L(s) = 1 | + (−0.465 + 0.192i)3-s + (−0.382 − 0.923i)5-s + (0.134 − 0.324i)7-s + (−1.94 + 1.94i)9-s + (1.41 + 0.587i)11-s + 3.28i·13-s + (0.355 + 0.355i)15-s + (3.96 + 1.11i)17-s + (0.386 + 0.386i)19-s + 0.176i·21-s + (3.21 + 1.33i)23-s + (−0.707 + 0.707i)25-s + (1.10 − 2.67i)27-s + (2.60 + 6.28i)29-s + (6.87 − 2.84i)31-s + ⋯ |
L(s) = 1 | + (−0.268 + 0.111i)3-s + (−0.171 − 0.413i)5-s + (0.0507 − 0.122i)7-s + (−0.647 + 0.647i)9-s + (0.427 + 0.177i)11-s + 0.911i·13-s + (0.0919 + 0.0919i)15-s + (0.962 + 0.270i)17-s + (0.0886 + 0.0886i)19-s + 0.0385i·21-s + (0.670 + 0.277i)23-s + (−0.141 + 0.141i)25-s + (0.213 − 0.514i)27-s + (0.483 + 1.16i)29-s + (1.23 − 0.511i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.654 - 0.756i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.654 - 0.756i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13359 + 0.518192i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13359 + 0.518192i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.382 + 0.923i)T \) |
| 17 | \( 1 + (-3.96 - 1.11i)T \) |
good | 3 | \( 1 + (0.465 - 0.192i)T + (2.12 - 2.12i)T^{2} \) |
| 7 | \( 1 + (-0.134 + 0.324i)T + (-4.94 - 4.94i)T^{2} \) |
| 11 | \( 1 + (-1.41 - 0.587i)T + (7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 3.28iT - 13T^{2} \) |
| 19 | \( 1 + (-0.386 - 0.386i)T + 19iT^{2} \) |
| 23 | \( 1 + (-3.21 - 1.33i)T + (16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-2.60 - 6.28i)T + (-20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-6.87 + 2.84i)T + (21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-0.970 + 0.402i)T + (26.1 - 26.1i)T^{2} \) |
| 41 | \( 1 + (3.85 - 9.31i)T + (-28.9 - 28.9i)T^{2} \) |
| 43 | \( 1 + (-0.396 + 0.396i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.86iT - 47T^{2} \) |
| 53 | \( 1 + (0.763 + 0.763i)T + 53iT^{2} \) |
| 59 | \( 1 + (9.56 - 9.56i)T - 59iT^{2} \) |
| 61 | \( 1 + (0.893 - 2.15i)T + (-43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 8.71T + 67T^{2} \) |
| 71 | \( 1 + (2.21 - 0.915i)T + (50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-3.23 - 7.81i)T + (-51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (0.823 + 0.341i)T + (55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (9.03 + 9.03i)T + 83iT^{2} \) |
| 89 | \( 1 + 4.75iT - 89T^{2} \) |
| 97 | \( 1 + (0.917 + 2.21i)T + (-68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63111205415699662685170792196, −9.768611475879854607343195961114, −8.840027415734085459221458049538, −8.088226479794055836543076018817, −7.10162983458235372960999891565, −6.07120087696183919045836759540, −5.09303953352444606395716301015, −4.26245248501292047591617913125, −2.94526620418084235793676221966, −1.36560116283714401256189873367,
0.78241234524996648549508751393, 2.75125605512149169614727535573, 3.59953045953642660650574595089, 5.01830243477487297211804336017, 5.96424981440146836896579883148, 6.71384976030215447640595802885, 7.79010988187211267059554685651, 8.584111930442831989263643956204, 9.571315939143231234140072847021, 10.42117450245964813665710415579