Properties

Label 680.2.cg.b.73.4
Level $680$
Weight $2$
Character 680.73
Analytic conductor $5.430$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(57,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 4, 15])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.cg (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 73.4
Character \(\chi\) \(=\) 680.73
Dual form 680.2.cg.b.177.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.431185 + 2.16772i) q^{3} +(-1.72137 - 1.42720i) q^{5} +(3.13047 + 2.09171i) q^{7} +(-1.74143 - 0.721324i) q^{9} +(4.13611 + 2.76366i) q^{11} -4.22102i q^{13} +(3.83599 - 3.11604i) q^{15} +(3.83647 + 1.51046i) q^{17} +(-4.74204 + 1.96422i) q^{19} +(-5.88405 + 5.88405i) q^{21} +(-2.01280 + 0.400370i) q^{23} +(0.926199 + 4.91347i) q^{25} +(-1.36923 + 2.04920i) q^{27} +(-1.19633 + 6.01436i) q^{29} +(2.21798 - 1.48200i) q^{31} +(-7.77427 + 7.77427i) q^{33} +(-2.40339 - 8.06840i) q^{35} +(-4.75306 - 0.945443i) q^{37} +(9.14997 + 1.82004i) q^{39} +(1.48544 + 7.46784i) q^{41} +(10.7322 - 4.44543i) q^{43} +(1.96816 + 3.72703i) q^{45} -9.66773 q^{47} +(2.74578 + 6.62891i) q^{49} +(-4.92848 + 7.66509i) q^{51} +(2.23033 - 5.38449i) q^{53} +(-3.17546 - 10.6603i) q^{55} +(-2.21317 - 11.1263i) q^{57} +(-3.10699 + 7.50094i) q^{59} +(-7.48983 + 1.48982i) q^{61} +(-3.94269 - 5.90065i) q^{63} +(-6.02424 + 7.26592i) q^{65} +(-2.07300 - 2.07300i) q^{67} -4.53580i q^{69} +(8.82168 + 13.2026i) q^{71} +(1.28356 - 0.857646i) q^{73} +(-11.0504 - 0.110878i) q^{75} +(7.16718 + 17.3031i) q^{77} +(7.90124 - 11.8250i) q^{79} +(-7.85019 - 7.85019i) q^{81} +(-1.90214 - 0.787891i) q^{83} +(-4.44824 - 8.07547i) q^{85} +(-12.5216 - 5.18661i) q^{87} +(1.46520 + 1.46520i) q^{89} +(8.82915 - 13.2138i) q^{91} +(2.25620 + 5.44696i) q^{93} +(10.9661 + 3.38671i) q^{95} +(15.5723 - 10.4051i) q^{97} +(-5.20926 - 7.79621i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 16 q^{15} - 24 q^{27} - 8 q^{29} + 16 q^{31} - 48 q^{33} - 32 q^{35} - 16 q^{37} - 16 q^{41} + 48 q^{43} - 24 q^{45} - 16 q^{47} - 80 q^{49} + 32 q^{51} - 8 q^{53} + 24 q^{55} - 80 q^{59} - 24 q^{61}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{16}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.431185 + 2.16772i −0.248945 + 1.25153i 0.630747 + 0.775988i \(0.282748\pi\)
−0.879693 + 0.475543i \(0.842252\pi\)
\(4\) 0 0
\(5\) −1.72137 1.42720i −0.769818 0.638263i
\(6\) 0 0
\(7\) 3.13047 + 2.09171i 1.18321 + 0.790592i 0.981986 0.188954i \(-0.0605096\pi\)
0.201219 + 0.979546i \(0.435510\pi\)
\(8\) 0 0
\(9\) −1.74143 0.721324i −0.580477 0.240441i
\(10\) 0 0
\(11\) 4.13611 + 2.76366i 1.24709 + 0.833276i 0.991063 0.133395i \(-0.0425878\pi\)
0.256023 + 0.966671i \(0.417588\pi\)
\(12\) 0 0
\(13\) 4.22102i 1.17070i −0.810781 0.585350i \(-0.800957\pi\)
0.810781 0.585350i \(-0.199043\pi\)
\(14\) 0 0
\(15\) 3.83599 3.11604i 0.990449 0.804559i
\(16\) 0 0
\(17\) 3.83647 + 1.51046i 0.930481 + 0.366341i
\(18\) 0 0
\(19\) −4.74204 + 1.96422i −1.08790 + 0.450623i −0.853274 0.521463i \(-0.825386\pi\)
−0.234626 + 0.972086i \(0.575386\pi\)
\(20\) 0 0
\(21\) −5.88405 + 5.88405i −1.28400 + 1.28400i
\(22\) 0 0
\(23\) −2.01280 + 0.400370i −0.419697 + 0.0834829i −0.400421 0.916331i \(-0.631136\pi\)
−0.0192759 + 0.999814i \(0.506136\pi\)
\(24\) 0 0
\(25\) 0.926199 + 4.91347i 0.185240 + 0.982693i
\(26\) 0 0
\(27\) −1.36923 + 2.04920i −0.263509 + 0.394369i
\(28\) 0 0
\(29\) −1.19633 + 6.01436i −0.222153 + 1.11684i 0.695216 + 0.718801i \(0.255309\pi\)
−0.917369 + 0.398038i \(0.869691\pi\)
\(30\) 0 0
\(31\) 2.21798 1.48200i 0.398360 0.266176i −0.340214 0.940348i \(-0.610499\pi\)
0.738574 + 0.674172i \(0.235499\pi\)
\(32\) 0 0
\(33\) −7.77427 + 7.77427i −1.35333 + 1.35333i
\(34\) 0 0
\(35\) −2.40339 8.06840i −0.406247 1.36381i
\(36\) 0 0
\(37\) −4.75306 0.945443i −0.781399 0.155430i −0.211756 0.977322i \(-0.567918\pi\)
−0.569642 + 0.821893i \(0.692918\pi\)
\(38\) 0 0
\(39\) 9.14997 + 1.82004i 1.46517 + 0.291440i
\(40\) 0 0
\(41\) 1.48544 + 7.46784i 0.231988 + 1.16628i 0.904592 + 0.426278i \(0.140175\pi\)
−0.672605 + 0.740002i \(0.734825\pi\)
\(42\) 0 0
\(43\) 10.7322 4.44543i 1.63665 0.677921i 0.640694 0.767796i \(-0.278647\pi\)
0.995953 + 0.0898750i \(0.0286468\pi\)
\(44\) 0 0
\(45\) 1.96816 + 3.72703i 0.293397 + 0.555593i
\(46\) 0 0
\(47\) −9.66773 −1.41018 −0.705091 0.709116i \(-0.749094\pi\)
−0.705091 + 0.709116i \(0.749094\pi\)
\(48\) 0 0
\(49\) 2.74578 + 6.62891i 0.392255 + 0.946987i
\(50\) 0 0
\(51\) −4.92848 + 7.66509i −0.690125 + 1.07333i
\(52\) 0 0
\(53\) 2.23033 5.38449i 0.306359 0.739617i −0.693458 0.720497i \(-0.743914\pi\)
0.999817 0.0191197i \(-0.00608637\pi\)
\(54\) 0 0
\(55\) −3.17546 10.6603i −0.428180 1.43744i
\(56\) 0 0
\(57\) −2.21317 11.1263i −0.293141 1.47372i
\(58\) 0 0
\(59\) −3.10699 + 7.50094i −0.404496 + 0.976539i 0.582065 + 0.813143i \(0.302245\pi\)
−0.986560 + 0.163397i \(0.947755\pi\)
\(60\) 0 0
\(61\) −7.48983 + 1.48982i −0.958974 + 0.190752i −0.649674 0.760213i \(-0.725095\pi\)
−0.309300 + 0.950965i \(0.600095\pi\)
\(62\) 0 0
\(63\) −3.94269 5.90065i −0.496732 0.743412i
\(64\) 0 0
\(65\) −6.02424 + 7.26592i −0.747215 + 0.901226i
\(66\) 0 0
\(67\) −2.07300 2.07300i −0.253257 0.253257i 0.569047 0.822305i \(-0.307312\pi\)
−0.822305 + 0.569047i \(0.807312\pi\)
\(68\) 0 0
\(69\) 4.53580i 0.546046i
\(70\) 0 0
\(71\) 8.82168 + 13.2026i 1.04694 + 1.56686i 0.802003 + 0.597319i \(0.203768\pi\)
0.244938 + 0.969539i \(0.421232\pi\)
\(72\) 0 0
\(73\) 1.28356 0.857646i 0.150229 0.100380i −0.478184 0.878260i \(-0.658705\pi\)
0.628413 + 0.777880i \(0.283705\pi\)
\(74\) 0 0
\(75\) −11.0504 0.110878i −1.27599 0.0128031i
\(76\) 0 0
\(77\) 7.16718 + 17.3031i 0.816776 + 1.97187i
\(78\) 0 0
\(79\) 7.90124 11.8250i 0.888959 1.33042i −0.0543564 0.998522i \(-0.517311\pi\)
0.943315 0.331899i \(-0.107689\pi\)
\(80\) 0 0
\(81\) −7.85019 7.85019i −0.872243 0.872243i
\(82\) 0 0
\(83\) −1.90214 0.787891i −0.208787 0.0864823i 0.275839 0.961204i \(-0.411044\pi\)
−0.484626 + 0.874721i \(0.661044\pi\)
\(84\) 0 0
\(85\) −4.44824 8.07547i −0.482479 0.875907i
\(86\) 0 0
\(87\) −12.5216 5.18661i −1.34245 0.556063i
\(88\) 0 0
\(89\) 1.46520 + 1.46520i 0.155311 + 0.155311i 0.780485 0.625174i \(-0.214972\pi\)
−0.625174 + 0.780485i \(0.714972\pi\)
\(90\) 0 0
\(91\) 8.82915 13.2138i 0.925547 1.38518i
\(92\) 0 0
\(93\) 2.25620 + 5.44696i 0.233957 + 0.564823i
\(94\) 0 0
\(95\) 10.9661 + 3.38671i 1.12510 + 0.347469i
\(96\) 0 0
\(97\) 15.5723 10.4051i 1.58113 1.05647i 0.618449 0.785825i \(-0.287762\pi\)
0.962678 0.270650i \(-0.0872385\pi\)
\(98\) 0 0
\(99\) −5.20926 7.79621i −0.523550 0.783548i
\(100\) 0 0
\(101\) 11.1001i 1.10450i −0.833678 0.552251i \(-0.813769\pi\)
0.833678 0.552251i \(-0.186231\pi\)
\(102\) 0 0
\(103\) 2.83195 + 2.83195i 0.279040 + 0.279040i 0.832726 0.553685i \(-0.186779\pi\)
−0.553685 + 0.832726i \(0.686779\pi\)
\(104\) 0 0
\(105\) 18.5263 1.73088i 1.80798 0.168917i
\(106\) 0 0
\(107\) −1.29146 1.93281i −0.124850 0.186852i 0.763779 0.645478i \(-0.223342\pi\)
−0.888629 + 0.458626i \(0.848342\pi\)
\(108\) 0 0
\(109\) 7.71478 1.53457i 0.738942 0.146985i 0.188753 0.982025i \(-0.439556\pi\)
0.550189 + 0.835040i \(0.314556\pi\)
\(110\) 0 0
\(111\) 4.09890 9.89563i 0.389051 0.939251i
\(112\) 0 0
\(113\) −1.05921 5.32501i −0.0996421 0.500935i −0.998086 0.0618458i \(-0.980301\pi\)
0.898444 0.439089i \(-0.144699\pi\)
\(114\) 0 0
\(115\) 4.03616 + 2.18348i 0.376374 + 0.203610i
\(116\) 0 0
\(117\) −3.04472 + 7.35061i −0.281485 + 0.679564i
\(118\) 0 0
\(119\) 8.85050 + 12.7532i 0.811324 + 1.16909i
\(120\) 0 0
\(121\) 5.26009 + 12.6990i 0.478190 + 1.15445i
\(122\) 0 0
\(123\) −16.8286 −1.51739
\(124\) 0 0
\(125\) 5.41817 9.77974i 0.484616 0.874727i
\(126\) 0 0
\(127\) 2.44564 1.01302i 0.217016 0.0898909i −0.271527 0.962431i \(-0.587529\pi\)
0.488543 + 0.872540i \(0.337529\pi\)
\(128\) 0 0
\(129\) 5.00885 + 25.1812i 0.441005 + 2.21708i
\(130\) 0 0
\(131\) 5.54329 + 1.10263i 0.484320 + 0.0963371i 0.431210 0.902252i \(-0.358087\pi\)
0.0531095 + 0.998589i \(0.483087\pi\)
\(132\) 0 0
\(133\) −18.9534 3.77006i −1.64347 0.326906i
\(134\) 0 0
\(135\) 5.28157 1.57325i 0.454565 0.135404i
\(136\) 0 0
\(137\) −9.72991 + 9.72991i −0.831282 + 0.831282i −0.987692 0.156410i \(-0.950008\pi\)
0.156410 + 0.987692i \(0.450008\pi\)
\(138\) 0 0
\(139\) −1.64878 + 1.10168i −0.139847 + 0.0934430i −0.623526 0.781803i \(-0.714300\pi\)
0.483678 + 0.875246i \(0.339300\pi\)
\(140\) 0 0
\(141\) 4.16858 20.9569i 0.351058 1.76489i
\(142\) 0 0
\(143\) 11.6655 17.4586i 0.975516 1.45996i
\(144\) 0 0
\(145\) 10.6430 8.64551i 0.883854 0.717970i
\(146\) 0 0
\(147\) −15.5535 + 3.09379i −1.28283 + 0.255171i
\(148\) 0 0
\(149\) 3.44678 3.44678i 0.282371 0.282371i −0.551683 0.834054i \(-0.686014\pi\)
0.834054 + 0.551683i \(0.186014\pi\)
\(150\) 0 0
\(151\) 8.18343 3.38969i 0.665958 0.275849i −0.0239850 0.999712i \(-0.507635\pi\)
0.689943 + 0.723863i \(0.257635\pi\)
\(152\) 0 0
\(153\) −5.59142 5.39770i −0.452039 0.436378i
\(154\) 0 0
\(155\) −5.93306 0.614425i −0.476555 0.0493518i
\(156\) 0 0
\(157\) 2.28334i 0.182230i 0.995840 + 0.0911152i \(0.0290432\pi\)
−0.995840 + 0.0911152i \(0.970957\pi\)
\(158\) 0 0
\(159\) 10.7104 + 7.15644i 0.849387 + 0.567542i
\(160\) 0 0
\(161\) −7.13845 2.95684i −0.562588 0.233032i
\(162\) 0 0
\(163\) −8.02384 5.36136i −0.628476 0.419934i 0.200128 0.979770i \(-0.435864\pi\)
−0.828604 + 0.559836i \(0.810864\pi\)
\(164\) 0 0
\(165\) 24.4778 2.28692i 1.90559 0.178037i
\(166\) 0 0
\(167\) −3.05988 + 15.3831i −0.236781 + 1.19038i 0.661155 + 0.750249i \(0.270067\pi\)
−0.897935 + 0.440127i \(0.854933\pi\)
\(168\) 0 0
\(169\) −4.81701 −0.370539
\(170\) 0 0
\(171\) 9.67478 0.739849
\(172\) 0 0
\(173\) 2.83595 14.2573i 0.215613 1.08396i −0.709626 0.704579i \(-0.751136\pi\)
0.925240 0.379384i \(-0.123864\pi\)
\(174\) 0 0
\(175\) −7.37812 + 17.3188i −0.557733 + 1.30918i
\(176\) 0 0
\(177\) −14.9202 9.96937i −1.12147 0.749344i
\(178\) 0 0
\(179\) 0.674495 + 0.279385i 0.0504142 + 0.0208822i 0.407748 0.913094i \(-0.366314\pi\)
−0.357334 + 0.933977i \(0.616314\pi\)
\(180\) 0 0
\(181\) −11.2948 7.54697i −0.839539 0.560962i 0.0598016 0.998210i \(-0.480953\pi\)
−0.899341 + 0.437248i \(0.855953\pi\)
\(182\) 0 0
\(183\) 16.8782i 1.24767i
\(184\) 0 0
\(185\) 6.83242 + 8.41103i 0.502330 + 0.618391i
\(186\) 0 0
\(187\) 11.6937 + 16.8502i 0.855126 + 1.23221i
\(188\) 0 0
\(189\) −8.57267 + 3.55091i −0.623570 + 0.258291i
\(190\) 0 0
\(191\) 9.58514 9.58514i 0.693556 0.693556i −0.269456 0.963013i \(-0.586844\pi\)
0.963013 + 0.269456i \(0.0868440\pi\)
\(192\) 0 0
\(193\) −0.0209589 + 0.00416899i −0.00150866 + 0.000300091i −0.195845 0.980635i \(-0.562745\pi\)
0.194336 + 0.980935i \(0.437745\pi\)
\(194\) 0 0
\(195\) −13.1529 16.1918i −0.941897 1.15952i
\(196\) 0 0
\(197\) 0.629917 0.942738i 0.0448798 0.0671673i −0.808351 0.588701i \(-0.799640\pi\)
0.853231 + 0.521533i \(0.174640\pi\)
\(198\) 0 0
\(199\) 3.59154 18.0559i 0.254598 1.27995i −0.615919 0.787809i \(-0.711215\pi\)
0.870517 0.492139i \(-0.163785\pi\)
\(200\) 0 0
\(201\) 5.38752 3.59983i 0.380007 0.253912i
\(202\) 0 0
\(203\) −16.3254 + 16.3254i −1.14582 + 1.14582i
\(204\) 0 0
\(205\) 8.10110 14.9749i 0.565806 1.04589i
\(206\) 0 0
\(207\) 3.79394 + 0.754662i 0.263697 + 0.0524526i
\(208\) 0 0
\(209\) −25.0421 4.98118i −1.73220 0.344555i
\(210\) 0 0
\(211\) 1.46364 + 7.35823i 0.100761 + 0.506561i 0.997898 + 0.0648078i \(0.0206434\pi\)
−0.897136 + 0.441754i \(0.854357\pi\)
\(212\) 0 0
\(213\) −32.4232 + 13.4301i −2.22160 + 0.920218i
\(214\) 0 0
\(215\) −24.8186 7.66481i −1.69261 0.522736i
\(216\) 0 0
\(217\) 10.0432 0.681778
\(218\) 0 0
\(219\) 1.30568 + 3.15219i 0.0882297 + 0.213005i
\(220\) 0 0
\(221\) 6.37569 16.1938i 0.428875 1.08931i
\(222\) 0 0
\(223\) 2.57584 6.21862i 0.172491 0.416430i −0.813866 0.581053i \(-0.802641\pi\)
0.986357 + 0.164623i \(0.0526409\pi\)
\(224\) 0 0
\(225\) 1.93129 9.22455i 0.128753 0.614970i
\(226\) 0 0
\(227\) −5.31351 26.7128i −0.352670 1.77299i −0.595937 0.803032i \(-0.703219\pi\)
0.243267 0.969959i \(-0.421781\pi\)
\(228\) 0 0
\(229\) −10.5423 + 25.4513i −0.696654 + 1.68187i 0.0342698 + 0.999413i \(0.489089\pi\)
−0.730924 + 0.682459i \(0.760911\pi\)
\(230\) 0 0
\(231\) −40.5986 + 8.07557i −2.67119 + 0.531333i
\(232\) 0 0
\(233\) −6.42361 9.61362i −0.420825 0.629809i 0.559118 0.829088i \(-0.311140\pi\)
−0.979943 + 0.199279i \(0.936140\pi\)
\(234\) 0 0
\(235\) 16.6417 + 13.7978i 1.08558 + 0.900068i
\(236\) 0 0
\(237\) 22.2264 + 22.2264i 1.44376 + 1.44376i
\(238\) 0 0
\(239\) 4.78935i 0.309797i −0.987930 0.154899i \(-0.950495\pi\)
0.987930 0.154899i \(-0.0495051\pi\)
\(240\) 0 0
\(241\) −10.1658 15.2143i −0.654839 0.980036i −0.999152 0.0411812i \(-0.986888\pi\)
0.344312 0.938855i \(-0.388112\pi\)
\(242\) 0 0
\(243\) 14.2543 9.52439i 0.914411 0.610990i
\(244\) 0 0
\(245\) 4.73428 15.3296i 0.302462 0.979369i
\(246\) 0 0
\(247\) 8.29101 + 20.0163i 0.527544 + 1.27360i
\(248\) 0 0
\(249\) 2.52810 3.78357i 0.160212 0.239774i
\(250\) 0 0
\(251\) 0.603647 + 0.603647i 0.0381019 + 0.0381019i 0.725901 0.687799i \(-0.241423\pi\)
−0.687799 + 0.725901i \(0.741423\pi\)
\(252\) 0 0
\(253\) −9.43164 3.90671i −0.592962 0.245613i
\(254\) 0 0
\(255\) 19.4233 6.16049i 1.21634 0.385785i
\(256\) 0 0
\(257\) −10.4570 4.33143i −0.652290 0.270187i 0.0319004 0.999491i \(-0.489844\pi\)
−0.684190 + 0.729304i \(0.739844\pi\)
\(258\) 0 0
\(259\) −12.9017 12.9017i −0.801673 0.801673i
\(260\) 0 0
\(261\) 6.42163 9.61065i 0.397489 0.594884i
\(262\) 0 0
\(263\) 1.94692 + 4.70029i 0.120052 + 0.289832i 0.972469 0.233030i \(-0.0748641\pi\)
−0.852417 + 0.522863i \(0.824864\pi\)
\(264\) 0 0
\(265\) −11.5240 + 6.08555i −0.707911 + 0.373833i
\(266\) 0 0
\(267\) −3.80792 + 2.54437i −0.233041 + 0.155713i
\(268\) 0 0
\(269\) −7.51776 11.2511i −0.458366 0.685993i 0.528243 0.849093i \(-0.322851\pi\)
−0.986610 + 0.163100i \(0.947851\pi\)
\(270\) 0 0
\(271\) 12.8673i 0.781631i 0.920469 + 0.390816i \(0.127807\pi\)
−0.920469 + 0.390816i \(0.872193\pi\)
\(272\) 0 0
\(273\) 24.8367 + 24.8367i 1.50318 + 1.50318i
\(274\) 0 0
\(275\) −9.74830 + 22.8824i −0.587845 + 1.37986i
\(276\) 0 0
\(277\) 0.772355 + 1.15591i 0.0464063 + 0.0694520i 0.853947 0.520360i \(-0.174202\pi\)
−0.807541 + 0.589811i \(0.799202\pi\)
\(278\) 0 0
\(279\) −4.93146 + 0.980928i −0.295239 + 0.0587266i
\(280\) 0 0
\(281\) −0.796461 + 1.92283i −0.0475129 + 0.114706i −0.945854 0.324592i \(-0.894773\pi\)
0.898341 + 0.439298i \(0.144773\pi\)
\(282\) 0 0
\(283\) 0.534584 + 2.68753i 0.0317777 + 0.159757i 0.993416 0.114564i \(-0.0365470\pi\)
−0.961638 + 0.274321i \(0.911547\pi\)
\(284\) 0 0
\(285\) −12.0699 + 22.3111i −0.714956 + 1.32160i
\(286\) 0 0
\(287\) −10.9704 + 26.4849i −0.647563 + 1.56336i
\(288\) 0 0
\(289\) 12.4370 + 11.5897i 0.731589 + 0.681746i
\(290\) 0 0
\(291\) 15.8407 + 38.2428i 0.928598 + 2.24183i
\(292\) 0 0
\(293\) 25.5662 1.49360 0.746798 0.665051i \(-0.231590\pi\)
0.746798 + 0.665051i \(0.231590\pi\)
\(294\) 0 0
\(295\) 16.0536 8.47756i 0.934677 0.493583i
\(296\) 0 0
\(297\) −11.3266 + 4.69163i −0.657236 + 0.272236i
\(298\) 0 0
\(299\) 1.68997 + 8.49605i 0.0977334 + 0.491339i
\(300\) 0 0
\(301\) 42.8954 + 8.53242i 2.47245 + 0.491801i
\(302\) 0 0
\(303\) 24.0619 + 4.78620i 1.38232 + 0.274960i
\(304\) 0 0
\(305\) 15.0190 + 8.12496i 0.859986 + 0.465234i
\(306\) 0 0
\(307\) 16.3835 16.3835i 0.935056 0.935056i −0.0629603 0.998016i \(-0.520054\pi\)
0.998016 + 0.0629603i \(0.0200542\pi\)
\(308\) 0 0
\(309\) −7.35996 + 4.91777i −0.418693 + 0.279762i
\(310\) 0 0
\(311\) −4.38807 + 22.0603i −0.248825 + 1.25093i 0.631058 + 0.775736i \(0.282621\pi\)
−0.879883 + 0.475191i \(0.842379\pi\)
\(312\) 0 0
\(313\) −13.5266 + 20.2440i −0.764570 + 1.14426i 0.221047 + 0.975263i \(0.429053\pi\)
−0.985617 + 0.168996i \(0.945947\pi\)
\(314\) 0 0
\(315\) −1.63460 + 15.7842i −0.0920993 + 0.889338i
\(316\) 0 0
\(317\) 16.9829 3.37811i 0.953856 0.189734i 0.306456 0.951885i \(-0.400857\pi\)
0.647399 + 0.762151i \(0.275857\pi\)
\(318\) 0 0
\(319\) −21.5698 + 21.5698i −1.20768 + 1.20768i
\(320\) 0 0
\(321\) 4.74665 1.96613i 0.264932 0.109738i
\(322\) 0 0
\(323\) −21.1596 + 0.372996i −1.17735 + 0.0207541i
\(324\) 0 0
\(325\) 20.7398 3.90951i 1.15044 0.216860i
\(326\) 0 0
\(327\) 17.3851i 0.961400i
\(328\) 0 0
\(329\) −30.2645 20.2221i −1.66854 1.11488i
\(330\) 0 0
\(331\) −9.88196 4.09324i −0.543162 0.224985i 0.0941952 0.995554i \(-0.469972\pi\)
−0.637357 + 0.770569i \(0.719972\pi\)
\(332\) 0 0
\(333\) 7.59516 + 5.07492i 0.416212 + 0.278104i
\(334\) 0 0
\(335\) 0.609805 + 6.52698i 0.0333172 + 0.356607i
\(336\) 0 0
\(337\) 6.46373 32.4954i 0.352102 1.77014i −0.246553 0.969129i \(-0.579298\pi\)
0.598655 0.801007i \(-0.295702\pi\)
\(338\) 0 0
\(339\) 11.9998 0.651741
\(340\) 0 0
\(341\) 13.2696 0.718587
\(342\) 0 0
\(343\) −0.128595 + 0.646493i −0.00694350 + 0.0349073i
\(344\) 0 0
\(345\) −6.47350 + 7.80777i −0.348521 + 0.420356i
\(346\) 0 0
\(347\) 10.0397 + 6.70831i 0.538959 + 0.360121i 0.795062 0.606529i \(-0.207438\pi\)
−0.256103 + 0.966650i \(0.582438\pi\)
\(348\) 0 0
\(349\) −16.1128 6.67412i −0.862496 0.357258i −0.0928128 0.995684i \(-0.529586\pi\)
−0.769683 + 0.638426i \(0.779586\pi\)
\(350\) 0 0
\(351\) 8.64971 + 5.77955i 0.461687 + 0.308490i
\(352\) 0 0
\(353\) 29.0008i 1.54356i −0.635890 0.771779i \(-0.719367\pi\)
0.635890 0.771779i \(-0.280633\pi\)
\(354\) 0 0
\(355\) 3.65738 35.3168i 0.194114 1.87442i
\(356\) 0 0
\(357\) −31.4616 + 13.6863i −1.66512 + 0.724358i
\(358\) 0 0
\(359\) 9.94825 4.12070i 0.525049 0.217482i −0.104384 0.994537i \(-0.533287\pi\)
0.629433 + 0.777055i \(0.283287\pi\)
\(360\) 0 0
\(361\) 5.19380 5.19380i 0.273358 0.273358i
\(362\) 0 0
\(363\) −29.7959 + 5.92677i −1.56388 + 0.311075i
\(364\) 0 0
\(365\) −3.43350 0.355572i −0.179718 0.0186115i
\(366\) 0 0
\(367\) 16.0032 23.9504i 0.835359 1.25020i −0.130582 0.991438i \(-0.541684\pi\)
0.965940 0.258765i \(-0.0833156\pi\)
\(368\) 0 0
\(369\) 2.79993 14.0762i 0.145759 0.732778i
\(370\) 0 0
\(371\) 18.2448 12.1908i 0.947222 0.632913i
\(372\) 0 0
\(373\) −14.6978 + 14.6978i −0.761025 + 0.761025i −0.976508 0.215483i \(-0.930868\pi\)
0.215483 + 0.976508i \(0.430868\pi\)
\(374\) 0 0
\(375\) 18.8635 + 15.9619i 0.974105 + 0.824271i
\(376\) 0 0
\(377\) 25.3867 + 5.04973i 1.30748 + 0.260075i
\(378\) 0 0
\(379\) −2.25247 0.448044i −0.115702 0.0230145i 0.136900 0.990585i \(-0.456286\pi\)
−0.252601 + 0.967570i \(0.581286\pi\)
\(380\) 0 0
\(381\) 1.14141 + 5.73826i 0.0584762 + 0.293980i
\(382\) 0 0
\(383\) −25.8533 + 10.7088i −1.32104 + 0.547193i −0.928086 0.372365i \(-0.878547\pi\)
−0.392954 + 0.919558i \(0.628547\pi\)
\(384\) 0 0
\(385\) 12.3577 40.0140i 0.629805 2.03930i
\(386\) 0 0
\(387\) −21.8960 −1.11304
\(388\) 0 0
\(389\) 7.84714 + 18.9447i 0.397866 + 0.960533i 0.988171 + 0.153353i \(0.0490072\pi\)
−0.590306 + 0.807180i \(0.700993\pi\)
\(390\) 0 0
\(391\) −8.32677 1.50424i −0.421103 0.0760728i
\(392\) 0 0
\(393\) −4.78037 + 11.5408i −0.241138 + 0.582158i
\(394\) 0 0
\(395\) −30.4776 + 9.07856i −1.53350 + 0.456792i
\(396\) 0 0
\(397\) −1.14401 5.75131i −0.0574161 0.288650i 0.941400 0.337292i \(-0.109511\pi\)
−0.998816 + 0.0486414i \(0.984511\pi\)
\(398\) 0 0
\(399\) 16.3448 39.4600i 0.818266 1.97547i
\(400\) 0 0
\(401\) −9.58259 + 1.90610i −0.478532 + 0.0951859i −0.428462 0.903560i \(-0.640944\pi\)
−0.0500698 + 0.998746i \(0.515944\pi\)
\(402\) 0 0
\(403\) −6.25557 9.36212i −0.311612 0.466360i
\(404\) 0 0
\(405\) 2.30925 + 24.7168i 0.114748 + 1.22819i
\(406\) 0 0
\(407\) −17.0463 17.0463i −0.844955 0.844955i
\(408\) 0 0
\(409\) 30.1989i 1.49324i −0.665251 0.746619i \(-0.731676\pi\)
0.665251 0.746619i \(-0.268324\pi\)
\(410\) 0 0
\(411\) −16.8963 25.2871i −0.833432 1.24732i
\(412\) 0 0
\(413\) −25.4161 + 16.9825i −1.25065 + 0.835655i
\(414\) 0 0
\(415\) 2.14980 + 4.07098i 0.105529 + 0.199837i
\(416\) 0 0
\(417\) −1.67719 4.04911i −0.0821326 0.198286i
\(418\) 0 0
\(419\) −20.6124 + 30.8486i −1.00698 + 1.50705i −0.152006 + 0.988380i \(0.548573\pi\)
−0.854973 + 0.518672i \(0.826427\pi\)
\(420\) 0 0
\(421\) −1.65668 1.65668i −0.0807415 0.0807415i 0.665583 0.746324i \(-0.268183\pi\)
−0.746324 + 0.665583i \(0.768183\pi\)
\(422\) 0 0
\(423\) 16.8357 + 6.97356i 0.818578 + 0.339066i
\(424\) 0 0
\(425\) −3.86826 + 20.2494i −0.187638 + 0.982238i
\(426\) 0 0
\(427\) −26.5629 11.0027i −1.28547 0.532459i
\(428\) 0 0
\(429\) 32.8153 + 32.8153i 1.58434 + 1.58434i
\(430\) 0 0
\(431\) 10.6826 15.9877i 0.514565 0.770101i −0.479656 0.877457i \(-0.659238\pi\)
0.994221 + 0.107356i \(0.0342385\pi\)
\(432\) 0 0
\(433\) 0.644265 + 1.55539i 0.0309614 + 0.0747474i 0.938604 0.344996i \(-0.112120\pi\)
−0.907643 + 0.419744i \(0.862120\pi\)
\(434\) 0 0
\(435\) 14.1519 + 26.7988i 0.678531 + 1.28491i
\(436\) 0 0
\(437\) 8.75835 5.85214i 0.418969 0.279946i
\(438\) 0 0
\(439\) 7.18716 + 10.7563i 0.343025 + 0.513373i 0.962369 0.271747i \(-0.0876014\pi\)
−0.619344 + 0.785120i \(0.712601\pi\)
\(440\) 0 0
\(441\) 13.5244i 0.644018i
\(442\) 0 0
\(443\) 9.00393 + 9.00393i 0.427790 + 0.427790i 0.887875 0.460085i \(-0.152181\pi\)
−0.460085 + 0.887875i \(0.652181\pi\)
\(444\) 0 0
\(445\) −0.431013 4.61329i −0.0204320 0.218691i
\(446\) 0 0
\(447\) 5.98544 + 8.95784i 0.283102 + 0.423691i
\(448\) 0 0
\(449\) 32.7297 6.51034i 1.54461 0.307242i 0.652052 0.758174i \(-0.273908\pi\)
0.892558 + 0.450932i \(0.148908\pi\)
\(450\) 0 0
\(451\) −14.4946 + 34.9931i −0.682525 + 1.64776i
\(452\) 0 0
\(453\) 3.81930 + 19.2009i 0.179447 + 0.902139i
\(454\) 0 0
\(455\) −34.0569 + 10.1447i −1.59661 + 0.475593i
\(456\) 0 0
\(457\) 6.06926 14.6525i 0.283908 0.685415i −0.716012 0.698088i \(-0.754034\pi\)
0.999920 + 0.0126736i \(0.00403424\pi\)
\(458\) 0 0
\(459\) −8.34825 + 5.79352i −0.389663 + 0.270419i
\(460\) 0 0
\(461\) 8.26564 + 19.9550i 0.384969 + 0.929398i 0.990988 + 0.133948i \(0.0427654\pi\)
−0.606019 + 0.795450i \(0.707235\pi\)
\(462\) 0 0
\(463\) −20.4039 −0.948249 −0.474124 0.880458i \(-0.657235\pi\)
−0.474124 + 0.880458i \(0.657235\pi\)
\(464\) 0 0
\(465\) 3.89015 12.5963i 0.180401 0.584138i
\(466\) 0 0
\(467\) 11.5282 4.77516i 0.533464 0.220968i −0.0996559 0.995022i \(-0.531774\pi\)
0.633119 + 0.774054i \(0.281774\pi\)
\(468\) 0 0
\(469\) −2.15334 10.8256i −0.0994321 0.499879i
\(470\) 0 0
\(471\) −4.94963 0.984543i −0.228067 0.0453654i
\(472\) 0 0
\(473\) 56.6753 + 11.2734i 2.60593 + 0.518353i
\(474\) 0 0
\(475\) −14.0432 21.4806i −0.644346 0.985598i
\(476\) 0 0
\(477\) −7.76793 + 7.76793i −0.355669 + 0.355669i
\(478\) 0 0
\(479\) 9.63578 6.43842i 0.440270 0.294179i −0.315610 0.948889i \(-0.602209\pi\)
0.755880 + 0.654710i \(0.227209\pi\)
\(480\) 0 0
\(481\) −3.99073 + 20.0628i −0.181962 + 0.914784i
\(482\) 0 0
\(483\) 9.48758 14.1992i 0.431700 0.646085i
\(484\) 0 0
\(485\) −41.6557 4.31384i −1.89149 0.195881i
\(486\) 0 0
\(487\) 1.60789 0.319829i 0.0728605 0.0144929i −0.158525 0.987355i \(-0.550674\pi\)
0.231386 + 0.972862i \(0.425674\pi\)
\(488\) 0 0
\(489\) 15.0817 15.0817i 0.682017 0.682017i
\(490\) 0 0
\(491\) −15.5833 + 6.45480i −0.703263 + 0.291301i −0.705514 0.708696i \(-0.749284\pi\)
0.00225034 + 0.999997i \(0.499284\pi\)
\(492\) 0 0
\(493\) −13.6741 + 21.2669i −0.615852 + 0.957813i
\(494\) 0 0
\(495\) −2.15971 + 20.8548i −0.0970717 + 0.937353i
\(496\) 0 0
\(497\) 59.7827i 2.68162i
\(498\) 0 0
\(499\) 24.7200 + 16.5174i 1.10662 + 0.739421i 0.968006 0.250926i \(-0.0807350\pi\)
0.138615 + 0.990346i \(0.455735\pi\)
\(500\) 0 0
\(501\) −32.0267 13.2659i −1.43085 0.592677i
\(502\) 0 0
\(503\) −14.2451 9.51824i −0.635155 0.424397i 0.195871 0.980630i \(-0.437246\pi\)
−0.831027 + 0.556232i \(0.812246\pi\)
\(504\) 0 0
\(505\) −15.8421 + 19.1073i −0.704963 + 0.850265i
\(506\) 0 0
\(507\) 2.07702 10.4419i 0.0922439 0.463741i
\(508\) 0 0
\(509\) 15.4508 0.684844 0.342422 0.939546i \(-0.388753\pi\)
0.342422 + 0.939546i \(0.388753\pi\)
\(510\) 0 0
\(511\) 5.81208 0.257111
\(512\) 0 0
\(513\) 2.46788 12.4069i 0.108960 0.547776i
\(514\) 0 0
\(515\) −0.833062 8.91658i −0.0367091 0.392912i
\(516\) 0 0
\(517\) −39.9868 26.7183i −1.75862 1.17507i
\(518\) 0 0
\(519\) 29.6829 + 12.2951i 1.30294 + 0.539694i
\(520\) 0 0
\(521\) −28.4273 18.9945i −1.24542 0.832165i −0.254562 0.967056i \(-0.581931\pi\)
−0.990860 + 0.134892i \(0.956931\pi\)
\(522\) 0 0
\(523\) 28.1308i 1.23007i −0.788498 0.615037i \(-0.789141\pi\)
0.788498 0.615037i \(-0.210859\pi\)
\(524\) 0 0
\(525\) −34.3609 23.4613i −1.49963 1.02393i
\(526\) 0 0
\(527\) 10.7477 2.33550i 0.468178 0.101736i
\(528\) 0 0
\(529\) −17.3582 + 7.18999i −0.754703 + 0.312608i
\(530\) 0 0
\(531\) 10.8212 10.8212i 0.469601 0.469601i
\(532\) 0 0
\(533\) 31.5219 6.27009i 1.36536 0.271588i
\(534\) 0 0
\(535\) −0.535428 + 5.17025i −0.0231486 + 0.223530i
\(536\) 0 0
\(537\) −0.896460 + 1.34165i −0.0386851 + 0.0578964i
\(538\) 0 0
\(539\) −6.96319 + 35.0063i −0.299926 + 1.50783i
\(540\) 0 0
\(541\) 2.27314 1.51886i 0.0977300 0.0653011i −0.505745 0.862683i \(-0.668782\pi\)
0.603475 + 0.797382i \(0.293782\pi\)
\(542\) 0 0
\(543\) 21.2299 21.2299i 0.911061 0.911061i
\(544\) 0 0
\(545\) −15.4701 8.36899i −0.662666 0.358488i
\(546\) 0 0
\(547\) 19.7797 + 3.93443i 0.845719 + 0.168224i 0.598886 0.800834i \(-0.295610\pi\)
0.246833 + 0.969058i \(0.420610\pi\)
\(548\) 0 0
\(549\) 14.1177 + 2.80818i 0.602527 + 0.119850i
\(550\) 0 0
\(551\) −6.14047 30.8702i −0.261593 1.31512i
\(552\) 0 0
\(553\) 49.4691 20.4908i 2.10364 0.871357i
\(554\) 0 0
\(555\) −21.1788 + 11.1840i −0.898988 + 0.474736i
\(556\) 0 0
\(557\) −6.48647 −0.274840 −0.137420 0.990513i \(-0.543881\pi\)
−0.137420 + 0.990513i \(0.543881\pi\)
\(558\) 0 0
\(559\) −18.7642 45.3009i −0.793643 1.91602i
\(560\) 0 0
\(561\) −41.5685 + 18.0830i −1.75502 + 0.763466i
\(562\) 0 0
\(563\) 11.1043 26.8081i 0.467990 1.12983i −0.497049 0.867722i \(-0.665583\pi\)
0.965039 0.262106i \(-0.0844169\pi\)
\(564\) 0 0
\(565\) −5.77657 + 10.6780i −0.243022 + 0.449227i
\(566\) 0 0
\(567\) −8.15443 40.9951i −0.342454 1.72163i
\(568\) 0 0
\(569\) 3.01560 7.28029i 0.126420 0.305206i −0.847979 0.530030i \(-0.822181\pi\)
0.974399 + 0.224824i \(0.0721807\pi\)
\(570\) 0 0
\(571\) 0.516009 0.102641i 0.0215943 0.00429538i −0.184281 0.982874i \(-0.558996\pi\)
0.205876 + 0.978578i \(0.433996\pi\)
\(572\) 0 0
\(573\) 16.6449 + 24.9108i 0.695350 + 1.04066i
\(574\) 0 0
\(575\) −3.83145 9.51898i −0.159783 0.396969i
\(576\) 0 0
\(577\) −28.9945 28.9945i −1.20706 1.20706i −0.971975 0.235082i \(-0.924464\pi\)
−0.235082 0.971975i \(-0.575536\pi\)
\(578\) 0 0
\(579\) 0.0472306i 0.00196284i
\(580\) 0 0
\(581\) −4.30654 6.44519i −0.178665 0.267392i
\(582\) 0 0
\(583\) 24.1058 16.1070i 0.998361 0.667084i
\(584\) 0 0
\(585\) 15.7319 8.30766i 0.650433 0.343480i
\(586\) 0 0
\(587\) 18.5209 + 44.7134i 0.764439 + 1.84552i 0.427698 + 0.903922i \(0.359325\pi\)
0.336741 + 0.941597i \(0.390675\pi\)
\(588\) 0 0
\(589\) −7.60676 + 11.3843i −0.313431 + 0.469083i
\(590\) 0 0
\(591\) 1.77198 + 1.77198i 0.0728894 + 0.0728894i
\(592\) 0 0
\(593\) 21.9084 + 9.07476i 0.899671 + 0.372656i 0.784093 0.620643i \(-0.213128\pi\)
0.115577 + 0.993299i \(0.463128\pi\)
\(594\) 0 0
\(595\) 2.96648 34.5844i 0.121614 1.41782i
\(596\) 0 0
\(597\) 37.5914 + 15.5709i 1.53851 + 0.637273i
\(598\) 0 0
\(599\) −19.6018 19.6018i −0.800910 0.800910i 0.182328 0.983238i \(-0.441637\pi\)
−0.983238 + 0.182328i \(0.941637\pi\)
\(600\) 0 0
\(601\) −12.2916 + 18.3957i −0.501385 + 0.750376i −0.992700 0.120606i \(-0.961516\pi\)
0.491315 + 0.870982i \(0.336516\pi\)
\(602\) 0 0
\(603\) 2.11468 + 5.10529i 0.0861165 + 0.207904i
\(604\) 0 0
\(605\) 9.06945 29.3668i 0.368726 1.19393i
\(606\) 0 0
\(607\) 8.06548 5.38918i 0.327368 0.218740i −0.381015 0.924569i \(-0.624425\pi\)
0.708382 + 0.705829i \(0.249425\pi\)
\(608\) 0 0
\(609\) −28.3495 42.4280i −1.14878 1.71927i
\(610\) 0 0
\(611\) 40.8077i 1.65090i
\(612\) 0 0
\(613\) −8.57142 8.57142i −0.346196 0.346196i 0.512494 0.858691i \(-0.328722\pi\)
−0.858691 + 0.512494i \(0.828722\pi\)
\(614\) 0 0
\(615\) 28.9683 + 24.0178i 1.16811 + 0.968493i
\(616\) 0 0
\(617\) 3.32528 + 4.97663i 0.133871 + 0.200352i 0.892348 0.451347i \(-0.149056\pi\)
−0.758478 + 0.651699i \(0.774056\pi\)
\(618\) 0 0
\(619\) 17.1024 3.40188i 0.687404 0.136733i 0.160983 0.986957i \(-0.448534\pi\)
0.526421 + 0.850224i \(0.323534\pi\)
\(620\) 0 0
\(621\) 1.93554 4.67282i 0.0776707 0.187514i
\(622\) 0 0
\(623\) 1.52199 + 7.65156i 0.0609772 + 0.306553i
\(624\) 0 0
\(625\) −23.2843 + 9.10170i −0.931372 + 0.364068i
\(626\) 0 0
\(627\) 21.5956 52.1363i 0.862444 2.08212i
\(628\) 0 0
\(629\) −16.8069 10.8065i −0.670136 0.430883i
\(630\) 0 0
\(631\) 8.37564 + 20.2206i 0.333429 + 0.804969i 0.998315 + 0.0580241i \(0.0184800\pi\)
−0.664886 + 0.746945i \(0.731520\pi\)
\(632\) 0 0
\(633\) −16.5816 −0.659061
\(634\) 0 0
\(635\) −5.65563 1.74665i −0.224437 0.0693136i
\(636\) 0 0
\(637\) 27.9807 11.5900i 1.10864 0.459213i
\(638\) 0 0
\(639\) −5.83901 29.3547i −0.230988 1.16125i
\(640\) 0 0
\(641\) −24.3704 4.84757i −0.962572 0.191467i −0.311300 0.950312i \(-0.600764\pi\)
−0.651272 + 0.758844i \(0.725764\pi\)
\(642\) 0 0
\(643\) 4.24024 + 0.843436i 0.167219 + 0.0332619i 0.277989 0.960584i \(-0.410332\pi\)
−0.110771 + 0.993846i \(0.535332\pi\)
\(644\) 0 0
\(645\) 27.3165 50.4947i 1.07559 1.98823i
\(646\) 0 0
\(647\) 10.2178 10.2178i 0.401703 0.401703i −0.477130 0.878833i \(-0.658323\pi\)
0.878833 + 0.477130i \(0.158323\pi\)
\(648\) 0 0
\(649\) −33.5810 + 22.4381i −1.31817 + 0.880771i
\(650\) 0 0
\(651\) −4.33049 + 21.7709i −0.169725 + 0.853267i
\(652\) 0 0
\(653\) −5.70697 + 8.54109i −0.223331 + 0.334239i −0.926167 0.377113i \(-0.876917\pi\)
0.702836 + 0.711352i \(0.251917\pi\)
\(654\) 0 0
\(655\) −7.96836 9.80941i −0.311349 0.383285i
\(656\) 0 0
\(657\) −2.85387 + 0.567670i −0.111340 + 0.0221469i
\(658\) 0 0
\(659\) −10.2670 + 10.2670i −0.399946 + 0.399946i −0.878214 0.478268i \(-0.841265\pi\)
0.478268 + 0.878214i \(0.341265\pi\)
\(660\) 0 0
\(661\) 30.6283 12.6867i 1.19130 0.493454i 0.303124 0.952951i \(-0.401970\pi\)
0.888179 + 0.459497i \(0.151970\pi\)
\(662\) 0 0
\(663\) 32.3545 + 20.8032i 1.25654 + 0.807930i
\(664\) 0 0
\(665\) 27.2451 + 33.5399i 1.05652 + 1.30062i
\(666\) 0 0
\(667\) 12.5846i 0.487280i
\(668\) 0 0
\(669\) 12.3695 + 8.26506i 0.478234 + 0.319546i
\(670\) 0 0
\(671\) −35.0961 14.5373i −1.35487 0.561206i
\(672\) 0 0
\(673\) 20.7230 + 13.8467i 0.798812 + 0.533749i 0.886680 0.462383i \(-0.153005\pi\)
−0.0878682 + 0.996132i \(0.528005\pi\)
\(674\) 0 0
\(675\) −11.3369 4.82971i −0.436356 0.185895i
\(676\) 0 0
\(677\) 1.35850 6.82965i 0.0522114 0.262485i −0.945859 0.324578i \(-0.894778\pi\)
0.998070 + 0.0620934i \(0.0197777\pi\)
\(678\) 0 0
\(679\) 70.5129 2.70604
\(680\) 0 0
\(681\) 60.1969 2.30675
\(682\) 0 0
\(683\) 0.507559 2.55167i 0.0194212 0.0976370i −0.969859 0.243667i \(-0.921650\pi\)
0.989280 + 0.146030i \(0.0466496\pi\)
\(684\) 0 0
\(685\) 30.6353 2.86220i 1.17051 0.109359i
\(686\) 0 0
\(687\) −50.6256 33.8269i −1.93149 1.29058i
\(688\) 0 0
\(689\) −22.7281 9.41427i −0.865870 0.358655i
\(690\) 0 0
\(691\) 2.45452 + 1.64005i 0.0933742 + 0.0623906i 0.601381 0.798963i \(-0.294617\pi\)
−0.508007 + 0.861353i \(0.669617\pi\)
\(692\) 0 0
\(693\) 35.3020i 1.34101i
\(694\) 0 0
\(695\) 4.41046 + 0.456745i 0.167298 + 0.0173253i
\(696\) 0 0
\(697\) −5.58101 + 30.8938i −0.211396 + 1.17019i
\(698\) 0 0
\(699\) 23.6094 9.77932i 0.892988 0.369888i
\(700\) 0 0
\(701\) −15.2365 + 15.2365i −0.575476 + 0.575476i −0.933653 0.358178i \(-0.883398\pi\)
0.358178 + 0.933653i \(0.383398\pi\)
\(702\) 0 0
\(703\) 24.3963 4.85272i 0.920124 0.183024i
\(704\) 0 0
\(705\) −37.0853 + 30.1250i −1.39671 + 1.13457i
\(706\) 0 0
\(707\) 23.2182 34.7485i 0.873211 1.30685i
\(708\) 0 0
\(709\) 1.66529 8.37197i 0.0625412 0.314416i −0.936833 0.349776i \(-0.886258\pi\)
0.999375 + 0.0353598i \(0.0112577\pi\)
\(710\) 0 0
\(711\) −22.2891 + 14.8931i −0.835908 + 0.558536i
\(712\) 0 0
\(713\) −3.87098 + 3.87098i −0.144969 + 0.144969i
\(714\) 0 0
\(715\) −44.9975 + 13.4037i −1.68281 + 0.501270i
\(716\) 0 0
\(717\) 10.3819 + 2.06510i 0.387721 + 0.0771224i
\(718\) 0 0
\(719\) −7.74145 1.53987i −0.288707 0.0574275i 0.0486120 0.998818i \(-0.484520\pi\)
−0.337319 + 0.941390i \(0.609520\pi\)
\(720\) 0 0
\(721\) 2.94171 + 14.7890i 0.109555 + 0.550769i
\(722\) 0 0
\(723\) 37.3635 15.4765i 1.38956 0.575577i
\(724\) 0 0
\(725\) −30.6594 0.307634i −1.13866 0.0114252i
\(726\) 0 0
\(727\) −39.7517 −1.47431 −0.737154 0.675725i \(-0.763831\pi\)
−0.737154 + 0.675725i \(0.763831\pi\)
\(728\) 0 0
\(729\) 1.75447 + 4.23567i 0.0649804 + 0.156877i
\(730\) 0 0
\(731\) 47.8885 0.844166i 1.77122 0.0312226i
\(732\) 0 0
\(733\) 5.84955 14.1221i 0.216058 0.521610i −0.778275 0.627924i \(-0.783905\pi\)
0.994333 + 0.106314i \(0.0339048\pi\)
\(734\) 0 0
\(735\) 31.1888 + 16.8725i 1.15041 + 0.622350i
\(736\) 0 0
\(737\) −2.84509 14.3032i −0.104800 0.526867i
\(738\) 0 0
\(739\) 3.77380 9.11077i 0.138822 0.335145i −0.839145 0.543908i \(-0.816944\pi\)
0.977966 + 0.208763i \(0.0669439\pi\)
\(740\) 0 0
\(741\) −46.9645 + 9.34182i −1.72528 + 0.343180i
\(742\) 0 0
\(743\) 26.9503 + 40.3339i 0.988710 + 1.47971i 0.873772 + 0.486336i \(0.161667\pi\)
0.114938 + 0.993373i \(0.463333\pi\)
\(744\) 0 0
\(745\) −10.8524 + 1.01392i −0.397602 + 0.0371473i
\(746\) 0 0
\(747\) 2.74412 + 2.74412i 0.100402 + 0.100402i
\(748\) 0 0
\(749\) 8.75197i 0.319790i
\(750\) 0 0
\(751\) −20.6000 30.8300i −0.751704 1.12500i −0.988170 0.153364i \(-0.950989\pi\)
0.236466 0.971640i \(-0.424011\pi\)
\(752\) 0 0
\(753\) −1.56882 + 1.04825i −0.0571710 + 0.0382004i
\(754\) 0 0
\(755\) −18.9244 5.84450i −0.688731 0.212703i
\(756\) 0 0
\(757\) −10.2412 24.7244i −0.372223 0.898625i −0.993373 0.114934i \(-0.963334\pi\)
0.621151 0.783691i \(-0.286666\pi\)
\(758\) 0 0
\(759\) 12.5354 18.7606i 0.455007 0.680966i
\(760\) 0 0
\(761\) −24.4640 24.4640i −0.886818 0.886818i 0.107398 0.994216i \(-0.465748\pi\)
−0.994216 + 0.107398i \(0.965748\pi\)
\(762\) 0 0
\(763\) 27.3607 + 11.3332i 0.990525 + 0.410289i
\(764\) 0 0
\(765\) 1.92127 + 17.2715i 0.0694636 + 0.624452i
\(766\) 0 0
\(767\) 31.6616 + 13.1147i 1.14323 + 0.473543i
\(768\) 0 0
\(769\) −1.53054 1.53054i −0.0551927 0.0551927i 0.678972 0.734164i \(-0.262426\pi\)
−0.734164 + 0.678972i \(0.762426\pi\)
\(770\) 0 0
\(771\) 13.8982 20.8001i 0.500532 0.749099i
\(772\) 0 0
\(773\) −14.7877 35.7006i −0.531876 1.28406i −0.930279 0.366852i \(-0.880436\pi\)
0.398404 0.917210i \(-0.369564\pi\)
\(774\) 0 0
\(775\) 9.33607 + 9.52532i 0.335361 + 0.342160i
\(776\) 0 0
\(777\) 33.5303 22.4042i 1.20289 0.803747i
\(778\) 0 0
\(779\) −21.7125 32.4951i −0.777931 1.16426i
\(780\) 0 0
\(781\) 78.9876i 2.82640i
\(782\) 0 0
\(783\) −10.6866 10.6866i −0.381907 0.381907i
\(784\) 0 0
\(785\) 3.25878 3.93046i 0.116311 0.140284i
\(786\) 0 0
\(787\) 13.3000 + 19.9049i 0.474094 + 0.709532i 0.989033 0.147695i \(-0.0471854\pi\)
−0.514939 + 0.857227i \(0.672185\pi\)
\(788\) 0 0
\(789\) −11.0284 + 2.19368i −0.392621 + 0.0780971i
\(790\) 0 0
\(791\) 7.82256 18.8853i 0.278138 0.671485i
\(792\) 0 0
\(793\) 6.28856 + 31.6147i 0.223313 + 1.12267i
\(794\) 0 0
\(795\) −8.22278 27.6047i −0.291632 0.979037i
\(796\) 0 0
\(797\) −4.06933 + 9.82424i −0.144143 + 0.347992i −0.979419 0.201839i \(-0.935308\pi\)
0.835276 + 0.549832i \(0.185308\pi\)
\(798\) 0 0
\(799\) −37.0899 14.6027i −1.31215 0.516607i
\(800\) 0 0
\(801\) −1.49466 3.60844i −0.0528114 0.127498i
\(802\) 0 0
\(803\) 7.67919 0.270993
\(804\) 0 0
\(805\) 8.06787 + 15.2778i 0.284355 + 0.538472i
\(806\) 0 0
\(807\) 27.6308 11.4450i 0.972650 0.402885i
\(808\) 0 0
\(809\) 5.55402 + 27.9219i 0.195269 + 0.981683i 0.946760 + 0.321940i \(0.104335\pi\)
−0.751491 + 0.659743i \(0.770665\pi\)
\(810\) 0 0
\(811\) 16.0616 + 3.19486i 0.564000 + 0.112187i 0.468853 0.883276i \(-0.344668\pi\)
0.0951480 + 0.995463i \(0.469668\pi\)
\(812\) 0 0
\(813\) −27.8926 5.54818i −0.978235 0.194583i
\(814\) 0 0
\(815\) 6.16023 + 20.6805i 0.215784 + 0.724406i
\(816\) 0 0
\(817\) −42.1608 + 42.1608i −1.47502 + 1.47502i
\(818\) 0 0
\(819\) −24.9068 + 16.6422i −0.870313 + 0.581524i
\(820\) 0 0
\(821\) 2.42265 12.1795i 0.0845510 0.425067i −0.915205 0.402988i \(-0.867972\pi\)
0.999756 0.0220786i \(-0.00702841\pi\)
\(822\) 0 0
\(823\) −23.7568 + 35.5545i −0.828109 + 1.23935i 0.140331 + 0.990105i \(0.455183\pi\)
−0.968440 + 0.249248i \(0.919817\pi\)
\(824\) 0 0
\(825\) −45.3991 30.9981i −1.58059 1.07921i
\(826\) 0 0
\(827\) 12.8080 2.54767i 0.445379 0.0885913i 0.0326943 0.999465i \(-0.489591\pi\)
0.412684 + 0.910874i \(0.364591\pi\)
\(828\) 0 0
\(829\) 23.4532 23.4532i 0.814564 0.814564i −0.170750 0.985314i \(-0.554619\pi\)
0.985314 + 0.170750i \(0.0546191\pi\)
\(830\) 0 0
\(831\) −2.83871 + 1.17583i −0.0984739 + 0.0407892i
\(832\) 0 0
\(833\) 0.521412 + 29.5790i 0.0180658 + 1.02485i
\(834\) 0 0
\(835\) 27.2219 22.1128i 0.942052 0.765245i
\(836\) 0 0
\(837\) 6.57428i 0.227240i
\(838\) 0 0
\(839\) −43.4456 29.0294i −1.49991 1.00221i −0.989858 0.142064i \(-0.954626\pi\)
−0.510052 0.860144i \(-0.670374\pi\)
\(840\) 0 0
\(841\) −7.94881 3.29250i −0.274097 0.113535i
\(842\) 0 0
\(843\) −3.82472 2.55560i −0.131730 0.0880194i
\(844\) 0 0
\(845\) 8.29183 + 6.87484i 0.285248 + 0.236502i
\(846\) 0 0
\(847\) −10.0961 + 50.7563i −0.346905 + 1.74401i
\(848\) 0 0
\(849\) −6.05631 −0.207852
\(850\) 0 0
\(851\) 9.94547 0.340926
\(852\) 0 0
\(853\) −2.69182 + 13.5327i −0.0921661 + 0.463350i 0.906947 + 0.421245i \(0.138407\pi\)
−0.999113 + 0.0421057i \(0.986593\pi\)
\(854\) 0 0
\(855\) −16.6538 13.8078i −0.569549 0.472218i
\(856\) 0 0
\(857\) 27.3707 + 18.2885i 0.934967 + 0.624725i 0.926927 0.375243i \(-0.122441\pi\)
0.00804031 + 0.999968i \(0.497441\pi\)
\(858\) 0 0
\(859\) 26.7649 + 11.0864i 0.913208 + 0.378263i 0.789284 0.614029i \(-0.210452\pi\)
0.123924 + 0.992292i \(0.460452\pi\)
\(860\) 0 0
\(861\) −52.6815 35.2007i −1.79538 1.19964i
\(862\) 0 0
\(863\) 3.33874i 0.113652i 0.998384 + 0.0568261i \(0.0180981\pi\)
−0.998384 + 0.0568261i \(0.981902\pi\)
\(864\) 0 0
\(865\) −25.2297 + 20.4945i −0.857836 + 0.696835i
\(866\) 0 0
\(867\) −30.4858 + 21.9626i −1.03535 + 0.745889i
\(868\) 0 0
\(869\) 65.3608 27.0733i 2.21721 0.918400i
\(870\) 0 0
\(871\) −8.75018 + 8.75018i −0.296488 + 0.296488i
\(872\) 0 0
\(873\) −34.6235 + 6.88704i −1.17183 + 0.233091i
\(874\) 0 0
\(875\) 37.4178 19.2819i 1.26495 0.651848i
\(876\) 0 0
\(877\) 16.6480 24.9155i 0.562163 0.841337i −0.436121 0.899888i \(-0.643648\pi\)
0.998284 + 0.0585510i \(0.0186480\pi\)
\(878\) 0 0
\(879\) −11.0238 + 55.4204i −0.371823 + 1.86928i
\(880\) 0 0
\(881\) 47.7394 31.8984i 1.60838 1.07469i 0.663050 0.748575i \(-0.269262\pi\)
0.945332 0.326111i \(-0.105738\pi\)
\(882\) 0 0
\(883\) −38.6932 + 38.6932i −1.30213 + 1.30213i −0.375175 + 0.926954i \(0.622417\pi\)
−0.926954 + 0.375175i \(0.877583\pi\)
\(884\) 0 0
\(885\) 11.4549 + 38.4551i 0.385051 + 1.29265i
\(886\) 0 0
\(887\) −41.9896 8.35225i −1.40987 0.280441i −0.569296 0.822133i \(-0.692784\pi\)
−0.840577 + 0.541691i \(0.817784\pi\)
\(888\) 0 0
\(889\) 9.77495 + 1.94436i 0.327841 + 0.0652117i
\(890\) 0 0
\(891\) −10.7740 54.1646i −0.360943 1.81458i
\(892\) 0 0
\(893\) 45.8448 18.9895i 1.53414 0.635460i
\(894\) 0 0
\(895\) −0.762315 1.44356i −0.0254814 0.0482530i
\(896\) 0 0
\(897\) −19.1457 −0.639257
\(898\) 0 0
\(899\) 6.25987 + 15.1127i 0.208778 + 0.504036i
\(900\) 0 0
\(901\) 16.6897 17.2886i 0.556013 0.575968i
\(902\) 0 0
\(903\) −36.9917 + 89.3059i −1.23101 + 2.97192i
\(904\) 0 0
\(905\) 8.67152 + 29.1111i 0.288251 + 0.967686i
\(906\) 0 0
\(907\) 7.38614 + 37.1327i 0.245253 + 1.23297i 0.885441 + 0.464752i \(0.153856\pi\)
−0.640188 + 0.768218i \(0.721144\pi\)
\(908\) 0 0
\(909\) −8.00677 + 19.3301i −0.265568 + 0.641138i
\(910\) 0 0
\(911\) −7.17540 + 1.42728i −0.237732 + 0.0472877i −0.312518 0.949912i \(-0.601172\pi\)
0.0747865 + 0.997200i \(0.476172\pi\)
\(912\) 0 0
\(913\) −5.68999 8.51568i −0.188311 0.281828i
\(914\) 0 0
\(915\) −24.0886 + 29.0536i −0.796344 + 0.960481i
\(916\) 0 0
\(917\) 15.0467 + 15.0467i 0.496886 + 0.496886i
\(918\) 0 0
\(919\) 5.35520i 0.176652i −0.996092 0.0883258i \(-0.971848\pi\)
0.996092 0.0883258i \(-0.0281517\pi\)
\(920\) 0 0
\(921\) 28.4504 + 42.5791i 0.937474 + 1.40303i
\(922\) 0 0
\(923\) 55.7284 37.2365i 1.83432 1.22565i
\(924\) 0 0
\(925\) 0.243119 24.2297i 0.00799369 0.796667i
\(926\) 0 0
\(927\) −2.88889 6.97440i −0.0948836 0.229069i
\(928\) 0 0
\(929\) −10.4696 + 15.6689i −0.343497 + 0.514079i −0.962490 0.271317i \(-0.912541\pi\)
0.618993 + 0.785396i \(0.287541\pi\)
\(930\) 0 0
\(931\) −26.0412 26.0412i −0.853467 0.853467i
\(932\) 0 0
\(933\) −45.9284 19.0242i −1.50363 0.622824i
\(934\) 0 0
\(935\) 3.91945 45.6945i 0.128180 1.49437i
\(936\) 0 0
\(937\) 52.0704 + 21.5683i 1.70107 + 0.704605i 0.999964 0.00845667i \(-0.00269187\pi\)
0.701102 + 0.713061i \(0.252692\pi\)
\(938\) 0 0
\(939\) −38.0508 38.0508i −1.24174 1.24174i
\(940\) 0 0
\(941\) −19.1537 + 28.6655i −0.624391 + 0.934468i 0.375579 + 0.926790i \(0.377444\pi\)
−0.999971 + 0.00767738i \(0.997556\pi\)
\(942\) 0 0
\(943\) −5.97979 14.4365i −0.194729 0.470117i
\(944\) 0 0
\(945\) 19.8246 + 6.12249i 0.644893 + 0.199165i
\(946\) 0 0
\(947\) −13.9631 + 9.32986i −0.453740 + 0.303180i −0.761359 0.648330i \(-0.775468\pi\)
0.307619 + 0.951510i \(0.400468\pi\)
\(948\) 0 0
\(949\) −3.62014 5.41792i −0.117515 0.175873i
\(950\) 0 0
\(951\) 38.2707i 1.24101i
\(952\) 0 0
\(953\) −14.4629 14.4629i −0.468498 0.468498i 0.432929 0.901428i \(-0.357480\pi\)
−0.901428 + 0.432929i \(0.857480\pi\)
\(954\) 0 0
\(955\) −30.1794 + 2.81962i −0.976584 + 0.0912407i
\(956\) 0 0
\(957\) −37.4567 56.0578i −1.21080 1.81209i
\(958\) 0 0
\(959\) −50.8113 + 10.1070i −1.64078 + 0.326372i
\(960\) 0 0
\(961\) −9.14011 + 22.0662i −0.294842 + 0.711812i
\(962\) 0 0
\(963\) 0.854810 + 4.29742i 0.0275459 + 0.138482i
\(964\) 0 0
\(965\) 0.0420280 + 0.0227362i 0.00135293 + 0.000731905i
\(966\) 0 0
\(967\) −1.93646 + 4.67502i −0.0622723 + 0.150339i −0.951953 0.306245i \(-0.900927\pi\)
0.889680 + 0.456584i \(0.150927\pi\)
\(968\) 0 0
\(969\) 8.31516 46.0288i 0.267121 1.47866i
\(970\) 0 0
\(971\) −10.8652 26.2309i −0.348680 0.841789i −0.996776 0.0802300i \(-0.974435\pi\)
0.648096 0.761559i \(-0.275565\pi\)
\(972\) 0 0
\(973\) −7.46583 −0.239344
\(974\) 0 0
\(975\) −0.468020 + 46.6438i −0.0149886 + 1.49380i
\(976\) 0 0
\(977\) 14.6161 6.05420i 0.467611 0.193691i −0.136421 0.990651i \(-0.543560\pi\)
0.604032 + 0.796960i \(0.293560\pi\)
\(978\) 0 0
\(979\) 2.01092 + 10.1096i 0.0642693 + 0.323104i
\(980\) 0 0
\(981\) −14.5417 2.89252i −0.464280 0.0923510i
\(982\) 0 0
\(983\) −17.9953 3.57948i −0.573960 0.114168i −0.100428 0.994944i \(-0.532021\pi\)
−0.473532 + 0.880776i \(0.657021\pi\)
\(984\) 0 0
\(985\) −2.42979 + 0.723779i −0.0774197 + 0.0230615i
\(986\) 0 0
\(987\) 56.8853 56.8853i 1.81068 1.81068i
\(988\) 0 0
\(989\) −19.8219 + 13.2446i −0.630301 + 0.421153i
\(990\) 0 0
\(991\) −6.86263 + 34.5008i −0.217999 + 1.09595i 0.704427 + 0.709777i \(0.251204\pi\)
−0.922425 + 0.386176i \(0.873796\pi\)
\(992\) 0 0
\(993\) 13.1339 19.6563i 0.416793 0.623775i
\(994\) 0 0
\(995\) −31.9517 + 25.9549i −1.01294 + 0.822827i
\(996\) 0 0
\(997\) −55.4992 + 11.0395i −1.75768 + 0.349624i −0.965447 0.260600i \(-0.916080\pi\)
−0.792229 + 0.610223i \(0.791080\pi\)
\(998\) 0 0
\(999\) 8.44544 8.44544i 0.267202 0.267202i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.cg.b.73.4 112
5.2 odd 4 680.2.cq.b.617.11 yes 112
17.7 odd 16 680.2.cq.b.313.11 yes 112
85.7 even 16 inner 680.2.cg.b.177.4 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.cg.b.73.4 112 1.1 even 1 trivial
680.2.cg.b.177.4 yes 112 85.7 even 16 inner
680.2.cq.b.313.11 yes 112 17.7 odd 16
680.2.cq.b.617.11 yes 112 5.2 odd 4