Properties

Label 680.2.cg.b.73.3
Level $680$
Weight $2$
Character 680.73
Analytic conductor $5.430$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(57,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 4, 15])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.cg (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 73.3
Character \(\chi\) \(=\) 680.73
Dual form 680.2.cg.b.177.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.446513 + 2.24477i) q^{3} +(0.682045 - 2.12951i) q^{5} +(-1.62658 - 1.08684i) q^{7} +(-2.06799 - 0.856589i) q^{9} +(-3.24910 - 2.17098i) q^{11} -0.242367i q^{13} +(4.47572 + 2.48189i) q^{15} +(-4.12252 + 0.0694971i) q^{17} +(-6.48434 + 2.68590i) q^{19} +(3.16600 - 3.16600i) q^{21} +(-9.03529 + 1.79723i) q^{23} +(-4.06963 - 2.90484i) q^{25} +(-0.968454 + 1.44939i) q^{27} +(1.52506 - 7.66700i) q^{29} +(4.24674 - 2.83758i) q^{31} +(6.32413 - 6.32413i) q^{33} +(-3.42384 + 2.72253i) q^{35} +(2.25031 + 0.447614i) q^{37} +(0.544060 + 0.108220i) q^{39} +(0.789503 + 3.96910i) q^{41} +(9.56951 - 3.96382i) q^{43} +(-3.23457 + 3.81957i) q^{45} +7.19997 q^{47} +(-1.21426 - 2.93149i) q^{49} +(1.68475 - 9.28515i) q^{51} +(-4.13058 + 9.97210i) q^{53} +(-6.83916 + 5.43829i) q^{55} +(-3.13390 - 15.7552i) q^{57} +(2.44267 - 5.89712i) q^{59} +(4.60449 - 0.915891i) q^{61} +(2.43276 + 3.64088i) q^{63} +(-0.516124 - 0.165305i) q^{65} +(3.29080 + 3.29080i) q^{67} -21.0847i q^{69} +(-5.28418 - 7.90834i) q^{71} +(-10.4326 + 6.97086i) q^{73} +(8.33785 - 7.83834i) q^{75} +(2.92540 + 7.06253i) q^{77} +(-5.04210 + 7.54604i) q^{79} +(-7.56944 - 7.56944i) q^{81} +(2.46878 + 1.02260i) q^{83} +(-2.66375 + 8.82635i) q^{85} +(16.5297 + 6.84683i) q^{87} +(-4.74058 - 4.74058i) q^{89} +(-0.263415 + 0.394229i) q^{91} +(4.47350 + 10.8000i) q^{93} +(1.29704 + 15.6404i) q^{95} +(1.83285 - 1.22467i) q^{97} +(4.85947 + 7.27271i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 16 q^{15} - 24 q^{27} - 8 q^{29} + 16 q^{31} - 48 q^{33} - 32 q^{35} - 16 q^{37} - 16 q^{41} + 48 q^{43} - 24 q^{45} - 16 q^{47} - 80 q^{49} + 32 q^{51} - 8 q^{53} + 24 q^{55} - 80 q^{59} - 24 q^{61}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{5}{16}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.446513 + 2.24477i −0.257794 + 1.29602i 0.607325 + 0.794453i \(0.292243\pi\)
−0.865119 + 0.501566i \(0.832757\pi\)
\(4\) 0 0
\(5\) 0.682045 2.12951i 0.305020 0.952346i
\(6\) 0 0
\(7\) −1.62658 1.08684i −0.614788 0.410788i 0.208815 0.977955i \(-0.433039\pi\)
−0.823603 + 0.567167i \(0.808039\pi\)
\(8\) 0 0
\(9\) −2.06799 0.856589i −0.689329 0.285530i
\(10\) 0 0
\(11\) −3.24910 2.17098i −0.979642 0.654576i −0.0408879 0.999164i \(-0.513019\pi\)
−0.938754 + 0.344588i \(0.888019\pi\)
\(12\) 0 0
\(13\) 0.242367i 0.0672206i −0.999435 0.0336103i \(-0.989299\pi\)
0.999435 0.0336103i \(-0.0107005\pi\)
\(14\) 0 0
\(15\) 4.47572 + 2.48189i 1.15563 + 0.640821i
\(16\) 0 0
\(17\) −4.12252 + 0.0694971i −0.999858 + 0.0168555i
\(18\) 0 0
\(19\) −6.48434 + 2.68590i −1.48761 + 0.616188i −0.970795 0.239909i \(-0.922882\pi\)
−0.516814 + 0.856097i \(0.672882\pi\)
\(20\) 0 0
\(21\) 3.16600 3.16600i 0.690878 0.690878i
\(22\) 0 0
\(23\) −9.03529 + 1.79723i −1.88399 + 0.374749i −0.996318 0.0857316i \(-0.972677\pi\)
−0.887670 + 0.460480i \(0.847677\pi\)
\(24\) 0 0
\(25\) −4.06963 2.90484i −0.813926 0.580969i
\(26\) 0 0
\(27\) −0.968454 + 1.44939i −0.186379 + 0.278936i
\(28\) 0 0
\(29\) 1.52506 7.66700i 0.283197 1.42373i −0.533080 0.846065i \(-0.678965\pi\)
0.816276 0.577662i \(-0.196035\pi\)
\(30\) 0 0
\(31\) 4.24674 2.83758i 0.762737 0.509645i −0.112315 0.993673i \(-0.535827\pi\)
0.875053 + 0.484028i \(0.160827\pi\)
\(32\) 0 0
\(33\) 6.32413 6.32413i 1.10089 1.10089i
\(34\) 0 0
\(35\) −3.42384 + 2.72253i −0.578735 + 0.460192i
\(36\) 0 0
\(37\) 2.25031 + 0.447614i 0.369948 + 0.0735873i 0.376563 0.926391i \(-0.377106\pi\)
−0.00661524 + 0.999978i \(0.502106\pi\)
\(38\) 0 0
\(39\) 0.544060 + 0.108220i 0.0871193 + 0.0173291i
\(40\) 0 0
\(41\) 0.789503 + 3.96910i 0.123300 + 0.619869i 0.992177 + 0.124841i \(0.0398422\pi\)
−0.868877 + 0.495028i \(0.835158\pi\)
\(42\) 0 0
\(43\) 9.56951 3.96382i 1.45934 0.604477i 0.494937 0.868929i \(-0.335191\pi\)
0.964399 + 0.264452i \(0.0851911\pi\)
\(44\) 0 0
\(45\) −3.23457 + 3.81957i −0.482182 + 0.569388i
\(46\) 0 0
\(47\) 7.19997 1.05022 0.525111 0.851033i \(-0.324024\pi\)
0.525111 + 0.851033i \(0.324024\pi\)
\(48\) 0 0
\(49\) −1.21426 2.93149i −0.173466 0.418785i
\(50\) 0 0
\(51\) 1.68475 9.28515i 0.235913 1.30018i
\(52\) 0 0
\(53\) −4.13058 + 9.97210i −0.567378 + 1.36977i 0.336379 + 0.941727i \(0.390798\pi\)
−0.903757 + 0.428046i \(0.859202\pi\)
\(54\) 0 0
\(55\) −6.83916 + 5.43829i −0.922193 + 0.733300i
\(56\) 0 0
\(57\) −3.13390 15.7552i −0.415095 2.08682i
\(58\) 0 0
\(59\) 2.44267 5.89712i 0.318008 0.767739i −0.681352 0.731956i \(-0.738608\pi\)
0.999360 0.0357829i \(-0.0113925\pi\)
\(60\) 0 0
\(61\) 4.60449 0.915891i 0.589545 0.117268i 0.108702 0.994074i \(-0.465331\pi\)
0.480843 + 0.876807i \(0.340331\pi\)
\(62\) 0 0
\(63\) 2.43276 + 3.64088i 0.306499 + 0.458708i
\(64\) 0 0
\(65\) −0.516124 0.165305i −0.0640173 0.0205036i
\(66\) 0 0
\(67\) 3.29080 + 3.29080i 0.402035 + 0.402035i 0.878950 0.476915i \(-0.158245\pi\)
−0.476915 + 0.878950i \(0.658245\pi\)
\(68\) 0 0
\(69\) 21.0847i 2.53829i
\(70\) 0 0
\(71\) −5.28418 7.90834i −0.627117 0.938547i −0.999943 0.0106456i \(-0.996611\pi\)
0.372826 0.927901i \(-0.378389\pi\)
\(72\) 0 0
\(73\) −10.4326 + 6.97086i −1.22105 + 0.815877i −0.987676 0.156510i \(-0.949976\pi\)
−0.233371 + 0.972388i \(0.574976\pi\)
\(74\) 0 0
\(75\) 8.33785 7.83834i 0.962772 0.905093i
\(76\) 0 0
\(77\) 2.92540 + 7.06253i 0.333380 + 0.804850i
\(78\) 0 0
\(79\) −5.04210 + 7.54604i −0.567281 + 0.848995i −0.998583 0.0532119i \(-0.983054\pi\)
0.431303 + 0.902207i \(0.358054\pi\)
\(80\) 0 0
\(81\) −7.56944 7.56944i −0.841049 0.841049i
\(82\) 0 0
\(83\) 2.46878 + 1.02260i 0.270984 + 0.112245i 0.514038 0.857768i \(-0.328149\pi\)
−0.243054 + 0.970013i \(0.578149\pi\)
\(84\) 0 0
\(85\) −2.66375 + 8.82635i −0.288924 + 0.957352i
\(86\) 0 0
\(87\) 16.5297 + 6.84683i 1.77217 + 0.734057i
\(88\) 0 0
\(89\) −4.74058 4.74058i −0.502501 0.502501i 0.409714 0.912214i \(-0.365629\pi\)
−0.912214 + 0.409714i \(0.865629\pi\)
\(90\) 0 0
\(91\) −0.263415 + 0.394229i −0.0276134 + 0.0413264i
\(92\) 0 0
\(93\) 4.47350 + 10.8000i 0.463880 + 1.11991i
\(94\) 0 0
\(95\) 1.29704 + 15.6404i 0.133074 + 1.60467i
\(96\) 0 0
\(97\) 1.83285 1.22467i 0.186097 0.124346i −0.459032 0.888420i \(-0.651804\pi\)
0.645129 + 0.764074i \(0.276804\pi\)
\(98\) 0 0
\(99\) 4.85947 + 7.27271i 0.488395 + 0.730935i
\(100\) 0 0
\(101\) 7.91783i 0.787853i 0.919142 + 0.393927i \(0.128884\pi\)
−0.919142 + 0.393927i \(0.871116\pi\)
\(102\) 0 0
\(103\) 0.622052 + 0.622052i 0.0612926 + 0.0612926i 0.737089 0.675796i \(-0.236200\pi\)
−0.675796 + 0.737089i \(0.736200\pi\)
\(104\) 0 0
\(105\) −4.58268 8.90139i −0.447224 0.868686i
\(106\) 0 0
\(107\) −6.81525 10.1997i −0.658856 0.986047i −0.998957 0.0456583i \(-0.985461\pi\)
0.340102 0.940389i \(-0.389539\pi\)
\(108\) 0 0
\(109\) 3.16026 0.628614i 0.302698 0.0602103i −0.0414046 0.999142i \(-0.513183\pi\)
0.344102 + 0.938932i \(0.388183\pi\)
\(110\) 0 0
\(111\) −2.00958 + 4.85156i −0.190741 + 0.460490i
\(112\) 0 0
\(113\) −0.0346850 0.174373i −0.00326289 0.0164037i 0.979120 0.203285i \(-0.0651619\pi\)
−0.982382 + 0.186882i \(0.940162\pi\)
\(114\) 0 0
\(115\) −2.33525 + 20.4665i −0.217763 + 1.90851i
\(116\) 0 0
\(117\) −0.207609 + 0.501213i −0.0191935 + 0.0463371i
\(118\) 0 0
\(119\) 6.78112 + 4.36749i 0.621624 + 0.400367i
\(120\) 0 0
\(121\) 1.63400 + 3.94482i 0.148545 + 0.358620i
\(122\) 0 0
\(123\) −9.26225 −0.835149
\(124\) 0 0
\(125\) −8.96156 + 6.68508i −0.801547 + 0.597932i
\(126\) 0 0
\(127\) −4.24739 + 1.75933i −0.376895 + 0.156115i −0.563085 0.826399i \(-0.690386\pi\)
0.186191 + 0.982514i \(0.440386\pi\)
\(128\) 0 0
\(129\) 4.62496 + 23.2513i 0.407205 + 2.04716i
\(130\) 0 0
\(131\) −10.5485 2.09822i −0.921624 0.183322i −0.288596 0.957451i \(-0.593188\pi\)
−0.633028 + 0.774129i \(0.718188\pi\)
\(132\) 0 0
\(133\) 13.4664 + 2.67864i 1.16769 + 0.232267i
\(134\) 0 0
\(135\) 2.42597 + 3.05089i 0.208794 + 0.262578i
\(136\) 0 0
\(137\) −7.55598 + 7.55598i −0.645551 + 0.645551i −0.951914 0.306364i \(-0.900888\pi\)
0.306364 + 0.951914i \(0.400888\pi\)
\(138\) 0 0
\(139\) 10.5761 7.06674i 0.897055 0.599393i −0.0192763 0.999814i \(-0.506136\pi\)
0.916331 + 0.400421i \(0.131136\pi\)
\(140\) 0 0
\(141\) −3.21488 + 16.1623i −0.270741 + 1.36111i
\(142\) 0 0
\(143\) −0.526175 + 0.787477i −0.0440010 + 0.0658521i
\(144\) 0 0
\(145\) −15.2868 8.47688i −1.26950 0.703966i
\(146\) 0 0
\(147\) 7.12272 1.41680i 0.587472 0.116855i
\(148\) 0 0
\(149\) 9.42922 9.42922i 0.772472 0.772472i −0.206066 0.978538i \(-0.566066\pi\)
0.978538 + 0.206066i \(0.0660663\pi\)
\(150\) 0 0
\(151\) −11.6910 + 4.84257i −0.951399 + 0.394082i −0.803757 0.594958i \(-0.797169\pi\)
−0.147643 + 0.989041i \(0.547169\pi\)
\(152\) 0 0
\(153\) 8.58485 + 3.38758i 0.694044 + 0.273870i
\(154\) 0 0
\(155\) −3.14619 10.9788i −0.252708 0.881842i
\(156\) 0 0
\(157\) 6.73305i 0.537356i 0.963230 + 0.268678i \(0.0865868\pi\)
−0.963230 + 0.268678i \(0.913413\pi\)
\(158\) 0 0
\(159\) −20.5407 13.7249i −1.62899 1.08845i
\(160\) 0 0
\(161\) 16.6499 + 6.89661i 1.31220 + 0.543529i
\(162\) 0 0
\(163\) 14.8431 + 9.91787i 1.16260 + 0.776828i 0.978534 0.206085i \(-0.0660725\pi\)
0.184071 + 0.982913i \(0.441072\pi\)
\(164\) 0 0
\(165\) −9.15396 17.7806i −0.712634 1.38422i
\(166\) 0 0
\(167\) −0.0356861 + 0.179406i −0.00276147 + 0.0138829i −0.982141 0.188144i \(-0.939753\pi\)
0.979380 + 0.202027i \(0.0647528\pi\)
\(168\) 0 0
\(169\) 12.9413 0.995481
\(170\) 0 0
\(171\) 15.7102 1.20139
\(172\) 0 0
\(173\) 2.96809 14.9216i 0.225659 1.13447i −0.687287 0.726386i \(-0.741198\pi\)
0.912946 0.408080i \(-0.133802\pi\)
\(174\) 0 0
\(175\) 3.46245 + 9.14800i 0.261737 + 0.691523i
\(176\) 0 0
\(177\) 12.1470 + 8.11636i 0.913024 + 0.610063i
\(178\) 0 0
\(179\) 8.84537 + 3.66387i 0.661134 + 0.273851i 0.687916 0.725791i \(-0.258526\pi\)
−0.0267815 + 0.999641i \(0.508526\pi\)
\(180\) 0 0
\(181\) −3.69371 2.46806i −0.274552 0.183450i 0.410670 0.911784i \(-0.365295\pi\)
−0.685222 + 0.728334i \(0.740295\pi\)
\(182\) 0 0
\(183\) 10.7450i 0.794293i
\(184\) 0 0
\(185\) 2.48801 4.48676i 0.182922 0.329873i
\(186\) 0 0
\(187\) 13.5454 + 8.72411i 0.990536 + 0.637970i
\(188\) 0 0
\(189\) 3.15053 1.30499i 0.229167 0.0949242i
\(190\) 0 0
\(191\) −8.45149 + 8.45149i −0.611528 + 0.611528i −0.943344 0.331816i \(-0.892339\pi\)
0.331816 + 0.943344i \(0.392339\pi\)
\(192\) 0 0
\(193\) −18.3107 + 3.64222i −1.31803 + 0.262173i −0.803503 0.595300i \(-0.797033\pi\)
−0.514529 + 0.857473i \(0.672033\pi\)
\(194\) 0 0
\(195\) 0.601529 1.08477i 0.0430764 0.0776820i
\(196\) 0 0
\(197\) 13.6688 20.4568i 0.973863 1.45749i 0.0865907 0.996244i \(-0.472403\pi\)
0.887273 0.461245i \(-0.152597\pi\)
\(198\) 0 0
\(199\) 1.18714 5.96817i 0.0841543 0.423072i −0.915624 0.402035i \(-0.868303\pi\)
0.999779 0.0210375i \(-0.00669693\pi\)
\(200\) 0 0
\(201\) −8.85647 + 5.91771i −0.624687 + 0.417403i
\(202\) 0 0
\(203\) −10.8135 + 10.8135i −0.758956 + 0.758956i
\(204\) 0 0
\(205\) 8.99072 + 1.02585i 0.627939 + 0.0716484i
\(206\) 0 0
\(207\) 20.2244 + 4.02287i 1.40569 + 0.279609i
\(208\) 0 0
\(209\) 26.8993 + 5.35061i 1.86067 + 0.370110i
\(210\) 0 0
\(211\) −3.58864 18.0413i −0.247052 1.24202i −0.882663 0.470006i \(-0.844252\pi\)
0.635611 0.772010i \(-0.280748\pi\)
\(212\) 0 0
\(213\) 20.1119 8.33061i 1.37804 0.570804i
\(214\) 0 0
\(215\) −1.91416 23.0819i −0.130545 1.57417i
\(216\) 0 0
\(217\) −9.99165 −0.678278
\(218\) 0 0
\(219\) −10.9897 26.5315i −0.742614 1.79283i
\(220\) 0 0
\(221\) 0.0168438 + 0.999165i 0.00113304 + 0.0672111i
\(222\) 0 0
\(223\) −7.21593 + 17.4208i −0.483214 + 1.16658i 0.474859 + 0.880062i \(0.342499\pi\)
−0.958074 + 0.286521i \(0.907501\pi\)
\(224\) 0 0
\(225\) 5.92769 + 9.49318i 0.395179 + 0.632879i
\(226\) 0 0
\(227\) −4.46150 22.4295i −0.296120 1.48870i −0.786719 0.617311i \(-0.788222\pi\)
0.490599 0.871386i \(-0.336778\pi\)
\(228\) 0 0
\(229\) −7.72032 + 18.6385i −0.510173 + 1.23167i 0.433610 + 0.901101i \(0.357240\pi\)
−0.943783 + 0.330566i \(0.892760\pi\)
\(230\) 0 0
\(231\) −17.1600 + 3.41334i −1.12905 + 0.224581i
\(232\) 0 0
\(233\) −5.09119 7.61951i −0.333535 0.499171i 0.626358 0.779535i \(-0.284545\pi\)
−0.959894 + 0.280365i \(0.909545\pi\)
\(234\) 0 0
\(235\) 4.91070 15.3324i 0.320339 1.00018i
\(236\) 0 0
\(237\) −14.6878 14.6878i −0.954073 0.954073i
\(238\) 0 0
\(239\) 8.77753i 0.567771i −0.958858 0.283886i \(-0.908376\pi\)
0.958858 0.283886i \(-0.0916236\pi\)
\(240\) 0 0
\(241\) −0.316852 0.474203i −0.0204102 0.0305461i 0.821124 0.570750i \(-0.193347\pi\)
−0.841534 + 0.540203i \(0.818347\pi\)
\(242\) 0 0
\(243\) 16.0233 10.7064i 1.02790 0.686819i
\(244\) 0 0
\(245\) −7.07083 + 0.586378i −0.451739 + 0.0374623i
\(246\) 0 0
\(247\) 0.650975 + 1.57159i 0.0414206 + 0.0999981i
\(248\) 0 0
\(249\) −3.39785 + 5.08524i −0.215330 + 0.322264i
\(250\) 0 0
\(251\) −11.5855 11.5855i −0.731273 0.731273i 0.239599 0.970872i \(-0.422984\pi\)
−0.970872 + 0.239599i \(0.922984\pi\)
\(252\) 0 0
\(253\) 33.2584 + 13.7761i 2.09094 + 0.866094i
\(254\) 0 0
\(255\) −18.6237 9.92059i −1.16626 0.621251i
\(256\) 0 0
\(257\) −0.448980 0.185974i −0.0280066 0.0116007i 0.368636 0.929574i \(-0.379825\pi\)
−0.396643 + 0.917973i \(0.629825\pi\)
\(258\) 0 0
\(259\) −3.17381 3.17381i −0.197211 0.197211i
\(260\) 0 0
\(261\) −9.72128 + 14.5489i −0.601732 + 0.900555i
\(262\) 0 0
\(263\) −5.58255 13.4775i −0.344235 0.831056i −0.997278 0.0737355i \(-0.976508\pi\)
0.653043 0.757321i \(-0.273492\pi\)
\(264\) 0 0
\(265\) 18.4184 + 15.5975i 1.13144 + 0.958148i
\(266\) 0 0
\(267\) 12.7583 8.52479i 0.780792 0.521709i
\(268\) 0 0
\(269\) −3.42146 5.12058i −0.208610 0.312207i 0.712379 0.701795i \(-0.247618\pi\)
−0.920990 + 0.389587i \(0.872618\pi\)
\(270\) 0 0
\(271\) 14.5780i 0.885552i 0.896632 + 0.442776i \(0.146006\pi\)
−0.896632 + 0.442776i \(0.853994\pi\)
\(272\) 0 0
\(273\) −0.767336 0.767336i −0.0464413 0.0464413i
\(274\) 0 0
\(275\) 6.91629 + 18.2732i 0.417068 + 1.10192i
\(276\) 0 0
\(277\) −0.938813 1.40503i −0.0564078 0.0844202i 0.802194 0.597064i \(-0.203666\pi\)
−0.858601 + 0.512644i \(0.828666\pi\)
\(278\) 0 0
\(279\) −11.2128 + 2.23037i −0.671296 + 0.133529i
\(280\) 0 0
\(281\) −11.8884 + 28.7012i −0.709204 + 1.71217i −0.00722295 + 0.999974i \(0.502299\pi\)
−0.701981 + 0.712196i \(0.747701\pi\)
\(282\) 0 0
\(283\) 5.52694 + 27.7858i 0.328543 + 1.65170i 0.693341 + 0.720609i \(0.256138\pi\)
−0.364799 + 0.931086i \(0.618862\pi\)
\(284\) 0 0
\(285\) −35.6882 4.07206i −2.11399 0.241208i
\(286\) 0 0
\(287\) 3.02960 7.31411i 0.178832 0.431738i
\(288\) 0 0
\(289\) 16.9903 0.573007i 0.999432 0.0337063i
\(290\) 0 0
\(291\) 1.93071 + 4.66115i 0.113180 + 0.273242i
\(292\) 0 0
\(293\) 22.4715 1.31280 0.656400 0.754413i \(-0.272078\pi\)
0.656400 + 0.754413i \(0.272078\pi\)
\(294\) 0 0
\(295\) −10.8920 9.22378i −0.634155 0.537029i
\(296\) 0 0
\(297\) 6.29322 2.60674i 0.365170 0.151258i
\(298\) 0 0
\(299\) 0.435590 + 2.18986i 0.0251908 + 0.126643i
\(300\) 0 0
\(301\) −19.8736 3.95310i −1.14549 0.227853i
\(302\) 0 0
\(303\) −17.7737 3.53541i −1.02107 0.203104i
\(304\) 0 0
\(305\) 1.19007 10.4300i 0.0681434 0.597220i
\(306\) 0 0
\(307\) −0.750014 + 0.750014i −0.0428056 + 0.0428056i −0.728186 0.685380i \(-0.759636\pi\)
0.685380 + 0.728186i \(0.259636\pi\)
\(308\) 0 0
\(309\) −1.67412 + 1.11861i −0.0952373 + 0.0636356i
\(310\) 0 0
\(311\) 2.36845 11.9070i 0.134302 0.675183i −0.853703 0.520761i \(-0.825648\pi\)
0.988005 0.154422i \(-0.0493516\pi\)
\(312\) 0 0
\(313\) 1.99635 2.98775i 0.112840 0.168877i −0.770751 0.637137i \(-0.780119\pi\)
0.883591 + 0.468259i \(0.155119\pi\)
\(314\) 0 0
\(315\) 9.41255 2.69734i 0.530337 0.151978i
\(316\) 0 0
\(317\) −30.8374 + 6.13394i −1.73200 + 0.344516i −0.957583 0.288158i \(-0.906957\pi\)
−0.774418 + 0.632675i \(0.781957\pi\)
\(318\) 0 0
\(319\) −21.6000 + 21.6000i −1.20937 + 1.20937i
\(320\) 0 0
\(321\) 25.9392 10.7444i 1.44779 0.599692i
\(322\) 0 0
\(323\) 26.5452 11.5233i 1.47701 0.641175i
\(324\) 0 0
\(325\) −0.704039 + 0.986346i −0.0390531 + 0.0547126i
\(326\) 0 0
\(327\) 7.37474i 0.407824i
\(328\) 0 0
\(329\) −11.7113 7.82523i −0.645664 0.431419i
\(330\) 0 0
\(331\) −14.2998 5.92318i −0.785989 0.325567i −0.0466595 0.998911i \(-0.514858\pi\)
−0.739330 + 0.673343i \(0.764858\pi\)
\(332\) 0 0
\(333\) −4.27019 2.85325i −0.234005 0.156357i
\(334\) 0 0
\(335\) 9.25226 4.76332i 0.505505 0.260248i
\(336\) 0 0
\(337\) −0.152117 + 0.764745i −0.00828635 + 0.0416583i −0.984707 0.174217i \(-0.944261\pi\)
0.976421 + 0.215875i \(0.0692605\pi\)
\(338\) 0 0
\(339\) 0.406915 0.0221006
\(340\) 0 0
\(341\) −19.9584 −1.08081
\(342\) 0 0
\(343\) −3.88252 + 19.5187i −0.209636 + 1.05391i
\(344\) 0 0
\(345\) −44.9000 14.3807i −2.41733 0.774230i
\(346\) 0 0
\(347\) −29.3885 19.6368i −1.57766 1.05416i −0.964461 0.264227i \(-0.914883\pi\)
−0.613197 0.789930i \(-0.710117\pi\)
\(348\) 0 0
\(349\) −18.1629 7.52330i −0.972235 0.402713i −0.160691 0.987005i \(-0.551372\pi\)
−0.811544 + 0.584292i \(0.801372\pi\)
\(350\) 0 0
\(351\) 0.351286 + 0.234722i 0.0187503 + 0.0125285i
\(352\) 0 0
\(353\) 3.42082i 0.182072i 0.995848 + 0.0910359i \(0.0290178\pi\)
−0.995848 + 0.0910359i \(0.970982\pi\)
\(354\) 0 0
\(355\) −20.4449 + 5.85888i −1.08510 + 0.310957i
\(356\) 0 0
\(357\) −12.8319 + 13.2719i −0.679135 + 0.702425i
\(358\) 0 0
\(359\) 6.54897 2.71267i 0.345642 0.143169i −0.203108 0.979156i \(-0.565104\pi\)
0.548749 + 0.835987i \(0.315104\pi\)
\(360\) 0 0
\(361\) 21.3976 21.3976i 1.12619 1.12619i
\(362\) 0 0
\(363\) −9.58483 + 1.90654i −0.503073 + 0.100067i
\(364\) 0 0
\(365\) 7.72900 + 26.9708i 0.404554 + 1.41172i
\(366\) 0 0
\(367\) 4.31427 6.45676i 0.225203 0.337040i −0.701612 0.712560i \(-0.747536\pi\)
0.926814 + 0.375520i \(0.122536\pi\)
\(368\) 0 0
\(369\) 1.76720 8.88433i 0.0919969 0.462500i
\(370\) 0 0
\(371\) 17.5568 11.7311i 0.911504 0.609047i
\(372\) 0 0
\(373\) −1.82294 + 1.82294i −0.0943884 + 0.0943884i −0.752724 0.658336i \(-0.771261\pi\)
0.658336 + 0.752724i \(0.271261\pi\)
\(374\) 0 0
\(375\) −11.0050 23.1016i −0.568298 1.19296i
\(376\) 0 0
\(377\) −1.85823 0.369625i −0.0957038 0.0190367i
\(378\) 0 0
\(379\) −4.60801 0.916591i −0.236698 0.0470821i 0.0753159 0.997160i \(-0.476003\pi\)
−0.312014 + 0.950078i \(0.601003\pi\)
\(380\) 0 0
\(381\) −2.05277 10.3200i −0.105167 0.528709i
\(382\) 0 0
\(383\) 24.4665 10.1344i 1.25018 0.517841i 0.343298 0.939227i \(-0.388456\pi\)
0.906882 + 0.421385i \(0.138456\pi\)
\(384\) 0 0
\(385\) 17.0350 1.41270i 0.868183 0.0719978i
\(386\) 0 0
\(387\) −23.1850 −1.17856
\(388\) 0 0
\(389\) 9.48911 + 22.9087i 0.481117 + 1.16152i 0.959079 + 0.283139i \(0.0913756\pi\)
−0.477962 + 0.878380i \(0.658624\pi\)
\(390\) 0 0
\(391\) 37.1233 8.03705i 1.87740 0.406451i
\(392\) 0 0
\(393\) 9.42005 22.7420i 0.475179 1.14718i
\(394\) 0 0
\(395\) 12.6304 + 15.8839i 0.635506 + 0.799208i
\(396\) 0 0
\(397\) −0.761180 3.82671i −0.0382025 0.192057i 0.956972 0.290182i \(-0.0937157\pi\)
−0.995174 + 0.0981244i \(0.968716\pi\)
\(398\) 0 0
\(399\) −12.0259 + 29.0330i −0.602046 + 1.45347i
\(400\) 0 0
\(401\) −20.0915 + 3.99644i −1.00332 + 0.199573i −0.669299 0.742993i \(-0.733406\pi\)
−0.334021 + 0.942566i \(0.608406\pi\)
\(402\) 0 0
\(403\) −0.687738 1.02927i −0.0342586 0.0512717i
\(404\) 0 0
\(405\) −21.2819 + 10.9565i −1.05751 + 0.544433i
\(406\) 0 0
\(407\) −6.33972 6.33972i −0.314248 0.314248i
\(408\) 0 0
\(409\) 1.29942i 0.0642523i −0.999484 0.0321262i \(-0.989772\pi\)
0.999484 0.0321262i \(-0.0102278\pi\)
\(410\) 0 0
\(411\) −13.5876 20.3353i −0.670227 1.00307i
\(412\) 0 0
\(413\) −10.3824 + 6.93731i −0.510885 + 0.341363i
\(414\) 0 0
\(415\) 3.86146 4.55983i 0.189552 0.223833i
\(416\) 0 0
\(417\) 11.1408 + 26.8964i 0.545569 + 1.31712i
\(418\) 0 0
\(419\) 2.53289 3.79074i 0.123740 0.185190i −0.764428 0.644709i \(-0.776978\pi\)
0.888168 + 0.459520i \(0.151978\pi\)
\(420\) 0 0
\(421\) 13.4301 + 13.4301i 0.654542 + 0.654542i 0.954083 0.299541i \(-0.0968336\pi\)
−0.299541 + 0.954083i \(0.596834\pi\)
\(422\) 0 0
\(423\) −14.8894 6.16741i −0.723949 0.299870i
\(424\) 0 0
\(425\) 16.9790 + 11.6924i 0.823603 + 0.567167i
\(426\) 0 0
\(427\) −8.48499 3.51460i −0.410617 0.170083i
\(428\) 0 0
\(429\) −1.53276 1.53276i −0.0740025 0.0740025i
\(430\) 0 0
\(431\) 16.2956 24.3881i 0.784932 1.17473i −0.196042 0.980595i \(-0.562809\pi\)
0.980974 0.194138i \(-0.0621910\pi\)
\(432\) 0 0
\(433\) −1.75589 4.23908i −0.0843825 0.203717i 0.876056 0.482209i \(-0.160165\pi\)
−0.960439 + 0.278492i \(0.910165\pi\)
\(434\) 0 0
\(435\) 25.8544 30.5303i 1.23962 1.46382i
\(436\) 0 0
\(437\) 53.7607 35.9218i 2.57172 1.71837i
\(438\) 0 0
\(439\) −8.18943 12.2563i −0.390860 0.584963i 0.582899 0.812545i \(-0.301918\pi\)
−0.973759 + 0.227581i \(0.926918\pi\)
\(440\) 0 0
\(441\) 7.10241i 0.338210i
\(442\) 0 0
\(443\) −18.8865 18.8865i −0.897323 0.897323i 0.0978753 0.995199i \(-0.468795\pi\)
−0.995199 + 0.0978753i \(0.968795\pi\)
\(444\) 0 0
\(445\) −13.3284 + 6.86183i −0.631827 + 0.325282i
\(446\) 0 0
\(447\) 16.9562 + 25.3767i 0.802000 + 1.20028i
\(448\) 0 0
\(449\) −8.53680 + 1.69808i −0.402877 + 0.0801371i −0.392370 0.919808i \(-0.628345\pi\)
−0.0105070 + 0.999945i \(0.503345\pi\)
\(450\) 0 0
\(451\) 6.05167 14.6100i 0.284962 0.687959i
\(452\) 0 0
\(453\) −5.65028 28.4059i −0.265473 1.33462i
\(454\) 0 0
\(455\) 0.659854 + 0.829828i 0.0309344 + 0.0389029i
\(456\) 0 0
\(457\) 3.80799 9.19330i 0.178130 0.430044i −0.809444 0.587197i \(-0.800231\pi\)
0.987574 + 0.157152i \(0.0502314\pi\)
\(458\) 0 0
\(459\) 3.89174 6.04246i 0.181651 0.282038i
\(460\) 0 0
\(461\) 0.501341 + 1.21035i 0.0233498 + 0.0563714i 0.935124 0.354320i \(-0.115288\pi\)
−0.911775 + 0.410691i \(0.865288\pi\)
\(462\) 0 0
\(463\) −28.7687 −1.33700 −0.668498 0.743714i \(-0.733062\pi\)
−0.668498 + 0.743714i \(0.733062\pi\)
\(464\) 0 0
\(465\) 26.0498 2.16029i 1.20803 0.100181i
\(466\) 0 0
\(467\) 3.91817 1.62296i 0.181311 0.0751015i −0.290181 0.956972i \(-0.593716\pi\)
0.471492 + 0.881870i \(0.343716\pi\)
\(468\) 0 0
\(469\) −1.77615 8.92931i −0.0820150 0.412317i
\(470\) 0 0
\(471\) −15.1142 3.00640i −0.696424 0.138527i
\(472\) 0 0
\(473\) −39.6977 7.89637i −1.82530 0.363075i
\(474\) 0 0
\(475\) 34.1910 + 7.90537i 1.56879 + 0.362723i
\(476\) 0 0
\(477\) 17.0840 17.0840i 0.782221 0.782221i
\(478\) 0 0
\(479\) 8.59431 5.74254i 0.392684 0.262383i −0.343516 0.939147i \(-0.611618\pi\)
0.736200 + 0.676764i \(0.236618\pi\)
\(480\) 0 0
\(481\) 0.108487 0.545401i 0.00494658 0.0248681i
\(482\) 0 0
\(483\) −22.9157 + 34.2958i −1.04270 + 1.56051i
\(484\) 0 0
\(485\) −1.35786 4.73835i −0.0616573 0.215157i
\(486\) 0 0
\(487\) −16.2419 + 3.23072i −0.735992 + 0.146398i −0.548833 0.835932i \(-0.684928\pi\)
−0.187159 + 0.982330i \(0.559928\pi\)
\(488\) 0 0
\(489\) −28.8910 + 28.8910i −1.30650 + 1.30650i
\(490\) 0 0
\(491\) 27.4389 11.3656i 1.23830 0.512921i 0.335117 0.942176i \(-0.391224\pi\)
0.903183 + 0.429255i \(0.141224\pi\)
\(492\) 0 0
\(493\) −5.75426 + 31.7134i −0.259159 + 1.42830i
\(494\) 0 0
\(495\) 18.8017 5.38798i 0.845073 0.242172i
\(496\) 0 0
\(497\) 18.6066i 0.834619i
\(498\) 0 0
\(499\) 15.1407 + 10.1167i 0.677790 + 0.452885i 0.846224 0.532828i \(-0.178871\pi\)
−0.168433 + 0.985713i \(0.553871\pi\)
\(500\) 0 0
\(501\) −0.386792 0.160214i −0.0172806 0.00715785i
\(502\) 0 0
\(503\) −10.7055 7.15320i −0.477336 0.318946i 0.293523 0.955952i \(-0.405172\pi\)
−0.770858 + 0.637007i \(0.780172\pi\)
\(504\) 0 0
\(505\) 16.8611 + 5.40031i 0.750309 + 0.240311i
\(506\) 0 0
\(507\) −5.77844 + 29.0502i −0.256629 + 1.29016i
\(508\) 0 0
\(509\) 36.0005 1.59570 0.797848 0.602859i \(-0.205972\pi\)
0.797848 + 0.602859i \(0.205972\pi\)
\(510\) 0 0
\(511\) 24.5457 1.08584
\(512\) 0 0
\(513\) 2.38686 11.9995i 0.105382 0.529793i
\(514\) 0 0
\(515\) 1.74893 0.900399i 0.0770673 0.0396763i
\(516\) 0 0
\(517\) −23.3934 15.6310i −1.02884 0.687450i
\(518\) 0 0
\(519\) 32.1702 + 13.3253i 1.41212 + 0.584918i
\(520\) 0 0
\(521\) 4.28825 + 2.86532i 0.187872 + 0.125532i 0.645949 0.763380i \(-0.276462\pi\)
−0.458077 + 0.888912i \(0.651462\pi\)
\(522\) 0 0
\(523\) 15.8575i 0.693399i −0.937976 0.346700i \(-0.887302\pi\)
0.937976 0.346700i \(-0.112698\pi\)
\(524\) 0 0
\(525\) −22.0812 + 3.68771i −0.963702 + 0.160945i
\(526\) 0 0
\(527\) −17.3101 + 11.9931i −0.754039 + 0.522429i
\(528\) 0 0
\(529\) 57.1572 23.6753i 2.48510 1.02936i
\(530\) 0 0
\(531\) −10.1028 + 10.1028i −0.438424 + 0.438424i
\(532\) 0 0
\(533\) 0.961980 0.191350i 0.0416680 0.00828828i
\(534\) 0 0
\(535\) −26.3688 + 7.55647i −1.14002 + 0.326695i
\(536\) 0 0
\(537\) −12.1741 + 18.2199i −0.525353 + 0.786246i
\(538\) 0 0
\(539\) −2.41895 + 12.1609i −0.104191 + 0.523806i
\(540\) 0 0
\(541\) 23.4522 15.6703i 1.00829 0.673718i 0.0623484 0.998054i \(-0.480141\pi\)
0.945942 + 0.324337i \(0.105141\pi\)
\(542\) 0 0
\(543\) 7.18953 7.18953i 0.308532 0.308532i
\(544\) 0 0
\(545\) 0.816797 7.15854i 0.0349877 0.306638i
\(546\) 0 0
\(547\) 4.48522 + 0.892165i 0.191774 + 0.0381462i 0.290043 0.957014i \(-0.406330\pi\)
−0.0982687 + 0.995160i \(0.531330\pi\)
\(548\) 0 0
\(549\) −10.3066 2.05011i −0.439874 0.0874964i
\(550\) 0 0
\(551\) 10.7038 + 53.8116i 0.455997 + 2.29245i
\(552\) 0 0
\(553\) 16.4027 6.79423i 0.697514 0.288920i
\(554\) 0 0
\(555\) 8.96082 + 7.58841i 0.380366 + 0.322110i
\(556\) 0 0
\(557\) −13.0068 −0.551117 −0.275558 0.961284i \(-0.588863\pi\)
−0.275558 + 0.961284i \(0.588863\pi\)
\(558\) 0 0
\(559\) −0.960701 2.31934i −0.0406333 0.0980975i
\(560\) 0 0
\(561\) −25.6318 + 26.5108i −1.08218 + 1.11929i
\(562\) 0 0
\(563\) −7.11276 + 17.1717i −0.299767 + 0.723701i 0.700186 + 0.713961i \(0.253101\pi\)
−0.999953 + 0.00974053i \(0.996899\pi\)
\(564\) 0 0
\(565\) −0.394986 0.0450683i −0.0166172 0.00189604i
\(566\) 0 0
\(567\) 4.08547 + 20.5391i 0.171574 + 0.862559i
\(568\) 0 0
\(569\) −6.89001 + 16.6340i −0.288844 + 0.697332i −0.999984 0.00571919i \(-0.998180\pi\)
0.711139 + 0.703051i \(0.248180\pi\)
\(570\) 0 0
\(571\) −24.1455 + 4.80283i −1.01046 + 0.200992i −0.672443 0.740149i \(-0.734755\pi\)
−0.338013 + 0.941141i \(0.609755\pi\)
\(572\) 0 0
\(573\) −15.1980 22.7454i −0.634904 0.950201i
\(574\) 0 0
\(575\) 41.9910 + 18.9320i 1.75114 + 0.789521i
\(576\) 0 0
\(577\) −23.3705 23.3705i −0.972928 0.972928i 0.0267154 0.999643i \(-0.491495\pi\)
−0.999643 + 0.0267154i \(0.991495\pi\)
\(578\) 0 0
\(579\) 42.7296i 1.77578i
\(580\) 0 0
\(581\) −2.90425 4.34651i −0.120489 0.180324i
\(582\) 0 0
\(583\) 35.0699 23.4330i 1.45245 0.970495i
\(584\) 0 0
\(585\) 0.925739 + 0.783956i 0.0382746 + 0.0324126i
\(586\) 0 0
\(587\) −6.40421 15.4611i −0.264330 0.638149i 0.734867 0.678211i \(-0.237244\pi\)
−0.999197 + 0.0400621i \(0.987244\pi\)
\(588\) 0 0
\(589\) −19.9159 + 29.8062i −0.820618 + 1.22814i
\(590\) 0 0
\(591\) 39.8176 + 39.8176i 1.63788 + 1.63788i
\(592\) 0 0
\(593\) −44.6466 18.4932i −1.83342 0.759426i −0.964296 0.264825i \(-0.914686\pi\)
−0.869120 0.494601i \(-0.835314\pi\)
\(594\) 0 0
\(595\) 13.9256 11.4616i 0.570896 0.469882i
\(596\) 0 0
\(597\) 12.8671 + 5.32973i 0.526615 + 0.218131i
\(598\) 0 0
\(599\) −18.5662 18.5662i −0.758595 0.758595i 0.217471 0.976067i \(-0.430219\pi\)
−0.976067 + 0.217471i \(0.930219\pi\)
\(600\) 0 0
\(601\) 3.30596 4.94773i 0.134853 0.201822i −0.757897 0.652374i \(-0.773773\pi\)
0.892750 + 0.450552i \(0.148773\pi\)
\(602\) 0 0
\(603\) −3.98647 9.62419i −0.162342 0.391927i
\(604\) 0 0
\(605\) 9.51500 0.789072i 0.386840 0.0320803i
\(606\) 0 0
\(607\) 5.98598 3.99971i 0.242964 0.162343i −0.428127 0.903719i \(-0.640826\pi\)
0.671090 + 0.741376i \(0.265826\pi\)
\(608\) 0 0
\(609\) −19.4454 29.1021i −0.787967 1.17928i
\(610\) 0 0
\(611\) 1.74504i 0.0705966i
\(612\) 0 0
\(613\) −8.32227 8.32227i −0.336133 0.336133i 0.518776 0.854910i \(-0.326388\pi\)
−0.854910 + 0.518776i \(0.826388\pi\)
\(614\) 0 0
\(615\) −6.31727 + 19.7240i −0.254737 + 0.795350i
\(616\) 0 0
\(617\) 17.4113 + 26.0579i 0.700953 + 1.04905i 0.995624 + 0.0934511i \(0.0297899\pi\)
−0.294671 + 0.955599i \(0.595210\pi\)
\(618\) 0 0
\(619\) −5.55912 + 1.10578i −0.223440 + 0.0444450i −0.305540 0.952179i \(-0.598837\pi\)
0.0821006 + 0.996624i \(0.473837\pi\)
\(620\) 0 0
\(621\) 6.14537 14.8362i 0.246605 0.595358i
\(622\) 0 0
\(623\) 2.55865 + 12.8632i 0.102510 + 0.515352i
\(624\) 0 0
\(625\) 8.12377 + 23.6433i 0.324951 + 0.945731i
\(626\) 0 0
\(627\) −24.0218 + 57.9938i −0.959339 + 2.31605i
\(628\) 0 0
\(629\) −9.30804 1.68891i −0.371136 0.0673411i
\(630\) 0 0
\(631\) 3.14931 + 7.60310i 0.125372 + 0.302675i 0.974086 0.226177i \(-0.0726228\pi\)
−0.848714 + 0.528852i \(0.822623\pi\)
\(632\) 0 0
\(633\) 42.1010 1.67337
\(634\) 0 0
\(635\) 0.849593 + 10.2448i 0.0337151 + 0.406553i
\(636\) 0 0
\(637\) −0.710498 + 0.294298i −0.0281510 + 0.0116605i
\(638\) 0 0
\(639\) 4.15343 + 20.8807i 0.164307 + 0.826028i
\(640\) 0 0
\(641\) 5.64693 + 1.12324i 0.223040 + 0.0443655i 0.305345 0.952242i \(-0.401228\pi\)
−0.0823049 + 0.996607i \(0.526228\pi\)
\(642\) 0 0
\(643\) −5.21426 1.03718i −0.205630 0.0409024i 0.0912002 0.995833i \(-0.470930\pi\)
−0.296831 + 0.954930i \(0.595930\pi\)
\(644\) 0 0
\(645\) 52.6682 + 6.00949i 2.07381 + 0.236624i
\(646\) 0 0
\(647\) −0.898766 + 0.898766i −0.0353341 + 0.0353341i −0.724553 0.689219i \(-0.757954\pi\)
0.689219 + 0.724553i \(0.257954\pi\)
\(648\) 0 0
\(649\) −20.7390 + 13.8574i −0.814077 + 0.543949i
\(650\) 0 0
\(651\) 4.46140 22.4290i 0.174856 0.879061i
\(652\) 0 0
\(653\) −16.1226 + 24.1292i −0.630926 + 0.944247i 0.368965 + 0.929443i \(0.379712\pi\)
−0.999890 + 0.0148035i \(0.995288\pi\)
\(654\) 0 0
\(655\) −11.6627 + 21.0320i −0.455700 + 0.821788i
\(656\) 0 0
\(657\) 27.5457 5.47918i 1.07466 0.213763i
\(658\) 0 0
\(659\) −23.1025 + 23.1025i −0.899944 + 0.899944i −0.995431 0.0954867i \(-0.969559\pi\)
0.0954867 + 0.995431i \(0.469559\pi\)
\(660\) 0 0
\(661\) −12.5069 + 5.18051i −0.486461 + 0.201499i −0.612414 0.790538i \(-0.709801\pi\)
0.125953 + 0.992036i \(0.459801\pi\)
\(662\) 0 0
\(663\) −2.25042 0.408329i −0.0873990 0.0158582i
\(664\) 0 0
\(665\) 14.8889 26.8499i 0.577367 1.04120i
\(666\) 0 0
\(667\) 72.0145i 2.78841i
\(668\) 0 0
\(669\) −35.8837 23.9767i −1.38734 0.926994i
\(670\) 0 0
\(671\) −16.9489 7.02045i −0.654304 0.271021i
\(672\) 0 0
\(673\) −14.2554 9.52518i −0.549507 0.367169i 0.249608 0.968347i \(-0.419698\pi\)
−0.799115 + 0.601178i \(0.794698\pi\)
\(674\) 0 0
\(675\) 8.15151 3.08529i 0.313752 0.118753i
\(676\) 0 0
\(677\) −3.71425 + 18.6728i −0.142750 + 0.717653i 0.841414 + 0.540392i \(0.181724\pi\)
−0.984164 + 0.177262i \(0.943276\pi\)
\(678\) 0 0
\(679\) −4.31229 −0.165490
\(680\) 0 0
\(681\) 52.3412 2.00572
\(682\) 0 0
\(683\) −3.93332 + 19.7741i −0.150504 + 0.756637i 0.829632 + 0.558311i \(0.188550\pi\)
−0.980136 + 0.198326i \(0.936450\pi\)
\(684\) 0 0
\(685\) 10.9370 + 21.2440i 0.417882 + 0.811693i
\(686\) 0 0
\(687\) −38.3920 25.6527i −1.46474 0.978711i
\(688\) 0 0
\(689\) 2.41691 + 1.00112i 0.0920770 + 0.0381395i
\(690\) 0 0
\(691\) 18.8779 + 12.6138i 0.718149 + 0.479852i 0.860167 0.510012i \(-0.170359\pi\)
−0.142018 + 0.989864i \(0.545359\pi\)
\(692\) 0 0
\(693\) 17.1111i 0.649997i
\(694\) 0 0
\(695\) −7.83530 27.3418i −0.297210 1.03713i
\(696\) 0 0
\(697\) −3.53058 16.3078i −0.133730 0.617703i
\(698\) 0 0
\(699\) 19.3773 8.02636i 0.732918 0.303585i
\(700\) 0 0
\(701\) 25.0022 25.0022i 0.944322 0.944322i −0.0542080 0.998530i \(-0.517263\pi\)
0.998530 + 0.0542080i \(0.0172634\pi\)
\(702\) 0 0
\(703\) −15.7940 + 3.14162i −0.595682 + 0.118489i
\(704\) 0 0
\(705\) 32.2251 + 17.8695i 1.21367 + 0.673005i
\(706\) 0 0
\(707\) 8.60544 12.8789i 0.323641 0.484363i
\(708\) 0 0
\(709\) 2.04697 10.2908i 0.0768756 0.386480i −0.923122 0.384506i \(-0.874372\pi\)
0.999998 0.00197357i \(-0.000628206\pi\)
\(710\) 0 0
\(711\) 16.8908 11.2861i 0.633456 0.423262i
\(712\) 0 0
\(713\) −33.2708 + 33.2708i −1.24600 + 1.24600i
\(714\) 0 0
\(715\) 1.31807 + 1.65759i 0.0492929 + 0.0619904i
\(716\) 0 0
\(717\) 19.7035 + 3.91928i 0.735842 + 0.146368i
\(718\) 0 0
\(719\) 27.5120 + 5.47248i 1.02603 + 0.204089i 0.679287 0.733873i \(-0.262289\pi\)
0.346738 + 0.937962i \(0.387289\pi\)
\(720\) 0 0
\(721\) −0.335742 1.68789i −0.0125037 0.0628602i
\(722\) 0 0
\(723\) 1.20596 0.499523i 0.0448500 0.0185775i
\(724\) 0 0
\(725\) −28.4779 + 26.7718i −1.05764 + 0.994280i
\(726\) 0 0
\(727\) 29.0104 1.07594 0.537968 0.842965i \(-0.319192\pi\)
0.537968 + 0.842965i \(0.319192\pi\)
\(728\) 0 0
\(729\) 4.58926 + 11.0794i 0.169972 + 0.410350i
\(730\) 0 0
\(731\) −39.1750 + 17.0060i −1.44894 + 0.628989i
\(732\) 0 0
\(733\) 15.9067 38.4022i 0.587528 1.41842i −0.298331 0.954462i \(-0.596430\pi\)
0.885859 0.463955i \(-0.153570\pi\)
\(734\) 0 0
\(735\) 1.84093 16.1342i 0.0679037 0.595120i
\(736\) 0 0
\(737\) −3.54788 17.8364i −0.130688 0.657013i
\(738\) 0 0
\(739\) −2.84036 + 6.85724i −0.104484 + 0.252248i −0.967472 0.252977i \(-0.918590\pi\)
0.862988 + 0.505225i \(0.168590\pi\)
\(740\) 0 0
\(741\) −3.81854 + 0.759554i −0.140277 + 0.0279029i
\(742\) 0 0
\(743\) 1.72985 + 2.58891i 0.0634621 + 0.0949778i 0.861843 0.507174i \(-0.169310\pi\)
−0.798381 + 0.602152i \(0.794310\pi\)
\(744\) 0 0
\(745\) −13.6485 26.5108i −0.500041 0.971280i
\(746\) 0 0
\(747\) −4.22946 4.22946i −0.154748 0.154748i
\(748\) 0 0
\(749\) 23.9978i 0.876860i
\(750\) 0 0
\(751\) −14.2315 21.2990i −0.519316 0.777211i 0.475412 0.879763i \(-0.342299\pi\)
−0.994728 + 0.102553i \(0.967299\pi\)
\(752\) 0 0
\(753\) 31.1800 20.8338i 1.13626 0.759226i
\(754\) 0 0
\(755\) 2.33852 + 28.1989i 0.0851073 + 1.02626i
\(756\) 0 0
\(757\) 19.8457 + 47.9116i 0.721303 + 1.74138i 0.669607 + 0.742715i \(0.266462\pi\)
0.0516954 + 0.998663i \(0.483538\pi\)
\(758\) 0 0
\(759\) −45.7744 + 68.5062i −1.66151 + 2.48662i
\(760\) 0 0
\(761\) −33.1219 33.1219i −1.20067 1.20067i −0.973964 0.226705i \(-0.927205\pi\)
−0.226705 0.973964i \(-0.572795\pi\)
\(762\) 0 0
\(763\) −5.82360 2.41221i −0.210829 0.0873280i
\(764\) 0 0
\(765\) 13.0691 15.9710i 0.472516 0.577434i
\(766\) 0 0
\(767\) −1.42927 0.592023i −0.0516079 0.0213767i
\(768\) 0 0
\(769\) 26.9212 + 26.9212i 0.970804 + 0.970804i 0.999586 0.0287816i \(-0.00916272\pi\)
−0.0287816 + 0.999586i \(0.509163\pi\)
\(770\) 0 0
\(771\) 0.617944 0.924818i 0.0222547 0.0333065i
\(772\) 0 0
\(773\) −5.65367 13.6492i −0.203348 0.490926i 0.789000 0.614393i \(-0.210599\pi\)
−0.992349 + 0.123466i \(0.960599\pi\)
\(774\) 0 0
\(775\) −25.5254 0.788213i −0.916899 0.0283134i
\(776\) 0 0
\(777\) 8.54162 5.70733i 0.306429 0.204749i
\(778\) 0 0
\(779\) −15.7800 23.6165i −0.565378 0.846148i
\(780\) 0 0
\(781\) 37.1669i 1.32994i
\(782\) 0 0
\(783\) 9.63556 + 9.63556i 0.344347 + 0.344347i
\(784\) 0 0
\(785\) 14.3381 + 4.59225i 0.511749 + 0.163904i
\(786\) 0 0
\(787\) −2.26970 3.39685i −0.0809062 0.121085i 0.788809 0.614638i \(-0.210698\pi\)
−0.869716 + 0.493553i \(0.835698\pi\)
\(788\) 0 0
\(789\) 32.7465 6.51369i 1.16581 0.231893i
\(790\) 0 0
\(791\) −0.133099 + 0.321328i −0.00473244 + 0.0114251i
\(792\) 0 0
\(793\) −0.221982 1.11598i −0.00788282 0.0396296i
\(794\) 0 0
\(795\) −43.2370 + 34.3807i −1.53346 + 1.21936i
\(796\) 0 0
\(797\) 14.7563 35.6248i 0.522694 1.26189i −0.413530 0.910490i \(-0.635704\pi\)
0.936224 0.351404i \(-0.114296\pi\)
\(798\) 0 0
\(799\) −29.6820 + 0.500377i −1.05007 + 0.0177021i
\(800\) 0 0
\(801\) 5.74274 + 13.8642i 0.202910 + 0.489867i
\(802\) 0 0
\(803\) 49.0303 1.73024
\(804\) 0 0
\(805\) 26.0424 30.7523i 0.917873 1.08388i
\(806\) 0 0
\(807\) 13.0223 5.39400i 0.458406 0.189878i
\(808\) 0 0
\(809\) −2.22998 11.2109i −0.0784020 0.394153i −0.999982 0.00596546i \(-0.998101\pi\)
0.921580 0.388188i \(-0.126899\pi\)
\(810\) 0 0
\(811\) 42.4483 + 8.44349i 1.49056 + 0.296491i 0.872101 0.489325i \(-0.162757\pi\)
0.618460 + 0.785816i \(0.287757\pi\)
\(812\) 0 0
\(813\) −32.7243 6.50928i −1.14769 0.228290i
\(814\) 0 0
\(815\) 31.2439 24.8442i 1.09443 0.870254i
\(816\) 0 0
\(817\) −51.4055 + 51.4055i −1.79845 + 1.79845i
\(818\) 0 0
\(819\) 0.882432 0.589622i 0.0308347 0.0206031i
\(820\) 0 0
\(821\) −7.05965 + 35.4913i −0.246383 + 1.23865i 0.637317 + 0.770601i \(0.280044\pi\)
−0.883701 + 0.468052i \(0.844956\pi\)
\(822\) 0 0
\(823\) 3.26171 4.88149i 0.113696 0.170158i −0.770257 0.637733i \(-0.779872\pi\)
0.883953 + 0.467575i \(0.154872\pi\)
\(824\) 0 0
\(825\) −44.1074 + 7.36625i −1.53562 + 0.256460i
\(826\) 0 0
\(827\) −21.6895 + 4.31431i −0.754218 + 0.150023i −0.557202 0.830377i \(-0.688125\pi\)
−0.197016 + 0.980400i \(0.563125\pi\)
\(828\) 0 0
\(829\) 32.3188 32.3188i 1.12248 1.12248i 0.131109 0.991368i \(-0.458146\pi\)
0.991368 0.131109i \(-0.0418538\pi\)
\(830\) 0 0
\(831\) 3.57317 1.48006i 0.123952 0.0513425i
\(832\) 0 0
\(833\) 5.20956 + 12.0007i 0.180500 + 0.415801i
\(834\) 0 0
\(835\) 0.357708 + 0.198357i 0.0123790 + 0.00686443i
\(836\) 0 0
\(837\) 8.90327i 0.307742i
\(838\) 0 0
\(839\) 19.1088 + 12.7681i 0.659710 + 0.440804i 0.839837 0.542839i \(-0.182651\pi\)
−0.180127 + 0.983643i \(0.557651\pi\)
\(840\) 0 0
\(841\) −29.6646 12.2875i −1.02292 0.423706i
\(842\) 0 0
\(843\) −59.1193 39.5022i −2.03618 1.36053i
\(844\) 0 0
\(845\) 8.82652 27.5585i 0.303641 0.948043i
\(846\) 0 0
\(847\) 1.62958 8.19245i 0.0559930 0.281496i
\(848\) 0 0
\(849\) −64.8407 −2.22533
\(850\) 0 0
\(851\) −21.1366 −0.724555
\(852\) 0 0
\(853\) 3.79265 19.0669i 0.129858 0.652839i −0.859944 0.510388i \(-0.829502\pi\)
0.989802 0.142451i \(-0.0454982\pi\)
\(854\) 0 0
\(855\) 10.7151 33.4551i 0.366449 1.14414i
\(856\) 0 0
\(857\) −21.8762 14.6172i −0.747276 0.499314i 0.122678 0.992447i \(-0.460852\pi\)
−0.869954 + 0.493133i \(0.835852\pi\)
\(858\) 0 0
\(859\) 40.0729 + 16.5987i 1.36727 + 0.566341i 0.941046 0.338277i \(-0.109844\pi\)
0.426222 + 0.904618i \(0.359844\pi\)
\(860\) 0 0
\(861\) 15.0657 + 10.0666i 0.513439 + 0.343069i
\(862\) 0 0
\(863\) 16.7008i 0.568501i −0.958750 0.284250i \(-0.908255\pi\)
0.958750 0.284250i \(-0.0917447\pi\)
\(864\) 0 0
\(865\) −29.7513 16.4978i −1.01157 0.560940i
\(866\) 0 0
\(867\) −6.30014 + 38.3953i −0.213964 + 1.30397i
\(868\) 0 0
\(869\) 32.7646 13.5716i 1.11146 0.460383i
\(870\) 0 0
\(871\) 0.797582 0.797582i 0.0270250 0.0270250i
\(872\) 0 0
\(873\) −4.83934 + 0.962605i −0.163787 + 0.0325793i
\(874\) 0 0
\(875\) 21.8423 1.13398i 0.738404 0.0383356i
\(876\) 0 0
\(877\) 9.88365 14.7919i 0.333747 0.499488i −0.626202 0.779661i \(-0.715392\pi\)
0.959950 + 0.280172i \(0.0903916\pi\)
\(878\) 0 0
\(879\) −10.0338 + 50.4434i −0.338432 + 1.70141i
\(880\) 0 0
\(881\) 33.7775 22.5694i 1.13799 0.760382i 0.163887 0.986479i \(-0.447597\pi\)
0.974105 + 0.226097i \(0.0725966\pi\)
\(882\) 0 0
\(883\) 14.4104 14.4104i 0.484947 0.484947i −0.421760 0.906707i \(-0.638588\pi\)
0.906707 + 0.421760i \(0.138588\pi\)
\(884\) 0 0
\(885\) 25.5687 20.3314i 0.859482 0.683434i
\(886\) 0 0
\(887\) 37.2711 + 7.41369i 1.25144 + 0.248927i 0.775951 0.630793i \(-0.217270\pi\)
0.475491 + 0.879721i \(0.342270\pi\)
\(888\) 0 0
\(889\) 8.82081 + 1.75457i 0.295841 + 0.0588463i
\(890\) 0 0
\(891\) 8.16078 + 41.0270i 0.273396 + 1.37446i
\(892\) 0 0
\(893\) −46.6870 + 19.3384i −1.56232 + 0.647135i
\(894\) 0 0
\(895\) 13.8352 16.3374i 0.462460 0.546099i
\(896\) 0 0
\(897\) −5.11023 −0.170626
\(898\) 0 0
\(899\) −15.2792 36.8873i −0.509590 1.23026i
\(900\) 0 0
\(901\) 16.3354 41.3972i 0.544210 1.37914i
\(902\) 0 0
\(903\) 17.7476 42.8465i 0.590604 1.42584i
\(904\) 0 0
\(905\) −7.77504 + 6.18248i −0.258451 + 0.205512i
\(906\) 0 0
\(907\) −11.5062 57.8457i −0.382058 1.92074i −0.390112 0.920767i \(-0.627564\pi\)
0.00805392 0.999968i \(-0.497436\pi\)
\(908\) 0 0
\(909\) 6.78232 16.3740i 0.224955 0.543090i
\(910\) 0 0
\(911\) −43.3510 + 8.62304i −1.43628 + 0.285694i −0.851013 0.525145i \(-0.824011\pi\)
−0.585269 + 0.810839i \(0.699011\pi\)
\(912\) 0 0
\(913\) −5.80127 8.68222i −0.191994 0.287339i
\(914\) 0 0
\(915\) 22.8816 + 7.32857i 0.756442 + 0.242275i
\(916\) 0 0
\(917\) 14.8774 + 14.8774i 0.491296 + 0.491296i
\(918\) 0 0
\(919\) 8.47263i 0.279486i −0.990188 0.139743i \(-0.955372\pi\)
0.990188 0.139743i \(-0.0446277\pi\)
\(920\) 0 0
\(921\) −1.34872 2.01850i −0.0444418 0.0665119i
\(922\) 0 0
\(923\) −1.91672 + 1.28071i −0.0630897 + 0.0421552i
\(924\) 0 0
\(925\) −7.85767 8.35841i −0.258358 0.274823i
\(926\) 0 0
\(927\) −0.753554 1.81924i −0.0247499 0.0597517i
\(928\) 0 0
\(929\) 22.9385 34.3299i 0.752589 1.12633i −0.235415 0.971895i \(-0.575645\pi\)
0.988003 0.154433i \(-0.0493552\pi\)
\(930\) 0 0
\(931\) 15.7474 + 15.7474i 0.516100 + 0.516100i
\(932\) 0 0
\(933\) 25.6709 + 10.6332i 0.840428 + 0.348117i
\(934\) 0 0
\(935\) 27.8166 22.8948i 0.909702 0.748739i
\(936\) 0 0
\(937\) −26.9375 11.1579i −0.880009 0.364512i −0.103508 0.994629i \(-0.533007\pi\)
−0.776500 + 0.630117i \(0.783007\pi\)
\(938\) 0 0
\(939\) 5.81541 + 5.81541i 0.189779 + 0.189779i
\(940\) 0 0
\(941\) −14.1630 + 21.1965i −0.461702 + 0.690985i −0.987142 0.159845i \(-0.948901\pi\)
0.525440 + 0.850830i \(0.323901\pi\)
\(942\) 0 0
\(943\) −14.2668 34.4430i −0.464590 1.12162i
\(944\) 0 0
\(945\) −0.630191 7.59915i −0.0205001 0.247200i
\(946\) 0 0
\(947\) −31.9561 + 21.3524i −1.03843 + 0.693858i −0.953150 0.302499i \(-0.902179\pi\)
−0.0852824 + 0.996357i \(0.527179\pi\)
\(948\) 0 0
\(949\) 1.68951 + 2.52853i 0.0548438 + 0.0820795i
\(950\) 0 0
\(951\) 71.9618i 2.33352i
\(952\) 0 0
\(953\) −9.57028 9.57028i −0.310012 0.310012i 0.534902 0.844914i \(-0.320348\pi\)
−0.844914 + 0.534902i \(0.820348\pi\)
\(954\) 0 0
\(955\) 12.2332 + 23.7618i 0.395858 + 0.768915i
\(956\) 0 0
\(957\) −38.8424 58.1318i −1.25560 1.87913i
\(958\) 0 0
\(959\) 20.5025 4.07821i 0.662061 0.131692i
\(960\) 0 0
\(961\) −1.88024 + 4.53931i −0.0606530 + 0.146429i
\(962\) 0 0
\(963\) 5.35687 + 26.9308i 0.172623 + 0.867834i
\(964\) 0 0
\(965\) −4.73256 + 41.4770i −0.152347 + 1.33519i
\(966\) 0 0
\(967\) 2.24232 5.41343i 0.0721081 0.174084i −0.883716 0.468023i \(-0.844966\pi\)
0.955824 + 0.293939i \(0.0949663\pi\)
\(968\) 0 0
\(969\) 14.0145 + 64.7331i 0.450210 + 2.07953i
\(970\) 0 0
\(971\) −10.6655 25.7488i −0.342272 0.826317i −0.997485 0.0708734i \(-0.977421\pi\)
0.655214 0.755444i \(-0.272579\pi\)
\(972\) 0 0
\(973\) −24.8833 −0.797722
\(974\) 0 0
\(975\) −1.89976 2.02082i −0.0608410 0.0647182i
\(976\) 0 0
\(977\) −43.6535 + 18.0819i −1.39660 + 0.578490i −0.948867 0.315678i \(-0.897768\pi\)
−0.447732 + 0.894168i \(0.647768\pi\)
\(978\) 0 0
\(979\) 5.11093 + 25.6944i 0.163346 + 0.821195i
\(980\) 0 0
\(981\) −7.07384 1.40707i −0.225850 0.0449244i
\(982\) 0 0
\(983\) −2.37586 0.472589i −0.0757783 0.0150732i 0.157056 0.987590i \(-0.449800\pi\)
−0.232834 + 0.972517i \(0.574800\pi\)
\(984\) 0 0
\(985\) −34.2403 43.0604i −1.09099 1.37202i
\(986\) 0 0
\(987\) 22.7951 22.7951i 0.725576 0.725576i
\(988\) 0 0
\(989\) −79.3394 + 53.0129i −2.52285 + 1.68571i
\(990\) 0 0
\(991\) −9.55435 + 48.0330i −0.303504 + 1.52582i 0.464617 + 0.885512i \(0.346192\pi\)
−0.768121 + 0.640305i \(0.778808\pi\)
\(992\) 0 0
\(993\) 19.6812 29.4551i 0.624565 0.934728i
\(994\) 0 0
\(995\) −11.8996 6.59859i −0.377242 0.209189i
\(996\) 0 0
\(997\) −1.64406 + 0.327024i −0.0520680 + 0.0103570i −0.221056 0.975261i \(-0.570950\pi\)
0.168988 + 0.985618i \(0.445950\pi\)
\(998\) 0 0
\(999\) −2.82809 + 2.82809i −0.0894768 + 0.0894768i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.cg.b.73.3 112
5.2 odd 4 680.2.cq.b.617.12 yes 112
17.7 odd 16 680.2.cq.b.313.12 yes 112
85.7 even 16 inner 680.2.cg.b.177.3 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.cg.b.73.3 112 1.1 even 1 trivial
680.2.cg.b.177.3 yes 112 85.7 even 16 inner
680.2.cq.b.313.12 yes 112 17.7 odd 16
680.2.cq.b.617.12 yes 112 5.2 odd 4