Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.bo (of order \(8\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
121.1 | 0 | −2.77754 | + | 1.15049i | 0 | −0.382683 | − | 0.923880i | 0 | −1.49876 | + | 3.61834i | 0 | 4.26976 | − | 4.26976i | 0 | ||||||||||
121.2 | 0 | −2.58372 | + | 1.07021i | 0 | 0.382683 | + | 0.923880i | 0 | 0.740612 | − | 1.78800i | 0 | 3.40892 | − | 3.40892i | 0 | ||||||||||
121.3 | 0 | −0.465135 | + | 0.192665i | 0 | −0.382683 | − | 0.923880i | 0 | 0.134218 | − | 0.324032i | 0 | −1.94209 | + | 1.94209i | 0 | ||||||||||
121.4 | 0 | −0.120181 | + | 0.0497804i | 0 | 0.382683 | + | 0.923880i | 0 | 0.278826 | − | 0.673145i | 0 | −2.10936 | + | 2.10936i | 0 | ||||||||||
121.5 | 0 | −0.0428807 | + | 0.0177618i | 0 | −0.382683 | − | 0.923880i | 0 | −1.01246 | + | 2.44430i | 0 | −2.11980 | + | 2.11980i | 0 | ||||||||||
121.6 | 0 | 1.46749 | − | 0.607854i | 0 | 0.382683 | + | 0.923880i | 0 | −1.67090 | + | 4.03391i | 0 | −0.337282 | + | 0.337282i | 0 | ||||||||||
121.7 | 0 | 2.16029 | − | 0.894821i | 0 | 0.382683 | + | 0.923880i | 0 | 0.709723 | − | 1.71342i | 0 | 1.74482 | − | 1.74482i | 0 | ||||||||||
121.8 | 0 | 2.36167 | − | 0.978237i | 0 | −0.382683 | − | 0.923880i | 0 | 0.904535 | − | 2.18374i | 0 | 2.49923 | − | 2.49923i | 0 | ||||||||||
161.1 | 0 | −0.805905 | + | 1.94563i | 0 | 0.923880 | + | 0.382683i | 0 | 4.50228 | − | 1.86491i | 0 | −1.01466 | − | 1.01466i | 0 | ||||||||||
161.2 | 0 | −0.597638 | + | 1.44282i | 0 | −0.923880 | − | 0.382683i | 0 | 0.401099 | − | 0.166141i | 0 | 0.396748 | + | 0.396748i | 0 | ||||||||||
161.3 | 0 | −0.575026 | + | 1.38824i | 0 | 0.923880 | + | 0.382683i | 0 | −2.70987 | + | 1.12246i | 0 | 0.524778 | + | 0.524778i | 0 | ||||||||||
161.4 | 0 | −0.251249 | + | 0.606569i | 0 | −0.923880 | − | 0.382683i | 0 | −3.28536 | + | 1.36084i | 0 | 1.81652 | + | 1.81652i | 0 | ||||||||||
161.5 | 0 | 0.221505 | − | 0.534762i | 0 | −0.923880 | − | 0.382683i | 0 | 0.202666 | − | 0.0839471i | 0 | 1.88442 | + | 1.88442i | 0 | ||||||||||
161.6 | 0 | 0.424268 | − | 1.02427i | 0 | 0.923880 | + | 0.382683i | 0 | −0.208657 | + | 0.0864287i | 0 | 1.25219 | + | 1.25219i | 0 | ||||||||||
161.7 | 0 | 0.573979 | − | 1.38571i | 0 | 0.923880 | + | 0.382683i | 0 | 0.971110 | − | 0.402247i | 0 | 0.530583 | + | 0.530583i | 0 | ||||||||||
161.8 | 0 | 1.01006 | − | 2.43851i | 0 | −0.923880 | − | 0.382683i | 0 | 1.54095 | − | 0.638280i | 0 | −2.80479 | − | 2.80479i | 0 | ||||||||||
281.1 | 0 | −2.77754 | − | 1.15049i | 0 | −0.382683 | + | 0.923880i | 0 | −1.49876 | − | 3.61834i | 0 | 4.26976 | + | 4.26976i | 0 | ||||||||||
281.2 | 0 | −2.58372 | − | 1.07021i | 0 | 0.382683 | − | 0.923880i | 0 | 0.740612 | + | 1.78800i | 0 | 3.40892 | + | 3.40892i | 0 | ||||||||||
281.3 | 0 | −0.465135 | − | 0.192665i | 0 | −0.382683 | + | 0.923880i | 0 | 0.134218 | + | 0.324032i | 0 | −1.94209 | − | 1.94209i | 0 | ||||||||||
281.4 | 0 | −0.120181 | − | 0.0497804i | 0 | 0.382683 | − | 0.923880i | 0 | 0.278826 | + | 0.673145i | 0 | −2.10936 | − | 2.10936i | 0 | ||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.bo.a | ✓ | 32 |
17.d | even | 8 | 1 | inner | 680.2.bo.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.bo.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
680.2.bo.a | ✓ | 32 | 17.d | even | 8 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{32} - 8 T_{3}^{30} + 8 T_{3}^{29} + 32 T_{3}^{28} - 128 T_{3}^{27} + 232 T_{3}^{26} + 200 T_{3}^{25} + \cdots + 4 \)
acting on \(S_{2}^{\mathrm{new}}(680, [\chi])\).