L(s) = 1 | + (−0.251 − 0.606i)3-s + (−0.923 + 0.382i)5-s + (−3.28 − 1.36i)7-s + (1.81 − 1.81i)9-s + (−2.33 + 5.63i)11-s − 2.16i·13-s + (0.464 + 0.464i)15-s + (−0.338 + 4.10i)17-s + (5.28 + 5.28i)19-s + 2.33i·21-s + (−1.97 + 4.75i)23-s + (0.707 − 0.707i)25-s + (−3.37 − 1.39i)27-s + (−6.11 + 2.53i)29-s + (1.36 + 3.30i)31-s + ⋯ |
L(s) = 1 | + (−0.145 − 0.350i)3-s + (−0.413 + 0.171i)5-s + (−1.24 − 0.514i)7-s + (0.605 − 0.605i)9-s + (−0.704 + 1.70i)11-s − 0.600i·13-s + (0.119 + 0.119i)15-s + (−0.0820 + 0.996i)17-s + (1.21 + 1.21i)19-s + 0.509i·21-s + (−0.410 + 0.991i)23-s + (0.141 − 0.141i)25-s + (−0.650 − 0.269i)27-s + (−1.13 + 0.470i)29-s + (0.245 + 0.592i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.232 - 0.972i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.232 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.377682 + 0.478566i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.377682 + 0.478566i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.923 - 0.382i)T \) |
| 17 | \( 1 + (0.338 - 4.10i)T \) |
good | 3 | \( 1 + (0.251 + 0.606i)T + (-2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (3.28 + 1.36i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (2.33 - 5.63i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 2.16iT - 13T^{2} \) |
| 19 | \( 1 + (-5.28 - 5.28i)T + 19iT^{2} \) |
| 23 | \( 1 + (1.97 - 4.75i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (6.11 - 2.53i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-1.36 - 3.30i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (1.31 + 3.17i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (1.93 + 0.802i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (4.83 - 4.83i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.61iT - 47T^{2} \) |
| 53 | \( 1 + (-5.78 - 5.78i)T + 53iT^{2} \) |
| 59 | \( 1 + (8.43 - 8.43i)T - 59iT^{2} \) |
| 61 | \( 1 + (-2.78 - 1.15i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + 0.961T + 67T^{2} \) |
| 71 | \( 1 + (4.01 + 9.69i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-0.933 + 0.386i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (-0.562 + 1.35i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (1.78 + 1.78i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.8iT - 89T^{2} \) |
| 97 | \( 1 + (5.82 - 2.41i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.30225589404563155418654315767, −10.12929711085757458099666385858, −9.238011137725989011112767079864, −7.66853357511683099131887000165, −7.39431341919497251238307919548, −6.44527570569237363380318181230, −5.42230937317841385391322729461, −4.01633353534308501751052242152, −3.31345315226495001212140482336, −1.60013272822527458258820054147,
0.32720504344023779500326678756, 2.62460328169028711537503689656, 3.51966798163784572855011778698, 4.79421082569333731397175542306, 5.64888613633628749738685858584, 6.67138759970949619748743574652, 7.61165688775759582856474035729, 8.648240740387700255933269567737, 9.421547906314233549381725054344, 10.14472473848940198605628757016