Properties

Label 680.2.cg.b.57.8
Level $680$
Weight $2$
Character 680.57
Analytic conductor $5.430$
Analytic rank $0$
Dimension $112$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(57,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 0, 4, 15])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.57"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.cg (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(112\)
Relative dimension: \(14\) over \(\Q(\zeta_{16})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 57.8
Character \(\chi\) \(=\) 680.57
Dual form 680.2.cg.b.513.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.203615 - 0.304732i) q^{3} +(-0.154785 + 2.23070i) q^{5} +(-0.0416810 + 0.209544i) q^{7} +(1.09665 + 2.64754i) q^{9} +(0.615902 - 3.09635i) q^{11} -0.714977i q^{13} +(0.648250 + 0.501374i) q^{15} +(0.794784 + 4.04578i) q^{17} +(-1.90886 + 4.60839i) q^{19} +(0.0553680 + 0.0553680i) q^{21} +(1.23743 - 0.826823i) q^{23} +(-4.95208 - 0.690557i) q^{25} +(2.10845 + 0.419397i) q^{27} +(-3.31238 + 4.95733i) q^{29} +(1.79308 + 9.01444i) q^{31} +(-0.818149 - 0.818149i) q^{33} +(-0.460980 - 0.125412i) q^{35} +(3.37529 + 2.25530i) q^{37} +(-0.217876 - 0.145580i) q^{39} +(-0.771819 - 1.15511i) q^{41} +(2.51533 - 6.07255i) q^{43} +(-6.07563 + 2.03650i) q^{45} +1.76827 q^{47} +(6.42499 + 2.66132i) q^{49} +(1.39471 + 0.581586i) q^{51} +(-9.97479 + 4.13169i) q^{53} +(6.81170 + 1.85316i) q^{55} +(1.01565 + 1.52003i) q^{57} +(13.3351 - 5.52358i) q^{59} +(8.64444 - 5.77603i) q^{61} +(-0.600487 + 0.119444i) q^{63} +(1.59490 + 0.110667i) q^{65} +(5.05623 - 5.05623i) q^{67} -0.545438i q^{69} +(-13.7274 + 2.73054i) q^{71} +(-1.01438 - 5.09964i) q^{73} +(-1.21876 + 1.36845i) q^{75} +(0.623151 + 0.258118i) q^{77} +(-3.41105 - 0.678501i) q^{79} +(-5.52191 + 5.52191i) q^{81} +(-1.17245 - 2.83055i) q^{83} +(-9.14795 + 1.14670i) q^{85} +(0.836205 + 2.01878i) q^{87} +(-4.73379 + 4.73379i) q^{89} +(0.149819 + 0.0298009i) q^{91} +(3.11209 + 1.28907i) q^{93} +(-9.98449 - 4.97141i) q^{95} +(-1.17426 - 5.90341i) q^{97} +(8.87314 - 1.76498i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 112 q + 16 q^{15} - 24 q^{27} - 8 q^{29} + 16 q^{31} - 48 q^{33} - 32 q^{35} - 16 q^{37} - 16 q^{41} + 48 q^{43} - 24 q^{45} - 16 q^{47} - 80 q^{49} + 32 q^{51} - 8 q^{53} + 24 q^{55} - 80 q^{59} - 24 q^{61}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{15}{16}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.203615 0.304732i 0.117557 0.175937i −0.768024 0.640421i \(-0.778760\pi\)
0.885582 + 0.464484i \(0.153760\pi\)
\(4\) 0 0
\(5\) −0.154785 + 2.23070i −0.0692218 + 0.997601i
\(6\) 0 0
\(7\) −0.0416810 + 0.209544i −0.0157539 + 0.0792003i −0.987862 0.155331i \(-0.950356\pi\)
0.972109 + 0.234531i \(0.0753556\pi\)
\(8\) 0 0
\(9\) 1.09665 + 2.64754i 0.365549 + 0.882514i
\(10\) 0 0
\(11\) 0.615902 3.09635i 0.185701 0.933584i −0.769730 0.638370i \(-0.779609\pi\)
0.955431 0.295214i \(-0.0953910\pi\)
\(12\) 0 0
\(13\) 0.714977i 0.198299i −0.995073 0.0991495i \(-0.968388\pi\)
0.995073 0.0991495i \(-0.0316122\pi\)
\(14\) 0 0
\(15\) 0.648250 + 0.501374i 0.167378 + 0.129454i
\(16\) 0 0
\(17\) 0.794784 + 4.04578i 0.192763 + 0.981245i
\(18\) 0 0
\(19\) −1.90886 + 4.60839i −0.437922 + 1.05724i 0.538743 + 0.842470i \(0.318899\pi\)
−0.976665 + 0.214767i \(0.931101\pi\)
\(20\) 0 0
\(21\) 0.0553680 + 0.0553680i 0.0120823 + 0.0120823i
\(22\) 0 0
\(23\) 1.23743 0.826823i 0.258022 0.172405i −0.419831 0.907602i \(-0.637911\pi\)
0.677853 + 0.735198i \(0.262911\pi\)
\(24\) 0 0
\(25\) −4.95208 0.690557i −0.990417 0.138111i
\(26\) 0 0
\(27\) 2.10845 + 0.419397i 0.405772 + 0.0807130i
\(28\) 0 0
\(29\) −3.31238 + 4.95733i −0.615094 + 0.920553i −0.999997 0.00240386i \(-0.999235\pi\)
0.384903 + 0.922957i \(0.374235\pi\)
\(30\) 0 0
\(31\) 1.79308 + 9.01444i 0.322047 + 1.61904i 0.714753 + 0.699377i \(0.246539\pi\)
−0.392706 + 0.919664i \(0.628461\pi\)
\(32\) 0 0
\(33\) −0.818149 0.818149i −0.142421 0.142421i
\(34\) 0 0
\(35\) −0.460980 0.125412i −0.0779198 0.0211985i
\(36\) 0 0
\(37\) 3.37529 + 2.25530i 0.554894 + 0.370768i 0.801175 0.598430i \(-0.204209\pi\)
−0.246281 + 0.969198i \(0.579209\pi\)
\(38\) 0 0
\(39\) −0.217876 0.145580i −0.0348881 0.0233115i
\(40\) 0 0
\(41\) −0.771819 1.15511i −0.120538 0.180398i 0.766294 0.642490i \(-0.222099\pi\)
−0.886832 + 0.462093i \(0.847099\pi\)
\(42\) 0 0
\(43\) 2.51533 6.07255i 0.383585 0.926056i −0.607682 0.794181i \(-0.707900\pi\)
0.991266 0.131875i \(-0.0420997\pi\)
\(44\) 0 0
\(45\) −6.07563 + 2.03650i −0.905701 + 0.303583i
\(46\) 0 0
\(47\) 1.76827 0.257928 0.128964 0.991649i \(-0.458835\pi\)
0.128964 + 0.991649i \(0.458835\pi\)
\(48\) 0 0
\(49\) 6.42499 + 2.66132i 0.917855 + 0.380188i
\(50\) 0 0
\(51\) 1.39471 + 0.581586i 0.195298 + 0.0814384i
\(52\) 0 0
\(53\) −9.97479 + 4.13169i −1.37014 + 0.567532i −0.941827 0.336097i \(-0.890893\pi\)
−0.428316 + 0.903629i \(0.640893\pi\)
\(54\) 0 0
\(55\) 6.81170 + 1.85316i 0.918490 + 0.249880i
\(56\) 0 0
\(57\) 1.01565 + 1.52003i 0.134526 + 0.201333i
\(58\) 0 0
\(59\) 13.3351 5.52358i 1.73608 0.719109i 0.737017 0.675874i \(-0.236234\pi\)
0.999065 0.0432346i \(-0.0137663\pi\)
\(60\) 0 0
\(61\) 8.64444 5.77603i 1.10681 0.739545i 0.138763 0.990326i \(-0.455687\pi\)
0.968044 + 0.250781i \(0.0806873\pi\)
\(62\) 0 0
\(63\) −0.600487 + 0.119444i −0.0756543 + 0.0150486i
\(64\) 0 0
\(65\) 1.59490 + 0.110667i 0.197823 + 0.0137266i
\(66\) 0 0
\(67\) 5.05623 5.05623i 0.617717 0.617717i −0.327229 0.944945i \(-0.606115\pi\)
0.944945 + 0.327229i \(0.106115\pi\)
\(68\) 0 0
\(69\) 0.545438i 0.0656630i
\(70\) 0 0
\(71\) −13.7274 + 2.73054i −1.62914 + 0.324056i −0.923230 0.384248i \(-0.874461\pi\)
−0.705908 + 0.708304i \(0.749461\pi\)
\(72\) 0 0
\(73\) −1.01438 5.09964i −0.118724 0.596868i −0.993641 0.112595i \(-0.964084\pi\)
0.874917 0.484274i \(-0.160916\pi\)
\(74\) 0 0
\(75\) −1.21876 + 1.36845i −0.140730 + 0.158015i
\(76\) 0 0
\(77\) 0.623151 + 0.258118i 0.0710147 + 0.0294152i
\(78\) 0 0
\(79\) −3.41105 0.678501i −0.383773 0.0763373i −0.000566588 1.00000i \(-0.500180\pi\)
−0.383207 + 0.923663i \(0.625180\pi\)
\(80\) 0 0
\(81\) −5.52191 + 5.52191i −0.613545 + 0.613545i
\(82\) 0 0
\(83\) −1.17245 2.83055i −0.128693 0.310693i 0.846379 0.532581i \(-0.178778\pi\)
−0.975072 + 0.221888i \(0.928778\pi\)
\(84\) 0 0
\(85\) −9.14795 + 1.14670i −0.992235 + 0.124378i
\(86\) 0 0
\(87\) 0.836205 + 2.01878i 0.0896506 + 0.216436i
\(88\) 0 0
\(89\) −4.73379 + 4.73379i −0.501781 + 0.501781i −0.911991 0.410210i \(-0.865455\pi\)
0.410210 + 0.911991i \(0.365455\pi\)
\(90\) 0 0
\(91\) 0.149819 + 0.0298009i 0.0157053 + 0.00312399i
\(92\) 0 0
\(93\) 3.11209 + 1.28907i 0.322708 + 0.133670i
\(94\) 0 0
\(95\) −9.98449 4.97141i −1.02439 0.510055i
\(96\) 0 0
\(97\) −1.17426 5.90341i −0.119228 0.599400i −0.993487 0.113941i \(-0.963652\pi\)
0.874259 0.485459i \(-0.161348\pi\)
\(98\) 0 0
\(99\) 8.87314 1.76498i 0.891784 0.177387i
\(100\) 0 0
\(101\) 0.137150i 0.0136469i 0.999977 + 0.00682344i \(0.00217199\pi\)
−0.999977 + 0.00682344i \(0.997828\pi\)
\(102\) 0 0
\(103\) 11.9995 11.9995i 1.18234 1.18234i 0.203206 0.979136i \(-0.434864\pi\)
0.979136 0.203206i \(-0.0651361\pi\)
\(104\) 0 0
\(105\) −0.132080 + 0.114939i −0.0128897 + 0.0112169i
\(106\) 0 0
\(107\) 5.07386 1.00925i 0.490508 0.0975681i 0.0563616 0.998410i \(-0.482050\pi\)
0.434146 + 0.900842i \(0.357050\pi\)
\(108\) 0 0
\(109\) −5.33339 + 3.56366i −0.510847 + 0.341337i −0.784130 0.620597i \(-0.786890\pi\)
0.273283 + 0.961934i \(0.411890\pi\)
\(110\) 0 0
\(111\) 1.37452 0.569345i 0.130464 0.0540399i
\(112\) 0 0
\(113\) −2.38105 3.56349i −0.223990 0.335225i 0.702405 0.711777i \(-0.252109\pi\)
−0.926395 + 0.376552i \(0.877109\pi\)
\(114\) 0 0
\(115\) 1.65286 + 2.88832i 0.154130 + 0.269337i
\(116\) 0 0
\(117\) 1.89293 0.784078i 0.175002 0.0724880i
\(118\) 0 0
\(119\) −0.880897 0.00208940i −0.0807517 0.000191535i
\(120\) 0 0
\(121\) 0.954639 + 0.395424i 0.0867853 + 0.0359477i
\(122\) 0 0
\(123\) −0.509153 −0.0459088
\(124\) 0 0
\(125\) 2.30694 10.9397i 0.206339 0.978481i
\(126\) 0 0
\(127\) −2.07251 + 5.00348i −0.183906 + 0.443987i −0.988765 0.149478i \(-0.952241\pi\)
0.804859 + 0.593466i \(0.202241\pi\)
\(128\) 0 0
\(129\) −1.33834 2.00297i −0.117834 0.176351i
\(130\) 0 0
\(131\) −11.5174 7.69569i −1.00628 0.672376i −0.0608334 0.998148i \(-0.519376\pi\)
−0.945448 + 0.325772i \(0.894376\pi\)
\(132\) 0 0
\(133\) −0.886099 0.592073i −0.0768346 0.0513392i
\(134\) 0 0
\(135\) −1.26191 + 4.63842i −0.108608 + 0.399211i
\(136\) 0 0
\(137\) −3.13581 3.13581i −0.267910 0.267910i 0.560347 0.828258i \(-0.310668\pi\)
−0.828258 + 0.560347i \(0.810668\pi\)
\(138\) 0 0
\(139\) −2.47875 12.4615i −0.210245 1.05697i −0.931344 0.364140i \(-0.881363\pi\)
0.721100 0.692831i \(-0.243637\pi\)
\(140\) 0 0
\(141\) 0.360046 0.538847i 0.0303214 0.0453791i
\(142\) 0 0
\(143\) −2.21382 0.440356i −0.185129 0.0368244i
\(144\) 0 0
\(145\) −10.5456 8.15626i −0.875767 0.677341i
\(146\) 0 0
\(147\) 2.11921 1.41601i 0.174790 0.116791i
\(148\) 0 0
\(149\) 12.0150 + 12.0150i 0.984307 + 0.984307i 0.999879 0.0155714i \(-0.00495672\pi\)
−0.0155714 + 0.999879i \(0.504957\pi\)
\(150\) 0 0
\(151\) −4.01773 + 9.69966i −0.326958 + 0.789347i 0.671857 + 0.740681i \(0.265497\pi\)
−0.998815 + 0.0486659i \(0.984503\pi\)
\(152\) 0 0
\(153\) −9.83977 + 6.54102i −0.795498 + 0.528810i
\(154\) 0 0
\(155\) −20.3861 + 2.60454i −1.63745 + 0.209202i
\(156\) 0 0
\(157\) 12.4709i 0.995286i −0.867382 0.497643i \(-0.834199\pi\)
0.867382 0.497643i \(-0.165801\pi\)
\(158\) 0 0
\(159\) −0.771962 + 3.88091i −0.0612205 + 0.307776i
\(160\) 0 0
\(161\) 0.121679 + 0.293759i 0.00958965 + 0.0231515i
\(162\) 0 0
\(163\) 3.96915 19.9543i 0.310888 1.56294i −0.437215 0.899357i \(-0.644035\pi\)
0.748103 0.663583i \(-0.230965\pi\)
\(164\) 0 0
\(165\) 1.95169 1.69841i 0.151939 0.132221i
\(166\) 0 0
\(167\) −0.575887 + 0.861876i −0.0445635 + 0.0666940i −0.853082 0.521776i \(-0.825270\pi\)
0.808519 + 0.588470i \(0.200270\pi\)
\(168\) 0 0
\(169\) 12.4888 0.960678
\(170\) 0 0
\(171\) −14.2943 −1.09311
\(172\) 0 0
\(173\) 14.2056 21.2601i 1.08003 1.61638i 0.344636 0.938736i \(-0.388002\pi\)
0.735393 0.677641i \(-0.236998\pi\)
\(174\) 0 0
\(175\) 0.351110 1.00890i 0.0265414 0.0762655i
\(176\) 0 0
\(177\) 1.03202 5.18832i 0.0775714 0.389978i
\(178\) 0 0
\(179\) −3.87179 9.34732i −0.289391 0.698651i 0.710597 0.703599i \(-0.248425\pi\)
−0.999988 + 0.00494798i \(0.998425\pi\)
\(180\) 0 0
\(181\) −1.95886 + 9.84785i −0.145601 + 0.731985i 0.837139 + 0.546990i \(0.184227\pi\)
−0.982740 + 0.184994i \(0.940773\pi\)
\(182\) 0 0
\(183\) 3.81033i 0.281667i
\(184\) 0 0
\(185\) −5.55334 + 7.18018i −0.408290 + 0.527898i
\(186\) 0 0
\(187\) 13.0166 + 0.0308741i 0.951871 + 0.00225774i
\(188\) 0 0
\(189\) −0.175765 + 0.424334i −0.0127850 + 0.0308657i
\(190\) 0 0
\(191\) 8.70008 + 8.70008i 0.629516 + 0.629516i 0.947946 0.318430i \(-0.103156\pi\)
−0.318430 + 0.947946i \(0.603156\pi\)
\(192\) 0 0
\(193\) 10.2967 6.88005i 0.741175 0.495237i −0.126749 0.991935i \(-0.540454\pi\)
0.867924 + 0.496698i \(0.165454\pi\)
\(194\) 0 0
\(195\) 0.358471 0.463484i 0.0256706 0.0331908i
\(196\) 0 0
\(197\) −18.2417 3.62850i −1.29967 0.258520i −0.503710 0.863873i \(-0.668032\pi\)
−0.795957 + 0.605353i \(0.793032\pi\)
\(198\) 0 0
\(199\) 1.36562 2.04379i 0.0968061 0.144880i −0.779905 0.625898i \(-0.784733\pi\)
0.876711 + 0.481017i \(0.159733\pi\)
\(200\) 0 0
\(201\) −0.511268 2.57032i −0.0360621 0.181296i
\(202\) 0 0
\(203\) −0.900717 0.900717i −0.0632180 0.0632180i
\(204\) 0 0
\(205\) 2.69617 1.54291i 0.188309 0.107761i
\(206\) 0 0
\(207\) 3.54607 + 2.36941i 0.246469 + 0.164685i
\(208\) 0 0
\(209\) 13.0935 + 8.74880i 0.905697 + 0.605167i
\(210\) 0 0
\(211\) −5.61721 8.40675i −0.386705 0.578744i 0.586138 0.810211i \(-0.300648\pi\)
−0.972843 + 0.231467i \(0.925648\pi\)
\(212\) 0 0
\(213\) −1.96302 + 4.73915i −0.134504 + 0.324721i
\(214\) 0 0
\(215\) 13.1567 + 6.55090i 0.897282 + 0.446768i
\(216\) 0 0
\(217\) −1.96366 −0.133302
\(218\) 0 0
\(219\) −1.76057 0.729251i −0.118968 0.0492782i
\(220\) 0 0
\(221\) 2.89264 0.568252i 0.194580 0.0382248i
\(222\) 0 0
\(223\) −6.00934 + 2.48915i −0.402415 + 0.166686i −0.574705 0.818360i \(-0.694883\pi\)
0.172290 + 0.985046i \(0.444883\pi\)
\(224\) 0 0
\(225\) −3.60241 13.8681i −0.240161 0.924543i
\(226\) 0 0
\(227\) −4.71714 7.05969i −0.313087 0.468568i 0.641236 0.767344i \(-0.278422\pi\)
−0.954323 + 0.298775i \(0.903422\pi\)
\(228\) 0 0
\(229\) 15.1257 6.26528i 0.999536 0.414021i 0.177909 0.984047i \(-0.443067\pi\)
0.821627 + 0.570025i \(0.193067\pi\)
\(230\) 0 0
\(231\) 0.205540 0.137337i 0.0135235 0.00903613i
\(232\) 0 0
\(233\) 15.4108 3.06540i 1.00959 0.200821i 0.337531 0.941314i \(-0.390408\pi\)
0.672063 + 0.740494i \(0.265408\pi\)
\(234\) 0 0
\(235\) −0.273701 + 3.94448i −0.0178543 + 0.257310i
\(236\) 0 0
\(237\) −0.901304 + 0.901304i −0.0585460 + 0.0585460i
\(238\) 0 0
\(239\) 7.99538i 0.517178i 0.965987 + 0.258589i \(0.0832575\pi\)
−0.965987 + 0.258589i \(0.916742\pi\)
\(240\) 0 0
\(241\) 22.1394 4.40380i 1.42613 0.283674i 0.579113 0.815247i \(-0.303399\pi\)
0.847012 + 0.531573i \(0.178399\pi\)
\(242\) 0 0
\(243\) 1.81655 + 9.13240i 0.116532 + 0.585844i
\(244\) 0 0
\(245\) −6.93110 + 13.9203i −0.442812 + 0.889336i
\(246\) 0 0
\(247\) 3.29489 + 1.36479i 0.209649 + 0.0868395i
\(248\) 0 0
\(249\) −1.10129 0.219060i −0.0697912 0.0138823i
\(250\) 0 0
\(251\) −4.52118 + 4.52118i −0.285374 + 0.285374i −0.835248 0.549874i \(-0.814676\pi\)
0.549874 + 0.835248i \(0.314676\pi\)
\(252\) 0 0
\(253\) −1.79800 4.34075i −0.113039 0.272901i
\(254\) 0 0
\(255\) −1.51323 + 3.02116i −0.0947619 + 0.189192i
\(256\) 0 0
\(257\) 7.61837 + 18.3924i 0.475221 + 1.14729i 0.961826 + 0.273663i \(0.0882352\pi\)
−0.486605 + 0.873622i \(0.661765\pi\)
\(258\) 0 0
\(259\) −0.613270 + 0.613270i −0.0381067 + 0.0381067i
\(260\) 0 0
\(261\) −16.7573 3.33323i −1.03725 0.206322i
\(262\) 0 0
\(263\) 1.02175 + 0.423221i 0.0630035 + 0.0260969i 0.413963 0.910294i \(-0.364144\pi\)
−0.350959 + 0.936391i \(0.614144\pi\)
\(264\) 0 0
\(265\) −7.67264 22.8903i −0.471327 1.40614i
\(266\) 0 0
\(267\) 0.478665 + 2.40641i 0.0292938 + 0.147270i
\(268\) 0 0
\(269\) −4.10222 + 0.815983i −0.250117 + 0.0497514i −0.318556 0.947904i \(-0.603198\pi\)
0.0684394 + 0.997655i \(0.478198\pi\)
\(270\) 0 0
\(271\) 1.66787i 0.101316i −0.998716 0.0506580i \(-0.983868\pi\)
0.998716 0.0506580i \(-0.0161318\pi\)
\(272\) 0 0
\(273\) 0.0395868 0.0395868i 0.00239590 0.00239590i
\(274\) 0 0
\(275\) −5.18820 + 14.9081i −0.312860 + 0.898990i
\(276\) 0 0
\(277\) 12.9415 2.57423i 0.777580 0.154670i 0.209683 0.977770i \(-0.432757\pi\)
0.567898 + 0.823099i \(0.307757\pi\)
\(278\) 0 0
\(279\) −21.8997 + 14.6329i −1.31110 + 0.876051i
\(280\) 0 0
\(281\) 8.15533 3.37805i 0.486506 0.201517i −0.125927 0.992039i \(-0.540191\pi\)
0.612434 + 0.790522i \(0.290191\pi\)
\(282\) 0 0
\(283\) −12.9056 19.3146i −0.767159 1.14813i −0.985068 0.172165i \(-0.944924\pi\)
0.217909 0.975969i \(-0.430076\pi\)
\(284\) 0 0
\(285\) −3.54794 + 2.03034i −0.210162 + 0.120267i
\(286\) 0 0
\(287\) 0.274217 0.113584i 0.0161865 0.00670467i
\(288\) 0 0
\(289\) −15.7366 + 6.43104i −0.925684 + 0.378296i
\(290\) 0 0
\(291\) −2.03805 0.844190i −0.119473 0.0494873i
\(292\) 0 0
\(293\) −17.9425 −1.04821 −0.524107 0.851653i \(-0.675601\pi\)
−0.524107 + 0.851653i \(0.675601\pi\)
\(294\) 0 0
\(295\) 10.2574 + 30.6016i 0.597209 + 1.78170i
\(296\) 0 0
\(297\) 2.59720 6.27020i 0.150705 0.363834i
\(298\) 0 0
\(299\) −0.591160 0.884733i −0.0341876 0.0511654i
\(300\) 0 0
\(301\) 1.16763 + 0.780184i 0.0673010 + 0.0449691i
\(302\) 0 0
\(303\) 0.0417938 + 0.0279258i 0.00240099 + 0.00160429i
\(304\) 0 0
\(305\) 11.5466 + 20.1772i 0.661156 + 1.15534i
\(306\) 0 0
\(307\) 17.4618 + 17.4618i 0.996596 + 0.996596i 0.999994 0.00339870i \(-0.00108184\pi\)
−0.00339870 + 0.999994i \(0.501082\pi\)
\(308\) 0 0
\(309\) −1.21334 6.09989i −0.0690247 0.347011i
\(310\) 0 0
\(311\) −15.9963 + 23.9402i −0.907067 + 1.35752i 0.0267010 + 0.999643i \(0.491500\pi\)
−0.933768 + 0.357878i \(0.883500\pi\)
\(312\) 0 0
\(313\) −12.9263 2.57120i −0.730638 0.145333i −0.184267 0.982876i \(-0.558991\pi\)
−0.546371 + 0.837543i \(0.683991\pi\)
\(314\) 0 0
\(315\) −0.173499 1.35800i −0.00977555 0.0765145i
\(316\) 0 0
\(317\) 4.58967 3.06672i 0.257781 0.172244i −0.419964 0.907541i \(-0.637957\pi\)
0.677745 + 0.735297i \(0.262957\pi\)
\(318\) 0 0
\(319\) 13.3095 + 13.3095i 0.745190 + 0.745190i
\(320\) 0 0
\(321\) 0.725563 1.75167i 0.0404970 0.0977684i
\(322\) 0 0
\(323\) −20.1617 4.06014i −1.12182 0.225912i
\(324\) 0 0
\(325\) −0.493733 + 3.54063i −0.0273874 + 0.196399i
\(326\) 0 0
\(327\) 2.35087i 0.130004i
\(328\) 0 0
\(329\) −0.0737031 + 0.370530i −0.00406338 + 0.0204280i
\(330\) 0 0
\(331\) 1.40867 + 3.40083i 0.0774274 + 0.186926i 0.957854 0.287257i \(-0.0927434\pi\)
−0.880426 + 0.474183i \(0.842743\pi\)
\(332\) 0 0
\(333\) −2.26949 + 11.4095i −0.124367 + 0.625236i
\(334\) 0 0
\(335\) 10.4963 + 12.0616i 0.573475 + 0.658994i
\(336\) 0 0
\(337\) 2.71279 4.05997i 0.147775 0.221161i −0.750196 0.661215i \(-0.770041\pi\)
0.897971 + 0.440055i \(0.145041\pi\)
\(338\) 0 0
\(339\) −1.57073 −0.0853102
\(340\) 0 0
\(341\) 29.0162 1.57132
\(342\) 0 0
\(343\) −1.65635 + 2.47890i −0.0894342 + 0.133848i
\(344\) 0 0
\(345\) 1.21671 + 0.0844254i 0.0655055 + 0.00454531i
\(346\) 0 0
\(347\) −3.75381 + 18.8717i −0.201515 + 1.01309i 0.739096 + 0.673600i \(0.235253\pi\)
−0.940611 + 0.339486i \(0.889747\pi\)
\(348\) 0 0
\(349\) −8.60216 20.7675i −0.460463 1.11166i −0.968207 0.250149i \(-0.919521\pi\)
0.507744 0.861508i \(-0.330479\pi\)
\(350\) 0 0
\(351\) 0.299859 1.50750i 0.0160053 0.0804641i
\(352\) 0 0
\(353\) 25.9994i 1.38381i 0.721990 + 0.691903i \(0.243228\pi\)
−0.721990 + 0.691903i \(0.756772\pi\)
\(354\) 0 0
\(355\) −3.96625 31.0443i −0.210507 1.64766i
\(356\) 0 0
\(357\) −0.180001 + 0.268012i −0.00952666 + 0.0141847i
\(358\) 0 0
\(359\) −5.43081 + 13.1111i −0.286627 + 0.691980i −0.999961 0.00884497i \(-0.997185\pi\)
0.713333 + 0.700825i \(0.247185\pi\)
\(360\) 0 0
\(361\) −4.15850 4.15850i −0.218868 0.218868i
\(362\) 0 0
\(363\) 0.314878 0.210394i 0.0165268 0.0110428i
\(364\) 0 0
\(365\) 11.5328 1.47344i 0.603655 0.0771234i
\(366\) 0 0
\(367\) −14.3779 2.85995i −0.750521 0.149288i −0.195015 0.980800i \(-0.562476\pi\)
−0.555506 + 0.831512i \(0.687476\pi\)
\(368\) 0 0
\(369\) 2.21179 3.31017i 0.115141 0.172321i
\(370\) 0 0
\(371\) −0.450014 2.26237i −0.0233636 0.117457i
\(372\) 0 0
\(373\) 22.5092 + 22.5092i 1.16548 + 1.16548i 0.983256 + 0.182228i \(0.0583310\pi\)
0.182228 + 0.983256i \(0.441669\pi\)
\(374\) 0 0
\(375\) −2.86396 2.93050i −0.147894 0.151330i
\(376\) 0 0
\(377\) 3.54438 + 2.36828i 0.182545 + 0.121972i
\(378\) 0 0
\(379\) 13.2509 + 8.85395i 0.680651 + 0.454797i 0.847226 0.531232i \(-0.178271\pi\)
−0.166575 + 0.986029i \(0.553271\pi\)
\(380\) 0 0
\(381\) 1.10273 + 1.65035i 0.0564944 + 0.0845498i
\(382\) 0 0
\(383\) 10.0191 24.1883i 0.511953 1.23596i −0.430793 0.902451i \(-0.641766\pi\)
0.942746 0.333512i \(-0.108234\pi\)
\(384\) 0 0
\(385\) −0.672238 + 1.35011i −0.0342604 + 0.0688081i
\(386\) 0 0
\(387\) 18.8358 0.957476
\(388\) 0 0
\(389\) 27.6421 + 11.4497i 1.40151 + 0.580524i 0.950143 0.311815i \(-0.100937\pi\)
0.451366 + 0.892339i \(0.350937\pi\)
\(390\) 0 0
\(391\) 4.32863 + 4.34921i 0.218908 + 0.219949i
\(392\) 0 0
\(393\) −4.69025 + 1.94276i −0.236592 + 0.0979995i
\(394\) 0 0
\(395\) 2.04151 7.50403i 0.102720 0.377569i
\(396\) 0 0
\(397\) 19.0599 + 28.5252i 0.956591 + 1.43164i 0.901313 + 0.433168i \(0.142604\pi\)
0.0552774 + 0.998471i \(0.482396\pi\)
\(398\) 0 0
\(399\) −0.360847 + 0.149468i −0.0180649 + 0.00748274i
\(400\) 0 0
\(401\) 4.67166 3.12150i 0.233292 0.155881i −0.433430 0.901187i \(-0.642697\pi\)
0.666722 + 0.745307i \(0.267697\pi\)
\(402\) 0 0
\(403\) 6.44512 1.28201i 0.321054 0.0638616i
\(404\) 0 0
\(405\) −11.4630 13.1724i −0.569603 0.654544i
\(406\) 0 0
\(407\) 9.06202 9.06202i 0.449188 0.449188i
\(408\) 0 0
\(409\) 2.64200i 0.130639i 0.997864 + 0.0653193i \(0.0208066\pi\)
−0.997864 + 0.0653193i \(0.979193\pi\)
\(410\) 0 0
\(411\) −1.59408 + 0.317082i −0.0786302 + 0.0156405i
\(412\) 0 0
\(413\) 0.601615 + 3.02452i 0.0296035 + 0.148827i
\(414\) 0 0
\(415\) 6.49559 2.17727i 0.318856 0.106878i
\(416\) 0 0
\(417\) −4.30213 1.78200i −0.210676 0.0872649i
\(418\) 0 0
\(419\) −15.6573 3.11444i −0.764911 0.152150i −0.202809 0.979218i \(-0.565007\pi\)
−0.562102 + 0.827068i \(0.690007\pi\)
\(420\) 0 0
\(421\) 9.77083 9.77083i 0.476201 0.476201i −0.427713 0.903915i \(-0.640681\pi\)
0.903915 + 0.427713i \(0.140681\pi\)
\(422\) 0 0
\(423\) 1.93917 + 4.68156i 0.0942855 + 0.227625i
\(424\) 0 0
\(425\) −1.14200 20.5839i −0.0553949 0.998465i
\(426\) 0 0
\(427\) 0.850026 + 2.05214i 0.0411356 + 0.0993102i
\(428\) 0 0
\(429\) −0.584958 + 0.584958i −0.0282420 + 0.0282420i
\(430\) 0 0
\(431\) −23.5888 4.69210i −1.13623 0.226010i −0.409087 0.912495i \(-0.634153\pi\)
−0.727144 + 0.686485i \(0.759153\pi\)
\(432\) 0 0
\(433\) 30.2129 + 12.5146i 1.45194 + 0.601412i 0.962659 0.270715i \(-0.0872602\pi\)
0.489278 + 0.872128i \(0.337260\pi\)
\(434\) 0 0
\(435\) −4.63273 + 1.55285i −0.222122 + 0.0744535i
\(436\) 0 0
\(437\) 1.44825 + 7.28084i 0.0692792 + 0.348290i
\(438\) 0 0
\(439\) −24.4788 + 4.86914i −1.16831 + 0.232392i −0.740868 0.671651i \(-0.765586\pi\)
−0.427443 + 0.904042i \(0.640586\pi\)
\(440\) 0 0
\(441\) 19.9289i 0.948997i
\(442\) 0 0
\(443\) −28.4943 + 28.4943i −1.35381 + 1.35381i −0.472448 + 0.881358i \(0.656630\pi\)
−0.881358 + 0.472448i \(0.843370\pi\)
\(444\) 0 0
\(445\) −9.82697 11.2924i −0.465843 0.535311i
\(446\) 0 0
\(447\) 6.10779 1.21492i 0.288889 0.0574635i
\(448\) 0 0
\(449\) −5.00378 + 3.34342i −0.236143 + 0.157786i −0.668012 0.744151i \(-0.732854\pi\)
0.431869 + 0.901937i \(0.357854\pi\)
\(450\) 0 0
\(451\) −4.05198 + 1.67839i −0.190800 + 0.0790321i
\(452\) 0 0
\(453\) 2.13772 + 3.19933i 0.100439 + 0.150318i
\(454\) 0 0
\(455\) −0.0896668 + 0.329590i −0.00420365 + 0.0154514i
\(456\) 0 0
\(457\) −33.1823 + 13.7446i −1.55220 + 0.642944i −0.983713 0.179746i \(-0.942472\pi\)
−0.568491 + 0.822690i \(0.692472\pi\)
\(458\) 0 0
\(459\) −0.0210237 + 8.86366i −0.000981301 + 0.413720i
\(460\) 0 0
\(461\) 5.00522 + 2.07323i 0.233116 + 0.0965599i 0.496184 0.868218i \(-0.334734\pi\)
−0.263068 + 0.964777i \(0.584734\pi\)
\(462\) 0 0
\(463\) 36.5808 1.70005 0.850027 0.526739i \(-0.176585\pi\)
0.850027 + 0.526739i \(0.176585\pi\)
\(464\) 0 0
\(465\) −3.35723 + 6.74262i −0.155688 + 0.312681i
\(466\) 0 0
\(467\) 4.15531 10.0318i 0.192285 0.464217i −0.798105 0.602518i \(-0.794164\pi\)
0.990390 + 0.138301i \(0.0441642\pi\)
\(468\) 0 0
\(469\) 0.848756 + 1.27025i 0.0391919 + 0.0586548i
\(470\) 0 0
\(471\) −3.80028 2.53927i −0.175108 0.117003i
\(472\) 0 0
\(473\) −17.2535 11.5284i −0.793319 0.530079i
\(474\) 0 0
\(475\) 12.6352 21.5030i 0.579742 0.986623i
\(476\) 0 0
\(477\) −21.8777 21.8777i −1.00171 1.00171i
\(478\) 0 0
\(479\) 0.139646 + 0.702046i 0.00638057 + 0.0320773i 0.983844 0.179026i \(-0.0572945\pi\)
−0.977464 + 0.211103i \(0.932294\pi\)
\(480\) 0 0
\(481\) 1.61248 2.41325i 0.0735229 0.110035i
\(482\) 0 0
\(483\) 0.114293 + 0.0227344i 0.00520053 + 0.00103445i
\(484\) 0 0
\(485\) 13.3505 1.70567i 0.606216 0.0774506i
\(486\) 0 0
\(487\) −12.3264 + 8.23626i −0.558564 + 0.373221i −0.802574 0.596552i \(-0.796537\pi\)
0.244010 + 0.969773i \(0.421537\pi\)
\(488\) 0 0
\(489\) −5.27253 5.27253i −0.238432 0.238432i
\(490\) 0 0
\(491\) 7.12490 17.2010i 0.321542 0.776272i −0.677623 0.735410i \(-0.736990\pi\)
0.999165 0.0408619i \(-0.0130104\pi\)
\(492\) 0 0
\(493\) −22.6889 9.46115i −1.02186 0.426109i
\(494\) 0 0
\(495\) 2.56372 + 20.0665i 0.115231 + 0.901924i
\(496\) 0 0
\(497\) 2.99030i 0.134133i
\(498\) 0 0
\(499\) 8.09099 40.6762i 0.362203 1.82092i −0.183599 0.983001i \(-0.558775\pi\)
0.545802 0.837914i \(-0.316225\pi\)
\(500\) 0 0
\(501\) 0.145382 + 0.350982i 0.00649517 + 0.0156807i
\(502\) 0 0
\(503\) 4.16599 20.9439i 0.185752 0.933841i −0.769635 0.638484i \(-0.779562\pi\)
0.955387 0.295356i \(-0.0954383\pi\)
\(504\) 0 0
\(505\) −0.305940 0.0212286i −0.0136142 0.000944662i
\(506\) 0 0
\(507\) 2.54291 3.80574i 0.112935 0.169019i
\(508\) 0 0
\(509\) −9.69310 −0.429639 −0.214820 0.976654i \(-0.568916\pi\)
−0.214820 + 0.976654i \(0.568916\pi\)
\(510\) 0 0
\(511\) 1.11088 0.0491425
\(512\) 0 0
\(513\) −5.95748 + 8.91600i −0.263029 + 0.393651i
\(514\) 0 0
\(515\) 24.9099 + 28.6246i 1.09766 + 1.26135i
\(516\) 0 0
\(517\) 1.08908 5.47517i 0.0478976 0.240798i
\(518\) 0 0
\(519\) −3.58617 8.65778i −0.157415 0.380034i
\(520\) 0 0
\(521\) 2.36122 11.8707i 0.103447 0.520063i −0.893963 0.448140i \(-0.852086\pi\)
0.997410 0.0719228i \(-0.0229135\pi\)
\(522\) 0 0
\(523\) 0.482638i 0.0211043i −0.999944 0.0105521i \(-0.996641\pi\)
0.999944 0.0105521i \(-0.00335891\pi\)
\(524\) 0 0
\(525\) −0.235952 0.312422i −0.0102978 0.0136352i
\(526\) 0 0
\(527\) −35.0453 + 14.4190i −1.52660 + 0.628099i
\(528\) 0 0
\(529\) −7.95413 + 19.2030i −0.345832 + 0.834911i
\(530\) 0 0
\(531\) 29.2478 + 29.2478i 1.26925 + 1.26925i
\(532\) 0 0
\(533\) −0.825876 + 0.551833i −0.0357727 + 0.0239025i
\(534\) 0 0
\(535\) 1.46599 + 11.4745i 0.0633802 + 0.496085i
\(536\) 0 0
\(537\) −3.63678 0.723401i −0.156939 0.0312171i
\(538\) 0 0
\(539\) 12.1975 18.2549i 0.525384 0.786293i
\(540\) 0 0
\(541\) −3.94954 19.8557i −0.169804 0.853661i −0.967939 0.251184i \(-0.919180\pi\)
0.798136 0.602478i \(-0.205820\pi\)
\(542\) 0 0
\(543\) 2.60210 + 2.60210i 0.111667 + 0.111667i
\(544\) 0 0
\(545\) −7.12395 12.4488i −0.305156 0.533249i
\(546\) 0 0
\(547\) −7.87301 5.26058i −0.336626 0.224926i 0.375755 0.926719i \(-0.377383\pi\)
−0.712381 + 0.701793i \(0.752383\pi\)
\(548\) 0 0
\(549\) 24.7722 + 16.5522i 1.05725 + 0.706433i
\(550\) 0 0
\(551\) −16.5224 24.7276i −0.703880 1.05343i
\(552\) 0 0
\(553\) 0.284352 0.686486i 0.0120919 0.0291924i
\(554\) 0 0
\(555\) 1.05729 + 3.15428i 0.0448793 + 0.133892i
\(556\) 0 0
\(557\) −33.3761 −1.41419 −0.707096 0.707117i \(-0.749995\pi\)
−0.707096 + 0.707117i \(0.749995\pi\)
\(558\) 0 0
\(559\) −4.34174 1.79841i −0.183636 0.0760645i
\(560\) 0 0
\(561\) 2.65980 3.96030i 0.112297 0.167204i
\(562\) 0 0
\(563\) −3.68426 + 1.52607i −0.155273 + 0.0643162i −0.458966 0.888454i \(-0.651780\pi\)
0.303693 + 0.952770i \(0.401780\pi\)
\(564\) 0 0
\(565\) 8.31764 4.75984i 0.349926 0.200248i
\(566\) 0 0
\(567\) −0.926926 1.38724i −0.0389272 0.0582587i
\(568\) 0 0
\(569\) 5.98773 2.48020i 0.251019 0.103975i −0.253626 0.967302i \(-0.581623\pi\)
0.504645 + 0.863327i \(0.331623\pi\)
\(570\) 0 0
\(571\) 30.1443 20.1418i 1.26150 0.842907i 0.268762 0.963207i \(-0.413386\pi\)
0.992738 + 0.120300i \(0.0383855\pi\)
\(572\) 0 0
\(573\) 4.42266 0.879722i 0.184759 0.0367509i
\(574\) 0 0
\(575\) −6.69882 + 3.23998i −0.279360 + 0.135117i
\(576\) 0 0
\(577\) 25.4339 25.4339i 1.05883 1.05883i 0.0606679 0.998158i \(-0.480677\pi\)
0.998158 0.0606679i \(-0.0193231\pi\)
\(578\) 0 0
\(579\) 4.53863i 0.188619i
\(580\) 0 0
\(581\) 0.641994 0.127701i 0.0266344 0.00529791i
\(582\) 0 0
\(583\) 6.64967 + 33.4301i 0.275401 + 1.38453i
\(584\) 0 0
\(585\) 1.45605 + 4.34393i 0.0602002 + 0.179600i
\(586\) 0 0
\(587\) −19.6419 8.13595i −0.810709 0.335807i −0.0614721 0.998109i \(-0.519580\pi\)
−0.749237 + 0.662302i \(0.769580\pi\)
\(588\) 0 0
\(589\) −44.9648 8.94406i −1.85274 0.368533i
\(590\) 0 0
\(591\) −4.82001 + 4.82001i −0.198269 + 0.198269i
\(592\) 0 0
\(593\) −5.95021 14.3651i −0.244346 0.589903i 0.753359 0.657609i \(-0.228432\pi\)
−0.997705 + 0.0677057i \(0.978432\pi\)
\(594\) 0 0
\(595\) 0.141010 1.96470i 0.00578085 0.0805448i
\(596\) 0 0
\(597\) −0.344748 0.832294i −0.0141096 0.0340635i
\(598\) 0 0
\(599\) 31.7543 31.7543i 1.29744 1.29744i 0.367368 0.930076i \(-0.380259\pi\)
0.930076 0.367368i \(-0.119741\pi\)
\(600\) 0 0
\(601\) −6.59373 1.31157i −0.268964 0.0535002i 0.0587658 0.998272i \(-0.481283\pi\)
−0.327730 + 0.944772i \(0.606283\pi\)
\(602\) 0 0
\(603\) 18.9315 + 7.84168i 0.770950 + 0.319338i
\(604\) 0 0
\(605\) −1.02984 + 2.06831i −0.0418689 + 0.0840888i
\(606\) 0 0
\(607\) −4.05210 20.3713i −0.164470 0.826845i −0.971629 0.236511i \(-0.923996\pi\)
0.807159 0.590334i \(-0.201004\pi\)
\(608\) 0 0
\(609\) −0.457877 + 0.0910775i −0.0185541 + 0.00369064i
\(610\) 0 0
\(611\) 1.26427i 0.0511469i
\(612\) 0 0
\(613\) −12.2026 + 12.2026i −0.492858 + 0.492858i −0.909206 0.416348i \(-0.863310\pi\)
0.416348 + 0.909206i \(0.363310\pi\)
\(614\) 0 0
\(615\) 0.0788090 1.13577i 0.00317789 0.0457986i
\(616\) 0 0
\(617\) −24.4757 + 4.86852i −0.985354 + 0.195999i −0.661367 0.750062i \(-0.730023\pi\)
−0.323987 + 0.946061i \(0.605023\pi\)
\(618\) 0 0
\(619\) −4.39049 + 2.93363i −0.176469 + 0.117913i −0.640668 0.767818i \(-0.721342\pi\)
0.464199 + 0.885731i \(0.346342\pi\)
\(620\) 0 0
\(621\) 2.95583 1.22434i 0.118613 0.0491312i
\(622\) 0 0
\(623\) −0.794631 1.18925i −0.0318362 0.0476462i
\(624\) 0 0
\(625\) 24.0463 + 6.83940i 0.961850 + 0.273576i
\(626\) 0 0
\(627\) 5.33208 2.20862i 0.212943 0.0882038i
\(628\) 0 0
\(629\) −6.44180 + 15.4481i −0.256851 + 0.615958i
\(630\) 0 0
\(631\) −0.510927 0.211633i −0.0203397 0.00842496i 0.372490 0.928036i \(-0.378504\pi\)
−0.392830 + 0.919611i \(0.628504\pi\)
\(632\) 0 0
\(633\) −3.70555 −0.147283
\(634\) 0 0
\(635\) −10.8405 5.39762i −0.430192 0.214198i
\(636\) 0 0
\(637\) 1.90278 4.59372i 0.0753909 0.182010i
\(638\) 0 0
\(639\) −22.2833 33.3493i −0.881514 1.31928i
\(640\) 0 0
\(641\) −0.975837 0.652033i −0.0385432 0.0257538i 0.536149 0.844123i \(-0.319878\pi\)
−0.574693 + 0.818369i \(0.694878\pi\)
\(642\) 0 0
\(643\) 34.2475 + 22.8834i 1.35059 + 0.902434i 0.999426 0.0338804i \(-0.0107865\pi\)
0.351162 + 0.936315i \(0.385787\pi\)
\(644\) 0 0
\(645\) 4.67518 2.67541i 0.184085 0.105344i
\(646\) 0 0
\(647\) −31.8920 31.8920i −1.25380 1.25380i −0.954001 0.299803i \(-0.903079\pi\)
−0.299803 0.954001i \(-0.596921\pi\)
\(648\) 0 0
\(649\) −8.88981 44.6921i −0.348956 1.75432i
\(650\) 0 0
\(651\) −0.399832 + 0.598391i −0.0156707 + 0.0234528i
\(652\) 0 0
\(653\) −9.37037 1.86388i −0.366691 0.0729394i 0.00830571 0.999966i \(-0.497356\pi\)
−0.374997 + 0.927026i \(0.622356\pi\)
\(654\) 0 0
\(655\) 18.9495 24.5008i 0.740420 0.957325i
\(656\) 0 0
\(657\) 12.3891 8.27813i 0.483345 0.322961i
\(658\) 0 0
\(659\) −10.6988 10.6988i −0.416765 0.416765i 0.467322 0.884087i \(-0.345219\pi\)
−0.884087 + 0.467322i \(0.845219\pi\)
\(660\) 0 0
\(661\) −6.12835 + 14.7952i −0.238365 + 0.575465i −0.997114 0.0759186i \(-0.975811\pi\)
0.758749 + 0.651384i \(0.225811\pi\)
\(662\) 0 0
\(663\) 0.415821 0.997184i 0.0161491 0.0387274i
\(664\) 0 0
\(665\) 1.45789 1.88498i 0.0565347 0.0730965i
\(666\) 0 0
\(667\) 8.87310i 0.343568i
\(668\) 0 0
\(669\) −0.465070 + 2.33807i −0.0179807 + 0.0903949i
\(670\) 0 0
\(671\) −12.5605 30.3237i −0.484892 1.17063i
\(672\) 0 0
\(673\) −8.15674 + 41.0067i −0.314419 + 1.58069i 0.423560 + 0.905868i \(0.360780\pi\)
−0.737979 + 0.674823i \(0.764220\pi\)
\(674\) 0 0
\(675\) −10.1516 3.53290i −0.390736 0.135981i
\(676\) 0 0
\(677\) −7.12682 + 10.6660i −0.273906 + 0.409929i −0.942764 0.333461i \(-0.891783\pi\)
0.668858 + 0.743390i \(0.266783\pi\)
\(678\) 0 0
\(679\) 1.28597 0.0493510
\(680\) 0 0
\(681\) −3.11180 −0.119244
\(682\) 0 0
\(683\) −7.84481 + 11.7406i −0.300173 + 0.449241i −0.950641 0.310293i \(-0.899573\pi\)
0.650468 + 0.759534i \(0.274573\pi\)
\(684\) 0 0
\(685\) 7.48044 6.50969i 0.285813 0.248723i
\(686\) 0 0
\(687\) 1.17060 5.88500i 0.0446612 0.224527i
\(688\) 0 0
\(689\) 2.95407 + 7.13175i 0.112541 + 0.271698i
\(690\) 0 0
\(691\) −4.77936 + 24.0275i −0.181815 + 0.914047i 0.776888 + 0.629639i \(0.216797\pi\)
−0.958703 + 0.284408i \(0.908203\pi\)
\(692\) 0 0
\(693\) 1.93288i 0.0734242i
\(694\) 0 0
\(695\) 28.1816 3.60050i 1.06899 0.136575i
\(696\) 0 0
\(697\) 4.05988 4.04067i 0.153779 0.153051i
\(698\) 0 0
\(699\) 2.20375 5.32032i 0.0833534 0.201233i
\(700\) 0 0
\(701\) −7.61190 7.61190i −0.287497 0.287497i 0.548592 0.836090i \(-0.315164\pi\)
−0.836090 + 0.548592i \(0.815164\pi\)
\(702\) 0 0
\(703\) −16.8362 + 11.2496i −0.634990 + 0.424287i
\(704\) 0 0
\(705\) 1.14628 + 0.886562i 0.0431714 + 0.0333899i
\(706\) 0 0
\(707\) −0.0287389 0.00571653i −0.00108084 0.000214992i
\(708\) 0 0
\(709\) 13.3104 19.9204i 0.499882 0.748127i −0.492634 0.870236i \(-0.663966\pi\)
0.992517 + 0.122110i \(0.0389660\pi\)
\(710\) 0 0
\(711\) −1.94437 9.77498i −0.0729194 0.366591i
\(712\) 0 0
\(713\) 9.67216 + 9.67216i 0.362225 + 0.362225i
\(714\) 0 0
\(715\) 1.32497 4.87021i 0.0495510 0.182136i
\(716\) 0 0
\(717\) 2.43645 + 1.62798i 0.0909908 + 0.0607981i
\(718\) 0 0
\(719\) 2.45078 + 1.63756i 0.0913986 + 0.0610706i 0.600430 0.799677i \(-0.294996\pi\)
−0.509031 + 0.860748i \(0.669996\pi\)
\(720\) 0 0
\(721\) 2.01427 + 3.01457i 0.0750154 + 0.112268i
\(722\) 0 0
\(723\) 3.16595 7.64327i 0.117743 0.284256i
\(724\) 0 0
\(725\) 19.8265 22.2617i 0.736338 0.826780i
\(726\) 0 0
\(727\) 31.3857 1.16403 0.582015 0.813178i \(-0.302265\pi\)
0.582015 + 0.813178i \(0.302265\pi\)
\(728\) 0 0
\(729\) −18.4913 7.65937i −0.684865 0.283680i
\(730\) 0 0
\(731\) 26.5674 + 5.35011i 0.982629 + 0.197881i
\(732\) 0 0
\(733\) −34.3242 + 14.2175i −1.26779 + 0.525137i −0.912292 0.409540i \(-0.865689\pi\)
−0.355500 + 0.934676i \(0.615689\pi\)
\(734\) 0 0
\(735\) 2.83069 + 4.94652i 0.104411 + 0.182455i
\(736\) 0 0
\(737\) −12.5417 18.7700i −0.461980 0.691401i
\(738\) 0 0
\(739\) 33.5869 13.9122i 1.23552 0.511767i 0.333205 0.942854i \(-0.391870\pi\)
0.902310 + 0.431087i \(0.141870\pi\)
\(740\) 0 0
\(741\) 1.08679 0.726167i 0.0399241 0.0266764i
\(742\) 0 0
\(743\) 37.7240 7.50377i 1.38396 0.275287i 0.553724 0.832700i \(-0.313206\pi\)
0.830235 + 0.557414i \(0.188206\pi\)
\(744\) 0 0
\(745\) −28.6617 + 24.9422i −1.05008 + 0.913811i
\(746\) 0 0
\(747\) 6.20823 6.20823i 0.227147 0.227147i
\(748\) 0 0
\(749\) 1.10526i 0.0403855i
\(750\) 0 0
\(751\) −20.3177 + 4.04144i −0.741404 + 0.147474i −0.551321 0.834294i \(-0.685876\pi\)
−0.190083 + 0.981768i \(0.560876\pi\)
\(752\) 0 0
\(753\) 0.457166 + 2.29833i 0.0166601 + 0.0837557i
\(754\) 0 0
\(755\) −21.0152 10.4637i −0.764821 0.380814i
\(756\) 0 0
\(757\) −20.5037 8.49289i −0.745218 0.308679i −0.0224293 0.999748i \(-0.507140\pi\)
−0.722789 + 0.691069i \(0.757140\pi\)
\(758\) 0 0
\(759\) −1.68887 0.335936i −0.0613019 0.0121937i
\(760\) 0 0
\(761\) 21.7021 21.7021i 0.786700 0.786700i −0.194252 0.980952i \(-0.562228\pi\)
0.980952 + 0.194252i \(0.0622279\pi\)
\(762\) 0 0
\(763\) −0.524444 1.26612i −0.0189861 0.0458366i
\(764\) 0 0
\(765\) −13.0680 22.9621i −0.472476 0.830195i
\(766\) 0 0
\(767\) −3.94923 9.53429i −0.142598 0.344263i
\(768\) 0 0
\(769\) −19.6699 + 19.6699i −0.709314 + 0.709314i −0.966391 0.257077i \(-0.917241\pi\)
0.257077 + 0.966391i \(0.417241\pi\)
\(770\) 0 0
\(771\) 7.15596 + 1.42341i 0.257716 + 0.0512628i
\(772\) 0 0
\(773\) 34.5080 + 14.2937i 1.24117 + 0.514109i 0.904079 0.427365i \(-0.140558\pi\)
0.337088 + 0.941473i \(0.390558\pi\)
\(774\) 0 0
\(775\) −2.65451 45.8785i −0.0953529 1.64800i
\(776\) 0 0
\(777\) 0.0620117 + 0.311754i 0.00222466 + 0.0111841i
\(778\) 0 0
\(779\) 6.79648 1.35190i 0.243509 0.0484370i
\(780\) 0 0
\(781\) 44.1864i 1.58111i
\(782\) 0 0
\(783\) −9.06309 + 9.06309i −0.323888 + 0.323888i
\(784\) 0 0
\(785\) 27.8189 + 1.93030i 0.992899 + 0.0688955i
\(786\) 0 0
\(787\) −22.1283 + 4.40160i −0.788790 + 0.156900i −0.573017 0.819543i \(-0.694227\pi\)
−0.215773 + 0.976444i \(0.569227\pi\)
\(788\) 0 0
\(789\) 0.337012 0.225184i 0.0119979 0.00801677i
\(790\) 0 0
\(791\) 0.845954 0.350406i 0.0300787 0.0124590i
\(792\) 0 0
\(793\) −4.12973 6.18058i −0.146651 0.219479i
\(794\) 0 0
\(795\) −8.53768 2.32272i −0.302800 0.0823785i
\(796\) 0 0
\(797\) 5.32803 2.20694i 0.188729 0.0781739i −0.286318 0.958135i \(-0.592431\pi\)
0.475046 + 0.879961i \(0.342431\pi\)
\(798\) 0 0
\(799\) 1.40539 + 7.15402i 0.0497191 + 0.253091i
\(800\) 0 0
\(801\) −17.7242 7.34161i −0.626254 0.259403i
\(802\) 0 0
\(803\) −16.4150 −0.579274
\(804\) 0 0
\(805\) −0.674124 + 0.225960i −0.0237597 + 0.00796406i
\(806\) 0 0
\(807\) −0.586620 + 1.41623i −0.0206500 + 0.0498535i
\(808\) 0 0
\(809\) −6.70196 10.0302i −0.235628 0.352643i 0.694745 0.719256i \(-0.255517\pi\)
−0.930373 + 0.366613i \(0.880517\pi\)
\(810\) 0 0
\(811\) 11.4181 + 7.62930i 0.400942 + 0.267901i 0.739652 0.672990i \(-0.234990\pi\)
−0.338709 + 0.940891i \(0.609990\pi\)
\(812\) 0 0
\(813\) −0.508254 0.339604i −0.0178252 0.0119104i
\(814\) 0 0
\(815\) 43.8977 + 11.9426i 1.53767 + 0.418332i
\(816\) 0 0
\(817\) 23.1833 + 23.1833i 0.811080 + 0.811080i
\(818\) 0 0
\(819\) 0.0853999 + 0.429334i 0.00298411 + 0.0150022i
\(820\) 0 0
\(821\) 0.131017 0.196081i 0.00457252 0.00684327i −0.829176 0.558987i \(-0.811190\pi\)
0.833749 + 0.552144i \(0.186190\pi\)
\(822\) 0 0
\(823\) −28.9033 5.74923i −1.00751 0.200406i −0.336363 0.941732i \(-0.609197\pi\)
−0.671144 + 0.741327i \(0.734197\pi\)
\(824\) 0 0
\(825\) 3.48656 + 4.61652i 0.121387 + 0.160727i
\(826\) 0 0
\(827\) −31.5114 + 21.0552i −1.09576 + 0.732161i −0.965782 0.259356i \(-0.916490\pi\)
−0.129975 + 0.991517i \(0.541490\pi\)
\(828\) 0 0
\(829\) 2.75038 + 2.75038i 0.0955245 + 0.0955245i 0.753254 0.657730i \(-0.228483\pi\)
−0.657730 + 0.753254i \(0.728483\pi\)
\(830\) 0 0
\(831\) 1.85064 4.46784i 0.0641981 0.154988i
\(832\) 0 0
\(833\) −5.66062 + 28.1092i −0.196129 + 0.973927i
\(834\) 0 0
\(835\) −1.83345 1.41804i −0.0634492 0.0490733i
\(836\) 0 0
\(837\) 19.7585i 0.682955i
\(838\) 0 0
\(839\) −4.72643 + 23.7614i −0.163174 + 0.820333i 0.809313 + 0.587378i \(0.199840\pi\)
−0.972487 + 0.232955i \(0.925160\pi\)
\(840\) 0 0
\(841\) −2.50543 6.04864i −0.0863940 0.208574i
\(842\) 0 0
\(843\) 0.631151 3.17301i 0.0217380 0.109284i
\(844\) 0 0
\(845\) −1.93308 + 27.8588i −0.0664998 + 0.958373i
\(846\) 0 0
\(847\) −0.122649 + 0.183558i −0.00421428 + 0.00630711i
\(848\) 0 0
\(849\) −8.51356 −0.292185
\(850\) 0 0
\(851\) 6.04141 0.207097
\(852\) 0 0
\(853\) −1.66200 + 2.48735i −0.0569057 + 0.0851654i −0.858831 0.512258i \(-0.828809\pi\)
0.801926 + 0.597424i \(0.203809\pi\)
\(854\) 0 0
\(855\) 2.21253 31.8863i 0.0756669 1.09049i
\(856\) 0 0
\(857\) −9.27959 + 46.6516i −0.316985 + 1.59359i 0.413398 + 0.910551i \(0.364342\pi\)
−0.730382 + 0.683039i \(0.760658\pi\)
\(858\) 0 0
\(859\) −14.2348 34.3659i −0.485686 1.17255i −0.956870 0.290515i \(-0.906173\pi\)
0.471184 0.882035i \(-0.343827\pi\)
\(860\) 0 0
\(861\) 0.0212220 0.106690i 0.000723243 0.00363599i
\(862\) 0 0
\(863\) 33.5405i 1.14173i 0.821043 + 0.570866i \(0.193392\pi\)
−0.821043 + 0.570866i \(0.806608\pi\)
\(864\) 0 0
\(865\) 45.2263 + 34.9791i 1.53774 + 1.18933i
\(866\) 0 0
\(867\) −1.24448 + 6.10491i −0.0422647 + 0.207334i
\(868\) 0 0
\(869\) −4.20175 + 10.1439i −0.142535 + 0.344109i
\(870\) 0 0
\(871\) −3.61509 3.61509i −0.122493 0.122493i
\(872\) 0 0
\(873\) 14.3418 9.58287i 0.485395 0.324331i
\(874\) 0 0
\(875\) 2.19621 + 0.939385i 0.0742454 + 0.0317570i
\(876\) 0 0
\(877\) −21.1097 4.19898i −0.712824 0.141789i −0.174659 0.984629i \(-0.555882\pi\)
−0.538165 + 0.842840i \(0.680882\pi\)
\(878\) 0 0
\(879\) −3.65337 + 5.46766i −0.123225 + 0.184420i
\(880\) 0 0
\(881\) −6.35305 31.9389i −0.214040 1.07605i −0.927062 0.374909i \(-0.877674\pi\)
0.713022 0.701142i \(-0.247326\pi\)
\(882\) 0 0
\(883\) −35.8879 35.8879i −1.20772 1.20772i −0.971763 0.235961i \(-0.924176\pi\)
−0.235961 0.971763i \(-0.575824\pi\)
\(884\) 0 0
\(885\) 11.4139 + 3.10520i 0.383673 + 0.104380i
\(886\) 0 0
\(887\) −20.2573 13.5355i −0.680172 0.454476i 0.166886 0.985976i \(-0.446629\pi\)
−0.847058 + 0.531500i \(0.821629\pi\)
\(888\) 0 0
\(889\) −0.962068 0.642833i −0.0322667 0.0215599i
\(890\) 0 0
\(891\) 13.6968 + 20.4987i 0.458860 + 0.686732i
\(892\) 0 0
\(893\) −3.37537 + 8.14887i −0.112952 + 0.272691i
\(894\) 0 0
\(895\) 21.4504 7.18999i 0.717008 0.240335i
\(896\) 0 0
\(897\) −0.389976 −0.0130209
\(898\) 0 0
\(899\) −50.6269 20.9704i −1.68850 0.699401i
\(900\) 0 0
\(901\) −24.6437 37.0720i −0.821001 1.23505i
\(902\) 0 0
\(903\) 0.475494 0.196956i 0.0158235 0.00655429i
\(904\) 0 0
\(905\) −21.6644 5.89393i −0.720150 0.195921i
\(906\) 0 0
\(907\) 3.54822 + 5.31029i 0.117817 + 0.176325i 0.885691 0.464276i \(-0.153685\pi\)
−0.767874 + 0.640601i \(0.778685\pi\)
\(908\) 0 0
\(909\) −0.363109 + 0.150405i −0.0120436 + 0.00498861i
\(910\) 0 0
\(911\) 38.8770 25.9768i 1.28805 0.860648i 0.292629 0.956226i \(-0.405470\pi\)
0.995422 + 0.0955779i \(0.0304699\pi\)
\(912\) 0 0
\(913\) −9.48647 + 1.88698i −0.313956 + 0.0624498i
\(914\) 0 0
\(915\) 8.49971 + 0.589780i 0.280992 + 0.0194975i
\(916\) 0 0
\(917\) 2.09265 2.09265i 0.0691053 0.0691053i
\(918\) 0 0
\(919\) 35.3651i 1.16659i 0.812262 + 0.583293i \(0.198236\pi\)
−0.812262 + 0.583293i \(0.801764\pi\)
\(920\) 0 0
\(921\) 8.87664 1.76567i 0.292495 0.0581809i
\(922\) 0 0
\(923\) 1.95227 + 9.81475i 0.0642599 + 0.323056i
\(924\) 0 0
\(925\) −15.1573 13.4992i −0.498369 0.443852i
\(926\) 0 0
\(927\) 44.9283 + 18.6099i 1.47564 + 0.611229i
\(928\) 0 0
\(929\) 17.6853 + 3.51782i 0.580235 + 0.115416i 0.476477 0.879187i \(-0.341913\pi\)
0.103757 + 0.994603i \(0.466913\pi\)
\(930\) 0 0
\(931\) −24.5288 + 24.5288i −0.803898 + 0.803898i
\(932\) 0 0
\(933\) 4.03824 + 9.74917i 0.132206 + 0.319173i
\(934\) 0 0
\(935\) −2.08365 + 29.0315i −0.0681426 + 0.949432i
\(936\) 0 0
\(937\) 1.13871 + 2.74909i 0.0372000 + 0.0898089i 0.941388 0.337327i \(-0.109523\pi\)
−0.904188 + 0.427136i \(0.859523\pi\)
\(938\) 0 0
\(939\) −3.41552 + 3.41552i −0.111461 + 0.111461i
\(940\) 0 0
\(941\) 16.8693 + 3.35552i 0.549925 + 0.109387i 0.462229 0.886761i \(-0.347050\pi\)
0.0876955 + 0.996147i \(0.472050\pi\)
\(942\) 0 0
\(943\) −1.91014 0.791206i −0.0622028 0.0257652i
\(944\) 0 0
\(945\) −0.919357 0.457759i −0.0299067 0.0148909i
\(946\) 0 0
\(947\) 10.8064 + 54.3275i 0.351161 + 1.76541i 0.603101 + 0.797665i \(0.293932\pi\)
−0.251940 + 0.967743i \(0.581068\pi\)
\(948\) 0 0
\(949\) −3.64613 + 0.725260i −0.118358 + 0.0235429i
\(950\) 0 0
\(951\) 2.02305i 0.0656019i
\(952\) 0 0
\(953\) 42.2935 42.2935i 1.37002 1.37002i 0.509621 0.860399i \(-0.329786\pi\)
0.860399 0.509621i \(-0.170214\pi\)
\(954\) 0 0
\(955\) −20.7540 + 18.0607i −0.671582 + 0.584430i
\(956\) 0 0
\(957\) 6.76586 1.34581i 0.218709 0.0435039i
\(958\) 0 0
\(959\) 0.787795 0.526388i 0.0254392 0.0169980i
\(960\) 0 0
\(961\) −49.4047 + 20.4641i −1.59370 + 0.660133i
\(962\) 0 0
\(963\) 8.23627 + 12.3265i 0.265410 + 0.397214i
\(964\) 0 0
\(965\) 13.7536 + 24.0339i 0.442744 + 0.773678i
\(966\) 0 0
\(967\) 34.3415 14.2247i 1.10435 0.457436i 0.245361 0.969432i \(-0.421094\pi\)
0.858988 + 0.511996i \(0.171094\pi\)
\(968\) 0 0
\(969\) −5.34248 + 5.31719i −0.171625 + 0.170813i
\(970\) 0 0
\(971\) 27.8647 + 11.5419i 0.894221 + 0.370399i 0.781995 0.623284i \(-0.214202\pi\)
0.112226 + 0.993683i \(0.464202\pi\)
\(972\) 0 0
\(973\) 2.71456 0.0870247
\(974\) 0 0
\(975\) 0.978410 + 0.871382i 0.0313342 + 0.0279066i
\(976\) 0 0
\(977\) −4.67854 + 11.2950i −0.149680 + 0.361359i −0.980880 0.194615i \(-0.937654\pi\)
0.831200 + 0.555973i \(0.187654\pi\)
\(978\) 0 0
\(979\) 11.7419 + 17.5730i 0.375273 + 0.561636i
\(980\) 0 0
\(981\) −15.2838 10.2123i −0.487974 0.326054i
\(982\) 0 0
\(983\) 35.7659 + 23.8980i 1.14075 + 0.762227i 0.974618 0.223876i \(-0.0718710\pi\)
0.166136 + 0.986103i \(0.446871\pi\)
\(984\) 0 0
\(985\) 10.9176 40.1302i 0.347865 1.27866i
\(986\) 0 0
\(987\) 0.0979054 + 0.0979054i 0.00311636 + 0.00311636i
\(988\) 0 0
\(989\) −1.90838 9.59409i −0.0606830 0.305074i
\(990\) 0 0
\(991\) 5.57528 8.34399i 0.177104 0.265056i −0.732288 0.680995i \(-0.761547\pi\)
0.909392 + 0.415940i \(0.136547\pi\)
\(992\) 0 0
\(993\) 1.32317 + 0.263194i 0.0419894 + 0.00835221i
\(994\) 0 0
\(995\) 4.34772 + 3.36264i 0.137832 + 0.106603i
\(996\) 0 0
\(997\) 9.63345 6.43687i 0.305094 0.203858i −0.393593 0.919285i \(-0.628768\pi\)
0.698687 + 0.715427i \(0.253768\pi\)
\(998\) 0 0
\(999\) 6.17077 + 6.17077i 0.195235 + 0.195235i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.cg.b.57.8 112
5.3 odd 4 680.2.cq.b.193.8 yes 112
17.3 odd 16 680.2.cq.b.377.8 yes 112
85.3 even 16 inner 680.2.cg.b.513.8 yes 112
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.cg.b.57.8 112 1.1 even 1 trivial
680.2.cg.b.513.8 yes 112 85.3 even 16 inner
680.2.cq.b.193.8 yes 112 5.3 odd 4
680.2.cq.b.377.8 yes 112 17.3 odd 16