L(s) = 1 | + (−0.465 − 0.192i)3-s + (−0.382 + 0.923i)5-s + (0.134 + 0.324i)7-s + (−1.94 − 1.94i)9-s + (1.41 − 0.587i)11-s − 3.28i·13-s + (0.355 − 0.355i)15-s + (3.96 − 1.11i)17-s + (0.386 − 0.386i)19-s − 0.176i·21-s + (3.21 − 1.33i)23-s + (−0.707 − 0.707i)25-s + (1.10 + 2.67i)27-s + (2.60 − 6.28i)29-s + (6.87 + 2.84i)31-s + ⋯ |
L(s) = 1 | + (−0.268 − 0.111i)3-s + (−0.171 + 0.413i)5-s + (0.0507 + 0.122i)7-s + (−0.647 − 0.647i)9-s + (0.427 − 0.177i)11-s − 0.911i·13-s + (0.0919 − 0.0919i)15-s + (0.962 − 0.270i)17-s + (0.0886 − 0.0886i)19-s − 0.0385i·21-s + (0.670 − 0.277i)23-s + (−0.141 − 0.141i)25-s + (0.213 + 0.514i)27-s + (0.483 − 1.16i)29-s + (1.23 + 0.511i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 + 0.756i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 + 0.756i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13359 - 0.518192i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13359 - 0.518192i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.382 - 0.923i)T \) |
| 17 | \( 1 + (-3.96 + 1.11i)T \) |
good | 3 | \( 1 + (0.465 + 0.192i)T + (2.12 + 2.12i)T^{2} \) |
| 7 | \( 1 + (-0.134 - 0.324i)T + (-4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.41 + 0.587i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + 3.28iT - 13T^{2} \) |
| 19 | \( 1 + (-0.386 + 0.386i)T - 19iT^{2} \) |
| 23 | \( 1 + (-3.21 + 1.33i)T + (16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-2.60 + 6.28i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (-6.87 - 2.84i)T + (21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.970 - 0.402i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (3.85 + 9.31i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-0.396 - 0.396i)T + 43iT^{2} \) |
| 47 | \( 1 - 5.86iT - 47T^{2} \) |
| 53 | \( 1 + (0.763 - 0.763i)T - 53iT^{2} \) |
| 59 | \( 1 + (9.56 + 9.56i)T + 59iT^{2} \) |
| 61 | \( 1 + (0.893 + 2.15i)T + (-43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 8.71T + 67T^{2} \) |
| 71 | \( 1 + (2.21 + 0.915i)T + (50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (-3.23 + 7.81i)T + (-51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (0.823 - 0.341i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (9.03 - 9.03i)T - 83iT^{2} \) |
| 89 | \( 1 - 4.75iT - 89T^{2} \) |
| 97 | \( 1 + (0.917 - 2.21i)T + (-68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42117450245964813665710415579, −9.571315939143231234140072847021, −8.584111930442831989263643956204, −7.79010988187211267059554685651, −6.71384976030215447640595802885, −5.96424981440146836896579883148, −5.01830243477487297211804336017, −3.59953045953642660650574595089, −2.75125605512149169614727535573, −0.78241234524996648549508751393,
1.36560116283714401256189873367, 2.94526620418084235793676221966, 4.26245248501292047591617913125, 5.09303953352444606395716301015, 6.07120087696183919045836759540, 7.10162983458235372960999891565, 8.088226479794055836543076018817, 8.840027415734085459221458049538, 9.768611475879854607343195961114, 10.63111205415699662685170792196