\(792\) −3.42238 16.6259i −0.121609 0.590774i
\(793\) 18.0635 0.641453
\(794\) −0.808105 + 0.0547684i −0.0286786 + 0.00194366i
\(795\) −7.58716 + 14.3248i −0.269089 + 0.508048i
\(796\) 0.306662 + 2.25200i 0.0108693 + 0.0798199i
\(797\) 0.584825 0.0207156 0.0103578 0.999946i \(-0.496703\pi\)
0.0103578 + 0.999946i \(0.496703\pi\)
\(798\) 6.30428 + 93.0194i 0.223169 + 3.29285i
\(799\) −3.46013 5.75425i −0.122411 0.203571i
\(800\) 16.7963 22.7571i 0.593839 0.804584i
\(801\) 11.8821 0.419832
\(802\) 0.0402683 0.00272913i 0.00142192 9.63691e-5i
\(803\) 26.6580 0.940739
\(804\) −5.84743 42.9412i −0.206223 1.51442i
\(805\) −61.3049 32.4703i −2.16071 1.14443i
\(806\) −38.6919 + 2.62230i −1.36286 + 0.0923666i
\(807\) 8.84555i 0.311378i
\(808\) −39.0263 + 8.03343i −1.37294 + 0.282615i
\(809\) 9.44747i 0.332155i −0.986113 0.166078i \(-0.946890\pi\)
0.986113 0.166078i \(-0.0531102\pi\)
\(810\) 13.3462 29.9327i 0.468936 1.05173i
\(811\) 50.4495 1.77152 0.885761 0.464142i \(-0.153637\pi\)
0.885761 + 0.464142i \(0.153637\pi\)
\(812\) 81.3771 11.0814i 2.85577 0.388880i
\(813\) 47.2021i 1.65545i
\(814\) −3.67213 + 0.248875i −0.128708 + 0.00872305i
\(815\) −3.93313 + 7.42587i −0.137771 + 0.260117i
\(816\) 27.9192 + 26.4683i 0.977368 + 0.926576i
\(817\) 10.9234i 0.382163i
\(818\) −0.404576 5.96950i −0.0141457 0.208719i
\(819\) 41.5404 1.45154
\(820\) 8.33412 22.7082i 0.291040 0.793006i
\(821\) −28.4106 −0.991537 −0.495769 0.868455i \(-0.665114\pi\)
−0.495769 + 0.868455i \(0.665114\pi\)
\(822\) −4.11260 60.6812i −0.143443 2.11650i
\(823\) 2.79256 0.0973425 0.0486712 0.998815i \(-0.484501\pi\)
0.0486712 + 0.998815i \(0.484501\pi\)
\(824\) 37.1335 7.64381i 1.29361 0.266285i
\(825\) −23.7176 + 16.1088i −0.825741 + 0.560835i
\(826\) 1.35159 0.0916023i 0.0470278 0.00318725i
\(827\) 19.6144i 0.682061i 0.940052 + 0.341030i \(0.110776\pi\)
−0.940052 + 0.341030i \(0.889224\pi\)
\(828\) −33.8419 + 4.60836i −1.17609 + 0.160152i
\(829\) 25.3514i 0.880489i 0.897878 + 0.440245i \(0.145108\pi\)
−0.897878 + 0.440245i \(0.854892\pi\)
\(830\) 3.44993 7.73747i 0.119749 0.268572i
\(831\) −27.4576 −0.952492
\(832\) −28.1951 + 12.1213i −0.977488 + 0.420232i
\(833\) 44.7767 26.9250i 1.55142 0.932897i
\(834\) 49.0278 3.32280i 1.69769 0.115059i
\(835\) −32.3333 17.1254i −1.11894 0.592648i
\(836\) 4.22689 + 31.0406i 0.146190 + 1.07356i
\(837\) 9.31459 0.321959
\(838\) 2.32707 + 34.3358i 0.0803872 + 1.18611i
\(839\) 2.75256i 0.0950291i −0.998871 0.0475145i \(-0.984870\pi\)
0.998871 0.0475145i \(-0.0151300\pi\)
\(840\) −62.8124 18.3395i −2.16724 0.632773i
\(841\) 56.7180 1.95579
\(842\) 3.89280 0.263830i 0.134155 0.00909219i
\(843\) 28.3597i 0.976761i
\(844\) 1.77573 0.241806i 0.0611230 0.00832331i
\(845\) −3.39283 1.79702i −0.116717 0.0618193i
\(846\) 5.60972 0.380192i 0.192866 0.0130713i
\(847\) 21.9872 0.755489
\(848\) −11.9783 + 3.32389i −0.411337 + 0.114143i
\(849\) −1.47702 −0.0506911
\(850\) 10.4099 27.2330i 0.357057 0.934083i
\(851\) 7.40564i 0.253862i
\(852\) −30.3931 + 4.13872i −1.04125 + 0.141790i
\(853\) 47.7663i 1.63549i −0.575583 0.817743i \(-0.695225\pi\)
0.575583 0.817743i \(-0.304775\pi\)
\(854\) 1.99710 + 29.4671i 0.0683392 + 1.00834i
\(855\) 16.2813 30.7396i 0.556809 1.05127i
\(856\) 30.0633 6.18843i 1.02754 0.211516i
\(857\) −39.9732 −1.36546 −0.682729 0.730672i \(-0.739207\pi\)
−0.682729 + 0.730672i \(0.739207\pi\)
\(858\) 31.0384 2.10359i 1.05964 0.0718155i
\(859\) 27.0787i 0.923913i −0.886902 0.461957i \(-0.847148\pi\)
0.886902 0.461957i \(-0.152852\pi\)
\(860\) −7.19716 2.64142i −0.245421 0.0900716i
\(861\) −55.9614 −1.90716
\(862\) −6.36446 + 0.431344i −0.216774 + 0.0146916i
\(863\) 1.87893i 0.0639594i 0.999489 + 0.0319797i \(0.0101812\pi\)
−0.999489 + 0.0319797i \(0.989819\pi\)
\(864\) 6.95344 2.44680i 0.236561 0.0832418i
\(865\) −19.1190 + 36.0972i −0.650064 + 1.22734i
\(866\) −10.8842 + 0.737666i −0.369861 + 0.0250669i
\(867\) 35.0262 + 18.5936i 1.18955 + 0.631472i
\(868\) −8.55555 62.8285i −0.290394 2.13254i
\(869\) 8.10165i 0.274830i
\(870\) −62.3759 27.8117i −2.11474 0.942905i
\(871\) 35.6360 1.20748
\(872\) −1.75215 8.51192i −0.0593353 0.288250i
\(873\) 14.2794 0.483285
\(874\) 62.8888 4.26222i 2.12725 0.144172i
\(875\) 5.42087 + 49.2913i 0.183259 + 1.66635i
\(876\) −6.82649 50.1309i −0.230646 1.69377i
\(877\) 34.9661i 1.18072i 0.807139 + 0.590361i \(0.201015\pi\)
−0.807139 + 0.590361i \(0.798985\pi\)
\(878\) 50.4477 3.41903i 1.70253 0.115387i
\(879\) 56.7080i 1.91271i
\(880\) −21.4739 4.72100i −0.723886 0.159145i
\(881\) 58.8637i 1.98317i 0.129466 + 0.991584i \(0.458674\pi\)
−0.129466 + 0.991584i \(0.541326\pi\)
\(882\) 2.95847 + 43.6520i 0.0996167 + 1.46984i
\(883\) 12.7513 0.429115 0.214558 0.976711i \(-0.431169\pi\)
0.214558 + 0.976711i \(0.431169\pi\)
\(884\) −24.6632 + 19.8111i −0.829515 + 0.666320i
\(885\) −0.995504 0.527271i −0.0334635 0.0177240i
\(886\) −0.0741372 1.09389i −0.00249069 0.0367500i
\(887\) 17.4369 0.585474 0.292737 0.956193i \(-0.405434\pi\)
0.292737 + 0.956193i \(0.405434\pi\)
\(888\) 1.40836 + 6.84180i 0.0472615 + 0.229596i
\(889\) 33.4418i 1.12160i
\(890\) 6.26749 14.0567i 0.210087 0.471181i
\(891\) −25.4762 −0.853486
\(892\) −5.78603 42.4903i −0.193731 1.42268i
\(893\) −10.3767 −0.347244
\(894\) −4.07055 60.0608i −0.136139 2.00873i
\(895\) 2.12903 4.01967i 0.0711655 0.134363i
\(896\) −22.8909 44.6547i −0.764730 1.49181i
\(897\) 62.5956i 2.09001i
\(898\) −37.7928 + 2.56137i −1.26116 + 0.0854739i
\(899\) 66.1800i 2.20723i
\(900\) 16.3165 + 18.1605i 0.543883 + 0.605350i
\(901\) −10.9811 + 6.60314i −0.365834 + 0.219983i
\(902\) −18.7605 + 1.27147i −0.624656 + 0.0423353i
\(903\) 17.7364i 0.590231i
\(904\) −6.11907 29.7264i −0.203517 0.988684i
\(905\) −2.04080 1.08091i −0.0678385 0.0359308i
\(906\) 21.2177 1.43800i 0.704910 0.0477744i
\(907\) 16.1397i 0.535910i 0.963431 + 0.267955i \(0.0863478\pi\)
−0.963431 + 0.267955i \(0.913652\pi\)
\(908\) −5.46941 40.1651i −0.181509 1.33293i
\(909\) 34.3921i 1.14071i
\(910\) 21.9115 49.1430i 0.726360 1.62907i
\(911\) 28.4224i 0.941675i 0.882220 + 0.470837i \(0.156048\pi\)
−0.882220 + 0.470837i \(0.843952\pi\)
\(912\) 57.2902 15.8975i 1.89707 0.526420i
\(913\) −6.58550 −0.217948
\(914\) 28.9947 1.96508i 0.959060 0.0649991i
\(915\) 11.4955 21.7038i 0.380028 0.717506i
\(916\) −4.80700 35.3006i −0.158828 1.16637i
\(917\) 19.0933 0.630516
\(918\) 6.23197 4.34691i 0.205686 0.143470i
\(919\) −48.7201 −1.60713 −0.803565 0.595217i \(-0.797066\pi\)
−0.803565 + 0.595217i \(0.797066\pi\)
\(920\) −12.3990 + 42.4664i −0.408783 + 1.40008i
\(921\) 11.6913i 0.385242i
\(922\) 9.93334 0.673221i 0.327137 0.0221713i
\(923\) 25.2226i 0.830212i
\(924\) 6.86322 + 50.4007i 0.225783 + 1.65806i
\(925\) 4.37908 2.97423i 0.143983 0.0977921i
\(926\) −18.5289 + 1.25577i −0.608896 + 0.0412672i
\(927\) 32.7241i 1.07480i
\(928\) −17.3845 49.4040i −0.570673 1.62177i
\(929\) 53.8045i 1.76527i 0.470061 + 0.882634i \(0.344232\pi\)
−0.470061 + 0.882634i \(0.655768\pi\)
\(930\) −21.4725 + 48.1583i −0.704110 + 1.57917i
\(931\) 80.7465i 2.64636i
\(932\) −4.73502 + 0.644783i −0.155101 + 0.0211206i
\(933\) −8.62183 −0.282266
\(934\) 2.53727 + 37.4373i 0.0830219 + 1.22498i
\(935\) −22.6300 + 1.23005i −0.740081 + 0.0402268i
\(936\) −5.34099 25.9465i −0.174576 0.848086i
\(937\) 17.3019i 0.565230i 0.959233 + 0.282615i \(0.0912019\pi\)
−0.959233 + 0.282615i \(0.908798\pi\)
\(938\) 3.93991 + 58.1333i 0.128643 + 1.89812i
\(939\) 18.4020i 0.600525i
\(940\) 2.50922 6.83694i 0.0818416 0.222997i
\(941\) 31.7594 1.03533 0.517663 0.855585i \(-0.326802\pi\)
0.517663 + 0.855585i \(0.326802\pi\)
\(942\) 51.6549 3.50085i 1.68301 0.114064i
\(943\) 37.8345i 1.23206i
\(944\) −0.230994 0.832435i −0.00751821 0.0270935i
\(945\) −6.04894 + 11.4206i −0.196772 + 0.371512i
\(946\) 0.402980 + 5.94595i 0.0131020 + 0.193320i
\(947\) 6.57610i 0.213694i 0.994275 + 0.106847i \(0.0340756\pi\)
−0.994275 + 0.106847i \(0.965924\pi\)
\(948\) 15.2354 2.07465i 0.494821 0.0673814i
\(949\) 41.6026 1.35048
\(950\) −27.7775 35.4755i −0.901222 1.15098i
\(951\) −27.9377 −0.905943
\(952\) −35.0448 38.0430i −1.13581 1.23298i
\(953\) 0.331815i 0.0107486i 0.999986 + 0.00537428i \(0.00171069\pi\)
−0.999986 + 0.00537428i \(0.998289\pi\)
\(954\) −0.725539 10.7053i −0.0234902 0.346597i
\(955\) −18.1241 9.59944i −0.586481 0.310631i
\(956\) −6.59760 + 0.898416i −0.213382 + 0.0290568i
\(957\) 53.0892i 1.71613i
\(958\) 51.8661 3.51517i 1.67572 0.113570i
\(959\) 81.7722i 2.64056i
\(960\) −3.37898 + 41.5911i −0.109056 + 1.34235i
\(961\) −20.0953 −0.648237
\(962\) −5.73076 + 0.388396i −0.184767 + 0.0125224i
\(963\) 26.4934i 0.853739i
\(964\) 4.86838 + 35.7514i 0.156800 + 1.15148i
\(965\) 16.4816 + 8.72953i 0.530562 + 0.281013i
\(966\) 102.113 6.92057i 3.28542 0.222666i
\(967\) 26.9044i 0.865188i 0.901589 + 0.432594i \(0.142402\pi\)
−0.901589 + 0.432594i \(0.857598\pi\)
\(968\) −2.82697 13.7334i −0.0908623 0.441408i
\(969\) 52.5207 31.5816i 1.68721 1.01455i
\(970\) 7.53204 16.8928i 0.241839 0.542395i
\(971\) 23.4854i 0.753681i −0.926278 0.376841i \(-0.877010\pi\)
0.926278 0.376841i \(-0.122990\pi\)
\(972\) 5.46894 + 40.1616i 0.175416 + 1.28819i
\(973\) −66.0684 −2.11806
\(974\) 3.29073 + 48.5547i 0.105442 + 1.55579i
\(975\) −37.0139 + 25.1395i −1.18539 + 0.805107i
\(976\) 18.1486 5.03609i 0.580923 0.161201i
\(977\) 22.0297i 0.704793i −0.935851 0.352396i \(-0.885367\pi\)
0.935851 0.352396i \(-0.114633\pi\)
\(978\) −0.838289 12.3689i −0.0268055 0.395514i
\(979\) −11.9639 −0.382368
\(980\) 53.2017 + 19.5255i 1.69946 + 0.623718i
\(981\) 7.50117 0.239494
\(982\) −36.7709 + 2.49211i −1.17341 + 0.0795264i
\(983\) 55.0949 1.75725 0.878627 0.477508i \(-0.158460\pi\)
0.878627 + 0.477508i \(0.158460\pi\)
\(984\) 7.19515 + 34.9539i 0.229373 + 1.11429i
\(985\) −15.8438 + 29.9137i −0.504826 + 0.953128i
\(986\) −30.8847 44.2780i −0.983570 1.41010i
\(987\) −16.8487 −0.536300
\(988\) 6.59653 + 48.4422i 0.209863 + 1.54115i
\(989\) 11.9913 0.381300
\(990\) 7.72837 17.3331i 0.245624 0.550883i
\(991\) 22.4296i 0.712501i −0.934391 0.356250i \(-0.884055\pi\)
0.934391 0.356250i \(-0.115945\pi\)
\(992\) −38.1432 + 13.4220i −1.21105 + 0.426147i
\(993\) 35.7739 1.13525
\(994\) 41.1458 2.78861i 1.30507 0.0884493i
\(995\) −1.18935 + 2.24552i −0.0377048 + 0.0711879i
\(996\) 1.68639 + 12.3842i 0.0534354 + 0.392408i
\(997\) 37.3152i 1.18178i 0.806750 + 0.590892i \(0.201224\pi\)
−0.806750 + 0.590892i \(0.798776\pi\)
\(998\) −0.621805 9.17470i −0.0196829 0.290420i
\(999\) 1.37961 0.0436489
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.h.b.509.18 yes 40
5.4 even 2 inner 680.2.h.b.509.23 yes 40
8.5 even 2 inner 680.2.h.b.509.21 yes 40
17.16 even 2 inner 680.2.h.b.509.17 40
40.29 even 2 inner 680.2.h.b.509.20 yes 40
85.84 even 2 inner 680.2.h.b.509.24 yes 40
136.101 even 2 inner 680.2.h.b.509.22 yes 40
680.509 even 2 inner 680.2.h.b.509.19 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.h.b.509.17 40 17.16 even 2 inner
680.2.h.b.509.18 yes 40 1.1 even 1 trivial
680.2.h.b.509.19 yes 40 680.509 even 2 inner
680.2.h.b.509.20 yes 40 40.29 even 2 inner
680.2.h.b.509.21 yes 40 8.5 even 2 inner
680.2.h.b.509.22 yes 40 136.101 even 2 inner
680.2.h.b.509.23 yes 40 5.4 even 2 inner
680.2.h.b.509.24 yes 40 85.84 even 2 inner