Properties

Label 680.2.bl.a.123.68
Level $680$
Weight $2$
Character 680.123
Analytic conductor $5.430$
Analytic rank $0$
Dimension $208$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(123,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.123"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(208\)
Relative dimension: \(104\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 123.68
Character \(\chi\) \(=\) 680.123
Dual form 680.2.bl.a.387.68

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.677911 - 1.24114i) q^{2} +1.66129 q^{3} +(-1.08087 - 1.68277i) q^{4} +(-0.0270834 - 2.23590i) q^{5} +(1.12621 - 2.06190i) q^{6} -2.02798i q^{7} +(-2.82129 + 0.200753i) q^{8} -0.240104 q^{9} +(-2.79344 - 1.48213i) q^{10} +(3.80452 + 3.80452i) q^{11} +(-1.79565 - 2.79557i) q^{12} +(1.67131 - 1.67131i) q^{13} +(-2.51702 - 1.37479i) q^{14} +(-0.0449935 - 3.71449i) q^{15} +(-1.66342 + 3.63772i) q^{16} +(-2.14745 - 3.51972i) q^{17} +(-0.162769 + 0.298003i) q^{18} -0.391006 q^{19} +(-3.73324 + 2.46231i) q^{20} -3.36908i q^{21} +(7.30108 - 2.14283i) q^{22} +2.62296 q^{23} +(-4.68700 + 0.333509i) q^{24} +(-4.99853 + 0.121112i) q^{25} +(-0.941338 - 3.20734i) q^{26} -5.38276 q^{27} +(-3.41263 + 2.19200i) q^{28} +(-2.10479 + 2.10479i) q^{29} +(-4.64072 - 2.46225i) q^{30} +(0.605139 + 0.605139i) q^{31} +(3.38728 + 4.53060i) q^{32} +(6.32043 + 6.32043i) q^{33} +(-5.82426 + 0.279242i) q^{34} +(-4.53438 + 0.0549247i) q^{35} +(0.259522 + 0.404039i) q^{36} +3.34301 q^{37} +(-0.265067 + 0.485294i) q^{38} +(2.77654 - 2.77654i) q^{39} +(0.525274 + 6.30270i) q^{40} +(5.77901 + 5.77901i) q^{41} +(-4.18151 - 2.28393i) q^{42} +(1.25512 - 1.25512i) q^{43} +(2.28992 - 10.5143i) q^{44} +(0.00650283 + 0.536849i) q^{45} +(1.77813 - 3.25547i) q^{46} +(-0.349785 - 0.349785i) q^{47} +(-2.76343 + 6.04333i) q^{48} +2.88728 q^{49} +(-3.23824 + 6.28600i) q^{50} +(-3.56755 - 5.84729i) q^{51} +(-4.61891 - 1.00596i) q^{52} +(-8.03639 - 8.03639i) q^{53} +(-3.64903 + 6.68078i) q^{54} +(8.40350 - 8.60958i) q^{55} +(0.407123 + 5.72154i) q^{56} -0.649575 q^{57} +(1.18549 + 4.03920i) q^{58} +14.2763 q^{59} +(-6.20200 + 4.09061i) q^{60} +(2.23576 - 2.23576i) q^{61} +(1.16129 - 0.340834i) q^{62} +0.486927i q^{63} +(7.91940 - 1.13276i) q^{64} +(-3.78216 - 3.69163i) q^{65} +(12.1292 - 3.55987i) q^{66} +(-3.63435 + 3.63435i) q^{67} +(-3.60175 + 7.41805i) q^{68} +4.35751 q^{69} +(-3.00573 + 5.66505i) q^{70} +(2.26465 + 2.26465i) q^{71} +(0.677403 - 0.0482014i) q^{72} +5.49453 q^{73} +(2.26626 - 4.14916i) q^{74} +(-8.30403 + 0.201202i) q^{75} +(0.422628 + 0.657972i) q^{76} +(7.71551 - 7.71551i) q^{77} +(-1.56384 - 5.32834i) q^{78} +(-0.632749 - 0.632749i) q^{79} +(8.17865 + 3.62073i) q^{80} -8.22204 q^{81} +(11.0902 - 3.25493i) q^{82} +(4.30611 - 4.30611i) q^{83} +(-5.66938 + 3.64155i) q^{84} +(-7.81160 + 4.89683i) q^{85} +(-0.706927 - 2.40865i) q^{86} +(-3.49667 + 3.49667i) q^{87} +(-11.4974 - 9.96990i) q^{88} +1.44599i q^{89} +(0.670715 + 0.355865i) q^{90} +(-3.38940 - 3.38940i) q^{91} +(-2.83509 - 4.41384i) q^{92} +(1.00531 + 1.00531i) q^{93} +(-0.671257 + 0.197011i) q^{94} +(0.0105898 + 0.874251i) q^{95} +(5.62727 + 7.52665i) q^{96} +15.7512i q^{97} +(1.95732 - 3.58353i) q^{98} +(-0.913480 - 0.913480i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 208 q - 8 q^{3} - 8 q^{6} + 192 q^{9} - 6 q^{10} - 8 q^{11} + 16 q^{14} - 16 q^{16} - 12 q^{18} - 10 q^{20} - 16 q^{24} - 32 q^{27} - 24 q^{30} - 20 q^{32} - 8 q^{33} + 4 q^{34} - 8 q^{35} - 12 q^{38} + 38 q^{40}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.677911 1.24114i 0.479355 0.877621i
\(3\) 1.66129 0.959148 0.479574 0.877501i \(-0.340791\pi\)
0.479574 + 0.877501i \(0.340791\pi\)
\(4\) −1.08087 1.68277i −0.540437 0.841384i
\(5\) −0.0270834 2.23590i −0.0121121 0.999927i
\(6\) 1.12621 2.06190i 0.459773 0.841769i
\(7\) 2.02798i 0.766506i −0.923643 0.383253i \(-0.874804\pi\)
0.923643 0.383253i \(-0.125196\pi\)
\(8\) −2.82129 + 0.200753i −0.997478 + 0.0709768i
\(9\) −0.240104 −0.0800346
\(10\) −2.79344 1.48213i −0.883363 0.468690i
\(11\) 3.80452 + 3.80452i 1.14711 + 1.14711i 0.987119 + 0.159987i \(0.0511453\pi\)
0.159987 + 0.987119i \(0.448855\pi\)
\(12\) −1.79565 2.79557i −0.518359 0.807012i
\(13\) 1.67131 1.67131i 0.463539 0.463539i −0.436275 0.899814i \(-0.643702\pi\)
0.899814 + 0.436275i \(0.143702\pi\)
\(14\) −2.51702 1.37479i −0.672702 0.367429i
\(15\) −0.0449935 3.71449i −0.0116173 0.959078i
\(16\) −1.66342 + 3.63772i −0.415856 + 0.909431i
\(17\) −2.14745 3.51972i −0.520834 0.853658i
\(18\) −0.162769 + 0.298003i −0.0383650 + 0.0702400i
\(19\) −0.391006 −0.0897029 −0.0448514 0.998994i \(-0.514281\pi\)
−0.0448514 + 0.998994i \(0.514281\pi\)
\(20\) −3.73324 + 2.46231i −0.834777 + 0.550588i
\(21\) 3.36908i 0.735193i
\(22\) 7.30108 2.14283i 1.55660 0.456853i
\(23\) 2.62296 0.546925 0.273462 0.961883i \(-0.411831\pi\)
0.273462 + 0.961883i \(0.411831\pi\)
\(24\) −4.68700 + 0.333509i −0.956729 + 0.0680772i
\(25\) −4.99853 + 0.121112i −0.999707 + 0.0242224i
\(26\) −0.941338 3.20734i −0.184612 0.629011i
\(27\) −5.38276 −1.03591
\(28\) −3.41263 + 2.19200i −0.644926 + 0.414248i
\(29\) −2.10479 + 2.10479i −0.390849 + 0.390849i −0.874990 0.484141i \(-0.839132\pi\)
0.484141 + 0.874990i \(0.339132\pi\)
\(30\) −4.64072 2.46225i −0.847276 0.449544i
\(31\) 0.605139 + 0.605139i 0.108686 + 0.108686i 0.759359 0.650672i \(-0.225513\pi\)
−0.650672 + 0.759359i \(0.725513\pi\)
\(32\) 3.38728 + 4.53060i 0.598793 + 0.800904i
\(33\) 6.32043 + 6.32043i 1.10025 + 1.10025i
\(34\) −5.82426 + 0.279242i −0.998853 + 0.0478896i
\(35\) −4.53438 + 0.0549247i −0.766450 + 0.00928398i
\(36\) 0.259522 + 0.404039i 0.0432536 + 0.0673398i
\(37\) 3.34301 0.549588 0.274794 0.961503i \(-0.411390\pi\)
0.274794 + 0.961503i \(0.411390\pi\)
\(38\) −0.265067 + 0.485294i −0.0429995 + 0.0787251i
\(39\) 2.77654 2.77654i 0.444603 0.444603i
\(40\) 0.525274 + 6.30270i 0.0830531 + 0.996545i
\(41\) 5.77901 + 5.77901i 0.902530 + 0.902530i 0.995655 0.0931242i \(-0.0296854\pi\)
−0.0931242 + 0.995655i \(0.529685\pi\)
\(42\) −4.18151 2.28393i −0.645221 0.352419i
\(43\) 1.25512 1.25512i 0.191405 0.191405i −0.604898 0.796303i \(-0.706786\pi\)
0.796303 + 0.604898i \(0.206786\pi\)
\(44\) 2.28992 10.5143i 0.345219 1.58510i
\(45\) 0.00650283 + 0.536849i 0.000969384 + 0.0800287i
\(46\) 1.77813 3.25547i 0.262171 0.479993i
\(47\) −0.349785 0.349785i −0.0510214 0.0510214i 0.681136 0.732157i \(-0.261486\pi\)
−0.732157 + 0.681136i \(0.761486\pi\)
\(48\) −2.76343 + 6.04333i −0.398867 + 0.872279i
\(49\) 2.88728 0.412468
\(50\) −3.23824 + 6.28600i −0.457957 + 0.888975i
\(51\) −3.56755 5.84729i −0.499557 0.818784i
\(52\) −4.61891 1.00596i −0.640528 0.139501i
\(53\) −8.03639 8.03639i −1.10388 1.10388i −0.993938 0.109945i \(-0.964932\pi\)
−0.109945 0.993938i \(-0.535068\pi\)
\(54\) −3.64903 + 6.68078i −0.496571 + 0.909139i
\(55\) 8.40350 8.60958i 1.13313 1.16092i
\(56\) 0.407123 + 5.72154i 0.0544041 + 0.764573i
\(57\) −0.649575 −0.0860383
\(58\) 1.18549 + 4.03920i 0.155662 + 0.530373i
\(59\) 14.2763 1.85862 0.929308 0.369305i \(-0.120404\pi\)
0.929308 + 0.369305i \(0.120404\pi\)
\(60\) −6.20200 + 4.09061i −0.800675 + 0.528096i
\(61\) 2.23576 2.23576i 0.286260 0.286260i −0.549339 0.835599i \(-0.685121\pi\)
0.835599 + 0.549339i \(0.185121\pi\)
\(62\) 1.16129 0.340834i 0.147485 0.0432860i
\(63\) 0.486927i 0.0613470i
\(64\) 7.91940 1.13276i 0.989925 0.141596i
\(65\) −3.78216 3.69163i −0.469119 0.457891i
\(66\) 12.1292 3.55987i 1.49301 0.438190i
\(67\) −3.63435 + 3.63435i −0.444007 + 0.444007i −0.893356 0.449349i \(-0.851656\pi\)
0.449349 + 0.893356i \(0.351656\pi\)
\(68\) −3.60175 + 7.41805i −0.436776 + 0.899570i
\(69\) 4.35751 0.524582
\(70\) −3.00573 + 5.66505i −0.359254 + 0.677103i
\(71\) 2.26465 + 2.26465i 0.268764 + 0.268764i 0.828602 0.559838i \(-0.189137\pi\)
−0.559838 + 0.828602i \(0.689137\pi\)
\(72\) 0.677403 0.0482014i 0.0798327 0.00568059i
\(73\) 5.49453 0.643086 0.321543 0.946895i \(-0.395799\pi\)
0.321543 + 0.946895i \(0.395799\pi\)
\(74\) 2.26626 4.14916i 0.263448 0.482330i
\(75\) −8.30403 + 0.201202i −0.958867 + 0.0232328i
\(76\) 0.422628 + 0.657972i 0.0484787 + 0.0754746i
\(77\) 7.71551 7.71551i 0.879264 0.879264i
\(78\) −1.56384 5.32834i −0.177070 0.603315i
\(79\) −0.632749 0.632749i −0.0711899 0.0711899i 0.670615 0.741805i \(-0.266030\pi\)
−0.741805 + 0.670615i \(0.766030\pi\)
\(80\) 8.17865 + 3.62073i 0.914401 + 0.404810i
\(81\) −8.22204 −0.913560
\(82\) 11.0902 3.25493i 1.22471 0.359447i
\(83\) 4.30611 4.30611i 0.472657 0.472657i −0.430116 0.902773i \(-0.641527\pi\)
0.902773 + 0.430116i \(0.141527\pi\)
\(84\) −5.66938 + 3.64155i −0.618580 + 0.397326i
\(85\) −7.81160 + 4.89683i −0.847287 + 0.531136i
\(86\) −0.706927 2.40865i −0.0762298 0.259731i
\(87\) −3.49667 + 3.49667i −0.374883 + 0.374883i
\(88\) −11.4974 9.96990i −1.22563 1.06280i
\(89\) 1.44599i 0.153275i 0.997059 + 0.0766373i \(0.0244183\pi\)
−0.997059 + 0.0766373i \(0.975582\pi\)
\(90\) 0.670715 + 0.355865i 0.0706995 + 0.0375114i
\(91\) −3.38940 3.38940i −0.355305 0.355305i
\(92\) −2.83509 4.41384i −0.295578 0.460174i
\(93\) 1.00531 + 1.00531i 0.104246 + 0.104246i
\(94\) −0.671257 + 0.197011i −0.0692349 + 0.0203201i
\(95\) 0.0105898 + 0.874251i 0.00108649 + 0.0896963i
\(96\) 5.62727 + 7.52665i 0.574331 + 0.768186i
\(97\) 15.7512i 1.59930i 0.600468 + 0.799649i \(0.294981\pi\)
−0.600468 + 0.799649i \(0.705019\pi\)
\(98\) 1.95732 3.58353i 0.197719 0.361991i
\(99\) −0.913480 0.913480i −0.0918082 0.0918082i
\(100\) 5.60659 + 8.28047i 0.560659 + 0.828047i
\(101\) 9.19554i 0.914990i 0.889212 + 0.457495i \(0.151253\pi\)
−0.889212 + 0.457495i \(0.848747\pi\)
\(102\) −9.67581 + 0.463902i −0.958048 + 0.0459332i
\(103\) 5.23005 5.23005i 0.515332 0.515332i −0.400823 0.916155i \(-0.631276\pi\)
0.916155 + 0.400823i \(0.131276\pi\)
\(104\) −4.37975 + 5.05079i −0.429469 + 0.495270i
\(105\) −7.53294 + 0.0912461i −0.735139 + 0.00890471i
\(106\) −15.4223 + 4.52636i −1.49794 + 0.439639i
\(107\) 1.16905i 0.113016i −0.998402 0.0565081i \(-0.982003\pi\)
0.998402 0.0565081i \(-0.0179967\pi\)
\(108\) 5.81809 + 9.05795i 0.559846 + 0.871601i
\(109\) 8.15324 + 8.15324i 0.780939 + 0.780939i 0.979989 0.199051i \(-0.0637858\pi\)
−0.199051 + 0.979989i \(0.563786\pi\)
\(110\) −4.98890 16.2665i −0.475673 1.55095i
\(111\) 5.55373 0.527136
\(112\) 7.37725 + 3.37340i 0.697084 + 0.318756i
\(113\) 8.12775i 0.764595i 0.924039 + 0.382297i \(0.124867\pi\)
−0.924039 + 0.382297i \(0.875133\pi\)
\(114\) −0.440354 + 0.806216i −0.0412429 + 0.0755091i
\(115\) −0.0710387 5.86469i −0.00662439 0.546885i
\(116\) 5.81688 + 1.26686i 0.540084 + 0.117625i
\(117\) −0.401289 + 0.401289i −0.0370991 + 0.0370991i
\(118\) 9.67806 17.7189i 0.890938 1.63116i
\(119\) −7.13794 + 4.35500i −0.654334 + 0.399223i
\(120\) 0.872634 + 10.4706i 0.0796602 + 0.955835i
\(121\) 17.9488i 1.63171i
\(122\) −1.25925 4.29055i −0.114007 0.388448i
\(123\) 9.60064 + 9.60064i 0.865660 + 0.865660i
\(124\) 0.364230 1.67239i 0.0327088 0.150185i
\(125\) 0.406172 + 11.1730i 0.0363291 + 0.999340i
\(126\) 0.604346 + 0.330093i 0.0538394 + 0.0294070i
\(127\) −11.9192 + 11.9192i −1.05766 + 1.05766i −0.0594222 + 0.998233i \(0.518926\pi\)
−0.998233 + 0.0594222i \(0.981074\pi\)
\(128\) 3.96272 10.5970i 0.350258 0.936653i
\(129\) 2.08513 2.08513i 0.183585 0.183585i
\(130\) −7.14581 + 2.19161i −0.626729 + 0.192217i
\(131\) 8.92454 8.92454i 0.779740 0.779740i −0.200046 0.979786i \(-0.564109\pi\)
0.979786 + 0.200046i \(0.0641092\pi\)
\(132\) 3.80423 17.4674i 0.331116 1.52034i
\(133\) 0.792954i 0.0687578i
\(134\) 2.04699 + 6.97452i 0.176833 + 0.602507i
\(135\) 0.145784 + 12.0353i 0.0125471 + 1.03584i
\(136\) 6.76519 + 9.49906i 0.580110 + 0.814538i
\(137\) 10.6505 10.6505i 0.909932 0.909932i −0.0863342 0.996266i \(-0.527515\pi\)
0.996266 + 0.0863342i \(0.0275153\pi\)
\(138\) 2.95400 5.40829i 0.251461 0.460384i
\(139\) −10.5860 10.5860i −0.897894 0.897894i 0.0973558 0.995250i \(-0.468962\pi\)
−0.995250 + 0.0973558i \(0.968962\pi\)
\(140\) 4.99352 + 7.57095i 0.422029 + 0.639862i
\(141\) −0.581096 0.581096i −0.0489371 0.0489371i
\(142\) 4.34598 1.27552i 0.364706 0.107039i
\(143\) 12.7171 1.06346
\(144\) 0.399394 0.873431i 0.0332828 0.0727859i
\(145\) 4.76311 + 4.64910i 0.395555 + 0.386087i
\(146\) 3.72480 6.81950i 0.308267 0.564386i
\(147\) 4.79662 0.395618
\(148\) −3.61338 5.62552i −0.297018 0.462415i
\(149\) −10.3389 −0.846995 −0.423498 0.905897i \(-0.639198\pi\)
−0.423498 + 0.905897i \(0.639198\pi\)
\(150\) −5.37967 + 10.4429i −0.439248 + 0.852658i
\(151\) −20.2404 −1.64714 −0.823570 0.567214i \(-0.808021\pi\)
−0.823570 + 0.567214i \(0.808021\pi\)
\(152\) 1.10314 0.0784954i 0.0894766 0.00636682i
\(153\) 0.515612 + 0.845098i 0.0416847 + 0.0683221i
\(154\) −4.34563 14.8065i −0.350181 1.19314i
\(155\) 1.33664 1.36942i 0.107362 0.109995i
\(156\) −7.67337 1.67119i −0.614361 0.133802i
\(157\) −16.9071 16.9071i −1.34933 1.34933i −0.886385 0.462949i \(-0.846791\pi\)
−0.462949 0.886385i \(-0.653209\pi\)
\(158\) −1.21428 + 0.356385i −0.0966030 + 0.0283525i
\(159\) −13.3508 13.3508i −1.05879 1.05879i
\(160\) 10.0382 7.69634i 0.793593 0.608449i
\(161\) 5.31932i 0.419221i
\(162\) −5.57381 + 10.2047i −0.437920 + 0.801759i
\(163\) 13.1876i 1.03293i −0.856308 0.516466i \(-0.827247\pi\)
0.856308 0.516466i \(-0.172753\pi\)
\(164\) 3.47836 15.9711i 0.271614 1.24714i
\(165\) 13.9607 14.3030i 1.08684 1.11349i
\(166\) −2.42534 8.26366i −0.188243 0.641385i
\(167\) 19.7352 1.52716 0.763578 0.645715i \(-0.223441\pi\)
0.763578 + 0.645715i \(0.223441\pi\)
\(168\) 0.676351 + 9.50516i 0.0521816 + 0.733339i
\(169\) 7.41342i 0.570263i
\(170\) 0.782098 + 13.0149i 0.0599842 + 0.998199i
\(171\) 0.0938819 0.00717933
\(172\) −3.46871 0.755452i −0.264487 0.0576027i
\(173\) 9.28097i 0.705619i 0.935695 + 0.352810i \(0.114774\pi\)
−0.935695 + 0.352810i \(0.885226\pi\)
\(174\) 1.96944 + 6.71030i 0.149303 + 0.508707i
\(175\) 0.245613 + 10.1369i 0.0185666 + 0.766281i
\(176\) −20.1683 + 7.51127i −1.52024 + 0.566183i
\(177\) 23.7171 1.78269
\(178\) 1.79468 + 0.980251i 0.134517 + 0.0734729i
\(179\) 13.7415 1.02709 0.513544 0.858063i \(-0.328332\pi\)
0.513544 + 0.858063i \(0.328332\pi\)
\(180\) 0.896364 0.591209i 0.0668110 0.0440661i
\(181\) −14.5581 + 14.5581i −1.08210 + 1.08210i −0.0857812 + 0.996314i \(0.527339\pi\)
−0.996314 + 0.0857812i \(0.972661\pi\)
\(182\) −6.50444 + 1.90902i −0.482141 + 0.141506i
\(183\) 3.71426 3.71426i 0.274566 0.274566i
\(184\) −7.40014 + 0.526566i −0.545546 + 0.0388190i
\(185\) −0.0905402 7.47466i −0.00665665 0.549548i
\(186\) 1.92925 0.566226i 0.141460 0.0415177i
\(187\) 5.22082 21.5609i 0.381784 1.57669i
\(188\) −0.210534 + 0.966682i −0.0153548 + 0.0705025i
\(189\) 10.9162i 0.794034i
\(190\) 1.09225 + 0.579521i 0.0792401 + 0.0420429i
\(191\) 8.75406i 0.633421i −0.948522 0.316711i \(-0.897422\pi\)
0.948522 0.316711i \(-0.102578\pi\)
\(192\) 13.1564 1.88185i 0.949484 0.135811i
\(193\) 15.8434i 1.14043i 0.821495 + 0.570216i \(0.193140\pi\)
−0.821495 + 0.570216i \(0.806860\pi\)
\(194\) 19.5496 + 10.6779i 1.40358 + 0.766631i
\(195\) −6.28328 6.13288i −0.449955 0.439185i
\(196\) −3.12078 4.85862i −0.222913 0.347044i
\(197\) 12.8813i 0.917752i −0.888500 0.458876i \(-0.848252\pi\)
0.888500 0.458876i \(-0.151748\pi\)
\(198\) −1.75302 + 0.514502i −0.124581 + 0.0365640i
\(199\) −2.10297 + 2.10297i −0.149075 + 0.149075i −0.777705 0.628630i \(-0.783616\pi\)
0.628630 + 0.777705i \(0.283616\pi\)
\(200\) 14.0780 1.34516i 0.995466 0.0951172i
\(201\) −6.03772 + 6.03772i −0.425868 + 0.425868i
\(202\) 11.4130 + 6.23375i 0.803014 + 0.438605i
\(203\) 4.26848 + 4.26848i 0.299589 + 0.299589i
\(204\) −5.98357 + 12.3236i −0.418933 + 0.862821i
\(205\) 12.7648 13.0778i 0.891533 0.913396i
\(206\) −2.94574 10.0368i −0.205239 0.699294i
\(207\) −0.629782 −0.0437729
\(208\) 3.29967 + 8.85988i 0.228791 + 0.614322i
\(209\) −1.48759 1.48759i −0.102899 0.102899i
\(210\) −4.99341 + 9.41131i −0.344578 + 0.649442i
\(211\) −16.3772 16.3772i −1.12745 1.12745i −0.990590 0.136862i \(-0.956298\pi\)
−0.136862 0.990590i \(-0.543702\pi\)
\(212\) −4.83706 + 22.2097i −0.332211 + 1.52537i
\(213\) 3.76224 + 3.76224i 0.257785 + 0.257785i
\(214\) −1.45096 0.792511i −0.0991855 0.0541750i
\(215\) −2.84033 2.77234i −0.193709 0.189072i
\(216\) 15.1864 1.08060i 1.03330 0.0735258i
\(217\) 1.22721 1.22721i 0.0833086 0.0833086i
\(218\) 15.6465 4.59217i 1.05972 0.311021i
\(219\) 9.12803 0.616815
\(220\) −23.5711 4.83528i −1.58916 0.325995i
\(221\) −9.47163 2.29349i −0.637131 0.154277i
\(222\) 3.76493 6.89297i 0.252686 0.462626i
\(223\) 11.1310 + 11.1310i 0.745386 + 0.745386i 0.973609 0.228223i \(-0.0732914\pi\)
−0.228223 + 0.973609i \(0.573291\pi\)
\(224\) 9.18798 6.86936i 0.613898 0.458978i
\(225\) 1.20017 0.0290794i 0.0800111 0.00193863i
\(226\) 10.0877 + 5.50989i 0.671024 + 0.366512i
\(227\) −18.8489 −1.25104 −0.625522 0.780206i \(-0.715114\pi\)
−0.625522 + 0.780206i \(0.715114\pi\)
\(228\) 0.702109 + 1.09309i 0.0464983 + 0.0723913i
\(229\) 19.2708i 1.27345i 0.771092 + 0.636724i \(0.219711\pi\)
−0.771092 + 0.636724i \(0.780289\pi\)
\(230\) −7.32707 3.88756i −0.483133 0.256338i
\(231\) 12.8177 12.8177i 0.843345 0.843345i
\(232\) 5.51569 6.36077i 0.362122 0.417605i
\(233\) −5.29078 −0.346611 −0.173305 0.984868i \(-0.555445\pi\)
−0.173305 + 0.984868i \(0.555445\pi\)
\(234\) 0.226019 + 0.770094i 0.0147753 + 0.0503427i
\(235\) −0.772613 + 0.791560i −0.0503997 + 0.0516357i
\(236\) −15.4309 24.0237i −1.00447 1.56381i
\(237\) −1.05118 1.05118i −0.0682817 0.0682817i
\(238\) 0.566298 + 11.8115i 0.0367076 + 0.765627i
\(239\) −2.05961 −0.133225 −0.0666126 0.997779i \(-0.521219\pi\)
−0.0666126 + 0.997779i \(0.521219\pi\)
\(240\) 13.5871 + 6.01510i 0.877046 + 0.388273i
\(241\) −5.76525 + 5.76525i −0.371372 + 0.371372i −0.867977 0.496605i \(-0.834580\pi\)
0.496605 + 0.867977i \(0.334580\pi\)
\(242\) 22.2770 + 12.1677i 1.43202 + 0.782167i
\(243\) 2.48907 0.159674
\(244\) −6.17885 1.34569i −0.395560 0.0861492i
\(245\) −0.0781973 6.45568i −0.00499584 0.412438i
\(246\) 18.4241 5.40739i 1.17468 0.344763i
\(247\) −0.653493 + 0.653493i −0.0415808 + 0.0415808i
\(248\) −1.82876 1.58579i −0.116126 0.100698i
\(249\) 7.15372 7.15372i 0.453348 0.453348i
\(250\) 14.1426 + 7.07015i 0.894456 + 0.447156i
\(251\) −9.17446 −0.579087 −0.289544 0.957165i \(-0.593503\pi\)
−0.289544 + 0.957165i \(0.593503\pi\)
\(252\) 0.819385 0.526306i 0.0516164 0.0331542i
\(253\) 9.97911 + 9.97911i 0.627381 + 0.627381i
\(254\) 6.71327 + 22.8735i 0.421228 + 1.43521i
\(255\) −12.9774 + 8.13507i −0.812674 + 0.509438i
\(256\) −10.4661 12.1021i −0.654128 0.756384i
\(257\) 15.7791 + 15.7791i 0.984276 + 0.984276i 0.999878 0.0156020i \(-0.00496647\pi\)
−0.0156020 + 0.999878i \(0.504966\pi\)
\(258\) −1.17441 4.00147i −0.0731157 0.249121i
\(259\) 6.77958i 0.421263i
\(260\) −2.12412 + 10.3547i −0.131733 + 0.642171i
\(261\) 0.505368 0.505368i 0.0312815 0.0312815i
\(262\) −5.02659 17.1267i −0.310544 1.05809i
\(263\) 16.7952 + 16.7952i 1.03564 + 1.03564i 0.999341 + 0.0362977i \(0.0115565\pi\)
0.0362977 + 0.999341i \(0.488444\pi\)
\(264\) −19.1006 16.5629i −1.17556 1.01938i
\(265\) −17.7509 + 18.1862i −1.09043 + 1.11717i
\(266\) 0.984169 + 0.537552i 0.0603433 + 0.0329594i
\(267\) 2.40221i 0.147013i
\(268\) 10.0440 + 2.18750i 0.613538 + 0.133623i
\(269\) −3.81403 + 3.81403i −0.232546 + 0.232546i −0.813754 0.581209i \(-0.802580\pi\)
0.581209 + 0.813754i \(0.302580\pi\)
\(270\) 15.0364 + 7.97795i 0.915087 + 0.485523i
\(271\) 17.3406i 1.05337i 0.850061 + 0.526684i \(0.176565\pi\)
−0.850061 + 0.526684i \(0.823435\pi\)
\(272\) 16.3759 1.95706i 0.992934 0.118664i
\(273\) −5.63079 5.63079i −0.340791 0.340791i
\(274\) −5.99870 20.4389i −0.362395 1.23476i
\(275\) −19.4778 18.5563i −1.17456 1.11898i
\(276\) −4.70992 7.33268i −0.283504 0.441375i
\(277\) −3.72812 −0.224001 −0.112000 0.993708i \(-0.535726\pi\)
−0.112000 + 0.993708i \(0.535726\pi\)
\(278\) −20.3151 + 5.96239i −1.21842 + 0.357600i
\(279\) −0.145296 0.145296i −0.00869865 0.00869865i
\(280\) 12.7818 1.06525i 0.763858 0.0636607i
\(281\) 10.7940i 0.643914i 0.946754 + 0.321957i \(0.104341\pi\)
−0.946754 + 0.321957i \(0.895659\pi\)
\(282\) −1.11516 + 0.327292i −0.0664065 + 0.0194900i
\(283\) 1.68858i 0.100376i −0.998740 0.0501878i \(-0.984018\pi\)
0.998740 0.0501878i \(-0.0159820\pi\)
\(284\) 1.36308 6.25867i 0.0808838 0.371384i
\(285\) 0.0175927 + 1.45239i 0.00104210 + 0.0860320i
\(286\) 8.62106 15.7837i 0.509774 0.933312i
\(287\) 11.7198 11.7198i 0.691795 0.691795i
\(288\) −0.813299 1.08781i −0.0479241 0.0641000i
\(289\) −7.77688 + 15.1169i −0.457464 + 0.889228i
\(290\) 8.99916 2.76003i 0.528449 0.162074i
\(291\) 26.1674i 1.53396i
\(292\) −5.93889 9.24602i −0.347548 0.541083i
\(293\) −21.4800 + 21.4800i −1.25487 + 1.25487i −0.301366 + 0.953508i \(0.597443\pi\)
−0.953508 + 0.301366i \(0.902557\pi\)
\(294\) 3.25168 5.95329i 0.189642 0.347203i
\(295\) −0.386651 31.9204i −0.0225117 1.85848i
\(296\) −9.43162 + 0.671119i −0.548202 + 0.0390080i
\(297\) −20.4788 20.4788i −1.18830 1.18830i
\(298\) −7.00885 + 12.8321i −0.406012 + 0.743341i
\(299\) 4.38379 4.38379i 0.253521 0.253521i
\(300\) 9.31419 + 13.7563i 0.537755 + 0.794220i
\(301\) −2.54537 2.54537i −0.146713 0.146713i
\(302\) −13.7212 + 25.1212i −0.789566 + 1.44557i
\(303\) 15.2765i 0.877611i
\(304\) 0.650408 1.42237i 0.0373034 0.0815785i
\(305\) −5.05950 4.93840i −0.289706 0.282772i
\(306\) 1.39843 0.0670470i 0.0799427 0.00383282i
\(307\) −8.39246 + 8.39246i −0.478983 + 0.478983i −0.904806 0.425823i \(-0.859984\pi\)
0.425823 + 0.904806i \(0.359984\pi\)
\(308\) −21.3229 4.64393i −1.21499 0.264612i
\(309\) 8.68865 8.68865i 0.494280 0.494280i
\(310\) −0.793524 2.58731i −0.0450691 0.146949i
\(311\) −19.8394 19.8394i −1.12499 1.12499i −0.990980 0.134006i \(-0.957216\pi\)
−0.134006 0.990980i \(-0.542784\pi\)
\(312\) −7.27604 + 8.39084i −0.411925 + 0.475038i
\(313\) 28.6023i 1.61670i −0.588704 0.808349i \(-0.700362\pi\)
0.588704 0.808349i \(-0.299638\pi\)
\(314\) −32.4457 + 9.52264i −1.83101 + 0.537393i
\(315\) 1.08872 0.0131876i 0.0613425 0.000743039i
\(316\) −0.380849 + 1.74869i −0.0214244 + 0.0983717i
\(317\) 19.8739i 1.11623i −0.829763 0.558116i \(-0.811525\pi\)
0.829763 0.558116i \(-0.188475\pi\)
\(318\) −25.6209 + 7.51961i −1.43675 + 0.421679i
\(319\) −16.0154 −0.896692
\(320\) −2.74724 17.6763i −0.153575 0.988137i
\(321\) 1.94213i 0.108399i
\(322\) −6.60204 3.60603i −0.367917 0.200956i
\(323\) 0.839667 + 1.37623i 0.0467203 + 0.0765756i
\(324\) 8.88699 + 13.8358i 0.493722 + 0.768655i
\(325\) −8.15170 + 8.55653i −0.452175 + 0.474631i
\(326\) −16.3677 8.94001i −0.906523 0.495142i
\(327\) 13.5449 + 13.5449i 0.749036 + 0.749036i
\(328\) −17.4644 15.1441i −0.964313 0.836195i
\(329\) −0.709360 + 0.709360i −0.0391083 + 0.0391083i
\(330\) −8.28803 27.0234i −0.456241 1.48759i
\(331\) 22.2818i 1.22472i 0.790580 + 0.612359i \(0.209779\pi\)
−0.790580 + 0.612359i \(0.790221\pi\)
\(332\) −11.9006 2.59183i −0.653128 0.142245i
\(333\) −0.802670 −0.0439860
\(334\) 13.3787 24.4942i 0.732050 1.34026i
\(335\) 8.22449 + 8.02763i 0.449352 + 0.438596i
\(336\) 12.2558 + 5.60420i 0.668607 + 0.305734i
\(337\) 17.4659i 0.951429i −0.879600 0.475714i \(-0.842190\pi\)
0.879600 0.475714i \(-0.157810\pi\)
\(338\) 9.20112 + 5.02564i 0.500475 + 0.273359i
\(339\) 13.5026i 0.733360i
\(340\) 16.6836 + 7.85226i 0.904794 + 0.425849i
\(341\) 4.60453i 0.249349i
\(342\) 0.0636436 0.116521i 0.00344145 0.00630073i
\(343\) 20.0512i 1.08267i
\(344\) −3.28910 + 3.79304i −0.177337 + 0.204507i
\(345\) −0.118016 9.74296i −0.00635377 0.524544i
\(346\) 11.5190 + 6.29167i 0.619266 + 0.338242i
\(347\) 4.81572 0.258521 0.129261 0.991611i \(-0.458740\pi\)
0.129261 + 0.991611i \(0.458740\pi\)
\(348\) 9.66355 + 2.10463i 0.518021 + 0.112820i
\(349\) 33.3515i 1.78526i −0.450788 0.892631i \(-0.648857\pi\)
0.450788 0.892631i \(-0.351143\pi\)
\(350\) 12.7479 + 6.56711i 0.681405 + 0.351027i
\(351\) −8.99629 + 8.99629i −0.480186 + 0.480186i
\(352\) −4.34976 + 30.1237i −0.231843 + 1.60560i
\(353\) −7.01055 7.01055i −0.373134 0.373134i 0.495484 0.868617i \(-0.334991\pi\)
−0.868617 + 0.495484i \(0.834991\pi\)
\(354\) 16.0781 29.4364i 0.854541 1.56452i
\(355\) 5.00220 5.12486i 0.265489 0.272000i
\(356\) 2.43327 1.56293i 0.128963 0.0828352i
\(357\) −11.8582 + 7.23494i −0.627603 + 0.382914i
\(358\) 9.31551 17.0552i 0.492340 0.901394i
\(359\) 34.9508i 1.84463i −0.386436 0.922316i \(-0.626294\pi\)
0.386436 0.922316i \(-0.373706\pi\)
\(360\) −0.126120 1.51330i −0.00664712 0.0797581i
\(361\) −18.8471 −0.991953
\(362\) 8.19960 + 27.9378i 0.430961 + 1.46838i
\(363\) 29.8182i 1.56505i
\(364\) −2.04006 + 9.36709i −0.106928 + 0.490969i
\(365\) −0.148811 12.2852i −0.00778910 0.643039i
\(366\) −2.09199 7.12786i −0.109350 0.372579i
\(367\) 34.8185i 1.81751i 0.417330 + 0.908755i \(0.362966\pi\)
−0.417330 + 0.908755i \(0.637034\pi\)
\(368\) −4.36309 + 9.54160i −0.227442 + 0.497390i
\(369\) −1.38756 1.38756i −0.0722336 0.0722336i
\(370\) −9.33850 4.95478i −0.485486 0.257587i
\(371\) −16.2977 + 16.2977i −0.846133 + 0.846133i
\(372\) 0.605093 2.77833i 0.0313726 0.144050i
\(373\) −18.8892 + 18.8892i −0.978047 + 0.978047i −0.999764 0.0217171i \(-0.993087\pi\)
0.0217171 + 0.999764i \(0.493087\pi\)
\(374\) −23.2209 21.0961i −1.20072 1.09086i
\(375\) 0.674770 + 18.5616i 0.0348450 + 0.958515i
\(376\) 1.05707 + 0.916627i 0.0545141 + 0.0472714i
\(377\) 7.03552i 0.362348i
\(378\) 13.5485 + 7.40018i 0.696861 + 0.380624i
\(379\) −17.0957 17.0957i −0.878145 0.878145i 0.115197 0.993343i \(-0.463250\pi\)
−0.993343 + 0.115197i \(0.963250\pi\)
\(380\) 1.45972 0.962776i 0.0748819 0.0493893i
\(381\) −19.8012 + 19.8012i −1.01445 + 1.01445i
\(382\) −10.8650 5.93447i −0.555904 0.303634i
\(383\) −4.65399 4.65399i −0.237808 0.237808i 0.578134 0.815942i \(-0.303781\pi\)
−0.815942 + 0.578134i \(0.803781\pi\)
\(384\) 6.58324 17.6048i 0.335950 0.898389i
\(385\) −17.4601 17.0422i −0.889849 0.868550i
\(386\) 19.6639 + 10.7404i 1.00087 + 0.546672i
\(387\) −0.301360 + 0.301360i −0.0153190 + 0.0153190i
\(388\) 26.5057 17.0251i 1.34562 0.864319i
\(389\) 24.1708i 1.22551i 0.790275 + 0.612753i \(0.209938\pi\)
−0.790275 + 0.612753i \(0.790062\pi\)
\(390\) −11.8713 + 3.64090i −0.601126 + 0.184364i
\(391\) −5.63269 9.23209i −0.284857 0.466887i
\(392\) −8.14586 + 0.579628i −0.411428 + 0.0292757i
\(393\) 14.8263 14.8263i 0.747887 0.747887i
\(394\) −15.9875 8.73234i −0.805438 0.439929i
\(395\) −1.39763 + 1.43190i −0.0703224 + 0.0720469i
\(396\) −0.549819 + 2.52453i −0.0276294 + 0.126862i
\(397\) 35.1264i 1.76294i −0.472239 0.881471i \(-0.656554\pi\)
0.472239 0.881471i \(-0.343446\pi\)
\(398\) 1.18446 + 4.03571i 0.0593716 + 0.202292i
\(399\) 1.31733i 0.0659489i
\(400\) 7.87410 18.3847i 0.393705 0.919237i
\(401\) 0.129883 + 0.129883i 0.00648603 + 0.00648603i 0.710342 0.703856i \(-0.248540\pi\)
−0.703856 + 0.710342i \(0.748540\pi\)
\(402\) 3.40064 + 11.5867i 0.169609 + 0.577893i
\(403\) 2.02275 0.100761
\(404\) 15.4740 9.93922i 0.769858 0.494494i
\(405\) 0.222681 + 18.3837i 0.0110651 + 0.913493i
\(406\) 8.19144 2.40415i 0.406534 0.119316i
\(407\) 12.7186 + 12.7186i 0.630436 + 0.630436i
\(408\) 11.2390 + 15.7807i 0.556412 + 0.781263i
\(409\) 3.44732i 0.170459i −0.996361 0.0852294i \(-0.972838\pi\)
0.996361 0.0852294i \(-0.0271623\pi\)
\(410\) −7.57807 24.7086i −0.374254 1.22027i
\(411\) 17.6936 17.6936i 0.872760 0.872760i
\(412\) −14.4540 3.14794i −0.712097 0.155088i
\(413\) 28.9521i 1.42464i
\(414\) −0.426936 + 0.781650i −0.0209828 + 0.0384160i
\(415\) −9.74468 9.51143i −0.478347 0.466898i
\(416\) 13.2333 + 1.91084i 0.648814 + 0.0936864i
\(417\) −17.5865 17.5865i −0.861213 0.861213i
\(418\) −2.85476 + 0.837859i −0.139631 + 0.0409810i
\(419\) −7.11796 + 7.11796i −0.347735 + 0.347735i −0.859265 0.511530i \(-0.829079\pi\)
0.511530 + 0.859265i \(0.329079\pi\)
\(420\) 8.29570 + 12.5776i 0.404789 + 0.613722i
\(421\) 9.88208i 0.481623i 0.970572 + 0.240812i \(0.0774136\pi\)
−0.970572 + 0.240812i \(0.922586\pi\)
\(422\) −31.4287 + 9.22417i −1.52993 + 0.449026i
\(423\) 0.0839848 + 0.0839848i 0.00408348 + 0.00408348i
\(424\) 24.2863 + 21.0597i 1.17945 + 1.02275i
\(425\) 11.1604 + 17.3334i 0.541359 + 0.840792i
\(426\) 7.21994 2.11902i 0.349807 0.102667i
\(427\) −4.53409 4.53409i −0.219420 0.219420i
\(428\) −1.96724 + 1.26360i −0.0950902 + 0.0610782i
\(429\) 21.1268 1.02001
\(430\) −5.36636 + 1.64585i −0.258789 + 0.0793701i
\(431\) 5.70212 5.70212i 0.274662 0.274662i −0.556312 0.830974i \(-0.687784\pi\)
0.830974 + 0.556312i \(0.187784\pi\)
\(432\) 8.95381 19.5810i 0.430790 0.942091i
\(433\) 1.92567 1.92567i 0.0925418 0.0925418i −0.659320 0.751862i \(-0.729156\pi\)
0.751862 + 0.659320i \(0.229156\pi\)
\(434\) −0.691206 2.35509i −0.0331790 0.113048i
\(435\) 7.91292 + 7.72352i 0.379396 + 0.370314i
\(436\) 4.90739 22.5326i 0.235021 1.07912i
\(437\) −1.02559 −0.0490607
\(438\) 6.18799 11.3292i 0.295673 0.541330i
\(439\) −3.40492 + 3.40492i −0.162508 + 0.162508i −0.783677 0.621169i \(-0.786658\pi\)
0.621169 + 0.783677i \(0.286658\pi\)
\(440\) −21.9804 + 25.9772i −1.04787 + 1.23841i
\(441\) −0.693246 −0.0330117
\(442\) −9.26747 + 10.2009i −0.440808 + 0.485206i
\(443\) 11.7307 + 11.7307i 0.557345 + 0.557345i 0.928551 0.371206i \(-0.121056\pi\)
−0.371206 + 0.928551i \(0.621056\pi\)
\(444\) −6.00288 9.34564i −0.284884 0.443524i
\(445\) 3.23309 0.0391623i 0.153263 0.00185647i
\(446\) 21.3610 6.26934i 1.01147 0.296862i
\(447\) −17.1759 −0.812394
\(448\) −2.29723 16.0604i −0.108534 0.758783i
\(449\) 4.89774 4.89774i 0.231139 0.231139i −0.582029 0.813168i \(-0.697741\pi\)
0.813168 + 0.582029i \(0.197741\pi\)
\(450\) 0.777514 1.50929i 0.0366524 0.0711487i
\(451\) 43.9728i 2.07060i
\(452\) 13.6771 8.78508i 0.643318 0.413215i
\(453\) −33.6253 −1.57985
\(454\) −12.7779 + 23.3942i −0.599695 + 1.09794i
\(455\) −7.48657 + 7.67017i −0.350976 + 0.359583i
\(456\) 1.83264 0.130404i 0.0858214 0.00610672i
\(457\) −18.8779 18.8779i −0.883073 0.883073i 0.110773 0.993846i \(-0.464667\pi\)
−0.993846 + 0.110773i \(0.964667\pi\)
\(458\) 23.9178 + 13.0639i 1.11760 + 0.610434i
\(459\) 11.5592 + 18.9458i 0.539539 + 0.884316i
\(460\) −9.79213 + 6.45853i −0.456560 + 0.301130i
\(461\) 37.7181 1.75671 0.878355 0.478009i \(-0.158642\pi\)
0.878355 + 0.478009i \(0.158642\pi\)
\(462\) −7.21936 24.5979i −0.335875 1.14440i
\(463\) −11.9943 + 11.9943i −0.557421 + 0.557421i −0.928573 0.371151i \(-0.878963\pi\)
0.371151 + 0.928573i \(0.378963\pi\)
\(464\) −4.15548 11.1578i −0.192914 0.517987i
\(465\) 2.22056 2.27501i 0.102976 0.105501i
\(466\) −3.58668 + 6.56662i −0.166150 + 0.304193i
\(467\) 3.79544 + 3.79544i 0.175632 + 0.175632i 0.789449 0.613817i \(-0.210367\pi\)
−0.613817 + 0.789449i \(0.710367\pi\)
\(468\) 1.10902 + 0.241534i 0.0512644 + 0.0111649i
\(469\) 7.37041 + 7.37041i 0.340334 + 0.340334i
\(470\) 0.458677 + 1.49553i 0.0211572 + 0.0689837i
\(471\) −28.0877 28.0877i −1.29421 1.29421i
\(472\) −40.2776 + 2.86600i −1.85393 + 0.131919i
\(473\) 9.55029 0.439123
\(474\) −2.01728 + 0.592060i −0.0926566 + 0.0271942i
\(475\) 1.95445 0.0473554i 0.0896765 0.00217282i
\(476\) 15.0437 + 7.30430i 0.689526 + 0.334792i
\(477\) 1.92957 + 1.92957i 0.0883488 + 0.0883488i
\(478\) −1.39623 + 2.55627i −0.0638622 + 0.116921i
\(479\) −26.2920 + 26.2920i −1.20131 + 1.20131i −0.227543 + 0.973768i \(0.573069\pi\)
−0.973768 + 0.227543i \(0.926931\pi\)
\(480\) 16.6765 12.7859i 0.761173 0.583593i
\(481\) 5.58722 5.58722i 0.254755 0.254755i
\(482\) 3.24718 + 11.0638i 0.147905 + 0.503943i
\(483\) 8.83696i 0.402095i
\(484\) 30.2036 19.4004i 1.37289 0.881834i
\(485\) 35.2183 0.426598i 1.59918 0.0193708i
\(486\) 1.68737 3.08929i 0.0765405 0.140133i
\(487\) 18.8448i 0.853938i 0.904266 + 0.426969i \(0.140419\pi\)
−0.904266 + 0.426969i \(0.859581\pi\)
\(488\) −5.85890 + 6.75657i −0.265220 + 0.305856i
\(489\) 21.9085i 0.990735i
\(490\) −8.06543 4.27932i −0.364359 0.193320i
\(491\) 13.6969i 0.618133i 0.951040 + 0.309067i \(0.100017\pi\)
−0.951040 + 0.309067i \(0.899983\pi\)
\(492\) 5.77858 26.5327i 0.260518 1.19619i
\(493\) 11.9282 + 2.88833i 0.537219 + 0.130084i
\(494\) 0.368069 + 1.25409i 0.0165602 + 0.0564241i
\(495\) −2.01771 + 2.06719i −0.0906894 + 0.0929134i
\(496\) −3.20793 + 1.19473i −0.144040 + 0.0536448i
\(497\) 4.59267 4.59267i 0.206009 0.206009i
\(498\) −4.02921 13.7284i −0.180553 0.615183i
\(499\) 17.6916 17.6916i 0.791986 0.791986i −0.189831 0.981817i \(-0.560794\pi\)
0.981817 + 0.189831i \(0.0607940\pi\)
\(500\) 18.3625 12.7601i 0.821195 0.570647i
\(501\) 32.7860 1.46477
\(502\) −6.21947 + 11.3868i −0.277588 + 0.508219i
\(503\) 26.8518 1.19726 0.598631 0.801025i \(-0.295711\pi\)
0.598631 + 0.801025i \(0.295711\pi\)
\(504\) −0.0977518 1.37376i −0.00435421 0.0611923i
\(505\) 20.5603 0.249046i 0.914923 0.0110824i
\(506\) 19.1504 5.62056i 0.851341 0.249864i
\(507\) 12.3159i 0.546967i
\(508\) 32.9403 + 7.17409i 1.46149 + 0.318299i
\(509\) −4.40293 −0.195157 −0.0975783 0.995228i \(-0.531110\pi\)
−0.0975783 + 0.995228i \(0.531110\pi\)
\(510\) 1.29930 + 21.6216i 0.0575338 + 0.957421i
\(511\) 11.1428i 0.492929i
\(512\) −22.1155 + 4.78570i −0.977378 + 0.211500i
\(513\) 2.10469 0.0929244
\(514\) 30.2810 8.88733i 1.33564 0.392003i
\(515\) −11.8355 11.5522i −0.521536 0.509053i
\(516\) −5.76255 1.25503i −0.253682 0.0552495i
\(517\) 2.66153i 0.117054i
\(518\) −8.41443 4.59595i −0.369709 0.201934i
\(519\) 15.4184i 0.676793i
\(520\) 11.4117 + 9.65590i 0.500436 + 0.423439i
\(521\) −4.39568 4.39568i −0.192578 0.192578i 0.604231 0.796809i \(-0.293480\pi\)
−0.796809 + 0.604231i \(0.793480\pi\)
\(522\) −0.284640 0.969828i −0.0124583 0.0424482i
\(523\) −23.1827 23.1827i −1.01371 1.01371i −0.999905 0.0138053i \(-0.995606\pi\)
−0.0138053 0.999905i \(-0.504394\pi\)
\(524\) −24.6642 5.37163i −1.07746 0.234661i
\(525\) 0.408035 + 16.8404i 0.0178081 + 0.734977i
\(526\) 32.2310 9.45963i 1.40534 0.412459i
\(527\) 0.830413 3.42943i 0.0361733 0.149388i
\(528\) −33.5055 + 12.4784i −1.45814 + 0.543053i
\(529\) −16.1201 −0.700873
\(530\) 10.5382 + 34.3601i 0.457750 + 1.49251i
\(531\) −3.42779 −0.148754
\(532\) 1.33436 0.857083i 0.0578517 0.0371593i
\(533\) 19.3171 0.836716
\(534\) 2.98149 + 1.62849i 0.129022 + 0.0704715i
\(535\) −2.61388 + 0.0316619i −0.113008 + 0.00136886i
\(536\) 9.52397 10.9832i 0.411373 0.474401i
\(537\) 22.8287 0.985129
\(538\) 2.14819 + 7.31933i 0.0926149 + 0.315559i
\(539\) 10.9847 + 10.9847i 0.473145 + 0.473145i
\(540\) 20.0951 13.2540i 0.864757 0.570362i
\(541\) −21.8221 21.8221i −0.938205 0.938205i 0.0599937 0.998199i \(-0.480892\pi\)
−0.998199 + 0.0599937i \(0.980892\pi\)
\(542\) 21.5222 + 11.7554i 0.924458 + 0.504938i
\(543\) −24.1853 + 24.1853i −1.03789 + 1.03789i
\(544\) 8.67240 21.6515i 0.371826 0.928302i
\(545\) 18.0090 18.4507i 0.771423 0.790340i
\(546\) −10.8058 + 3.17144i −0.462445 + 0.135725i
\(547\) 39.3646i 1.68311i −0.540173 0.841554i \(-0.681641\pi\)
0.540173 0.841554i \(-0.318359\pi\)
\(548\) −29.4341 6.41047i −1.25736 0.273842i
\(549\) −0.536815 + 0.536815i −0.0229107 + 0.0229107i
\(550\) −36.2352 + 11.5953i −1.54507 + 0.494423i
\(551\) 0.822984 0.822984i 0.0350603 0.0350603i
\(552\) −12.2938 + 0.874781i −0.523259 + 0.0372331i
\(553\) −1.28321 + 1.28321i −0.0545675 + 0.0545675i
\(554\) −2.52733 + 4.62713i −0.107376 + 0.196588i
\(555\) −0.150414 12.4176i −0.00638471 0.527098i
\(556\) −6.37167 + 29.2560i −0.270219 + 1.24073i
\(557\) 24.6084 + 24.6084i 1.04269 + 1.04269i 0.999047 + 0.0436458i \(0.0138973\pi\)
0.0436458 + 0.999047i \(0.486103\pi\)
\(558\) −0.278831 + 0.0818355i −0.0118039 + 0.00346437i
\(559\) 4.19541i 0.177447i
\(560\) 7.34279 16.5862i 0.310289 0.700894i
\(561\) 8.67331 35.8190i 0.366188 1.51228i
\(562\) 13.3969 + 7.31734i 0.565112 + 0.308664i
\(563\) 1.03909 1.03909i 0.0437924 0.0437924i −0.684871 0.728664i \(-0.740142\pi\)
0.728664 + 0.684871i \(0.240142\pi\)
\(564\) −0.349759 + 1.60594i −0.0147275 + 0.0676224i
\(565\) 18.1729 0.220127i 0.764539 0.00926082i
\(566\) −2.09577 1.14471i −0.0880918 0.0481156i
\(567\) 16.6742i 0.700249i
\(568\) −6.84386 5.93460i −0.287162 0.249010i
\(569\) −2.09247 −0.0877209 −0.0438605 0.999038i \(-0.513966\pi\)
−0.0438605 + 0.999038i \(0.513966\pi\)
\(570\) 1.81455 + 0.962754i 0.0760031 + 0.0403253i
\(571\) 2.08508 + 2.08508i 0.0872581 + 0.0872581i 0.749389 0.662130i \(-0.230348\pi\)
−0.662130 + 0.749389i \(0.730348\pi\)
\(572\) −13.7456 21.3999i −0.574731 0.894776i
\(573\) 14.5431i 0.607545i
\(574\) −6.60095 22.4908i −0.275518 0.938750i
\(575\) −13.1110 + 0.317671i −0.546764 + 0.0132478i
\(576\) −1.90148 + 0.271981i −0.0792282 + 0.0113325i
\(577\) −30.5131 + 30.5131i −1.27028 + 1.27028i −0.324332 + 0.945943i \(0.605139\pi\)
−0.945943 + 0.324332i \(0.894861\pi\)
\(578\) 13.4902 + 19.9001i 0.561118 + 0.827736i
\(579\) 26.3205i 1.09384i
\(580\) 2.67504 13.0403i 0.111075 0.541469i
\(581\) −8.73273 8.73273i −0.362295 0.362295i
\(582\) 32.4776 + 17.7392i 1.34624 + 0.735313i
\(583\) 61.1492i 2.53254i
\(584\) −15.5017 + 1.10304i −0.641464 + 0.0456442i
\(585\) 0.908111 + 0.886374i 0.0375458 + 0.0366471i
\(586\) 12.0982 + 41.2213i 0.499774 + 1.70284i
\(587\) 28.5467 + 28.5467i 1.17825 + 1.17825i 0.980190 + 0.198059i \(0.0634638\pi\)
0.198059 + 0.980190i \(0.436536\pi\)
\(588\) −5.18454 8.07160i −0.213807 0.332867i
\(589\) −0.236613 0.236613i −0.00974946 0.00974946i
\(590\) −39.8800 21.1593i −1.64183 0.871115i
\(591\) 21.3995i 0.880260i
\(592\) −5.56084 + 12.1610i −0.228549 + 0.499812i
\(593\) 31.2705 31.2705i 1.28412 1.28412i 0.345824 0.938299i \(-0.387599\pi\)
0.938299 0.345824i \(-0.112401\pi\)
\(594\) −39.3000 + 11.5344i −1.61250 + 0.473260i
\(595\) 9.93069 + 15.8418i 0.407119 + 0.649451i
\(596\) 11.1750 + 17.3980i 0.457748 + 0.712649i
\(597\) −3.49365 + 3.49365i −0.142985 + 0.142985i
\(598\) −2.46909 8.41273i −0.100969 0.344022i
\(599\) 12.2541 0.500691 0.250345 0.968157i \(-0.419456\pi\)
0.250345 + 0.968157i \(0.419456\pi\)
\(600\) 23.3877 2.23471i 0.954800 0.0912315i
\(601\) 2.35845 + 2.35845i 0.0962031 + 0.0962031i 0.753570 0.657367i \(-0.228330\pi\)
−0.657367 + 0.753570i \(0.728330\pi\)
\(602\) −4.88471 + 1.43364i −0.199086 + 0.0584307i
\(603\) 0.872621 0.872621i 0.0355359 0.0355359i
\(604\) 21.8773 + 34.0599i 0.890176 + 1.38588i
\(605\) 40.1317 0.486114i 1.63159 0.0197633i
\(606\) 18.9603 + 10.3561i 0.770210 + 0.420687i
\(607\) −10.7760 −0.437383 −0.218691 0.975794i \(-0.570179\pi\)
−0.218691 + 0.975794i \(0.570179\pi\)
\(608\) −1.32445 1.77149i −0.0537134 0.0718434i
\(609\) 7.09120 + 7.09120i 0.287350 + 0.287350i
\(610\) −9.55915 + 2.93177i −0.387038 + 0.118704i
\(611\) −1.16920 −0.0473009
\(612\) 0.864794 1.78110i 0.0349572 0.0719967i
\(613\) 18.2214 18.2214i 0.735954 0.735954i −0.235839 0.971792i \(-0.575784\pi\)
0.971792 + 0.235839i \(0.0757837\pi\)
\(614\) 4.72691 + 16.1056i 0.190762 + 0.649968i
\(615\) 21.2061 21.7261i 0.855112 0.876082i
\(616\) −20.2188 + 23.3166i −0.814639 + 0.939454i
\(617\) 27.5364i 1.10858i 0.832325 + 0.554288i \(0.187009\pi\)
−0.832325 + 0.554288i \(0.812991\pi\)
\(618\) −4.89373 16.6740i −0.196855 0.670726i
\(619\) −26.4722 + 26.4722i −1.06401 + 1.06401i −0.0661992 + 0.997806i \(0.521087\pi\)
−0.997806 + 0.0661992i \(0.978913\pi\)
\(620\) −3.74916 0.769090i −0.150570 0.0308874i
\(621\) −14.1188 −0.566567
\(622\) −38.0728 + 11.1742i −1.52658 + 0.448044i
\(623\) 2.93244 0.117486
\(624\) 5.48173 + 14.7189i 0.219445 + 0.589226i
\(625\) 24.9707 1.21076i 0.998827 0.0484305i
\(626\) −35.4996 19.3898i −1.41885 0.774973i
\(627\) −2.47132 2.47132i −0.0986951 0.0986951i
\(628\) −10.1763 + 46.7252i −0.406079 + 1.86454i
\(629\) −7.17897 11.7665i −0.286244 0.469160i
\(630\) 0.721688 1.36020i 0.0287527 0.0541916i
\(631\) 45.3466 1.80522 0.902610 0.430458i \(-0.141648\pi\)
0.902610 + 0.430458i \(0.141648\pi\)
\(632\) 1.91220 + 1.65815i 0.0760632 + 0.0659575i
\(633\) −27.2073 27.2073i −1.08139 1.08139i
\(634\) −24.6664 13.4727i −0.979628 0.535071i
\(635\) 26.9729 + 26.3273i 1.07039 + 1.04477i
\(636\) −8.03578 + 36.8968i −0.318639 + 1.46306i
\(637\) 4.82555 4.82555i 0.191195 0.191195i
\(638\) −10.8570 + 19.8774i −0.429834 + 0.786955i
\(639\) −0.543750 0.543750i −0.0215104 0.0215104i
\(640\) −23.8012 8.57326i −0.940827 0.338888i
\(641\) 5.90140 5.90140i 0.233091 0.233091i −0.580891 0.813982i \(-0.697296\pi\)
0.813982 + 0.580891i \(0.197296\pi\)
\(642\) −2.41047 1.31659i −0.0951336 0.0519618i
\(643\) −3.51517 −0.138625 −0.0693124 0.997595i \(-0.522081\pi\)
−0.0693124 + 0.997595i \(0.522081\pi\)
\(644\) −8.95119 + 5.74952i −0.352726 + 0.226563i
\(645\) −4.71862 4.60567i −0.185795 0.181348i
\(646\) 2.27732 0.109185i 0.0895999 0.00429583i
\(647\) −15.5377 15.5377i −0.610848 0.610848i 0.332319 0.943167i \(-0.392169\pi\)
−0.943167 + 0.332319i \(0.892169\pi\)
\(648\) 23.1968 1.65060i 0.911256 0.0648415i
\(649\) 54.3145 + 54.3145i 2.13203 + 2.13203i
\(650\) 5.09376 + 15.9180i 0.199794 + 0.624355i
\(651\) 2.03876 2.03876i 0.0799053 0.0799053i
\(652\) −22.1917 + 14.2541i −0.869093 + 0.558235i
\(653\) −24.5762 −0.961743 −0.480871 0.876791i \(-0.659680\pi\)
−0.480871 + 0.876791i \(0.659680\pi\)
\(654\) 25.9934 7.62894i 1.01642 0.298315i
\(655\) −20.1961 19.7127i −0.789128 0.770239i
\(656\) −30.6354 + 11.4095i −1.19611 + 0.445466i
\(657\) −1.31926 −0.0514691
\(658\) 0.399534 + 1.36130i 0.0155755 + 0.0530690i
\(659\) 11.8832i 0.462904i 0.972846 + 0.231452i \(0.0743477\pi\)
−0.972846 + 0.231452i \(0.925652\pi\)
\(660\) −39.1585 8.03282i −1.52424 0.312677i
\(661\) −31.5825 −1.22842 −0.614209 0.789144i \(-0.710525\pi\)
−0.614209 + 0.789144i \(0.710525\pi\)
\(662\) 27.6549 + 15.1051i 1.07484 + 0.587075i
\(663\) −15.7352 3.81016i −0.611103 0.147974i
\(664\) −11.2843 + 13.0133i −0.437917 + 0.505013i
\(665\) 1.77297 0.0214759i 0.0687528 0.000832799i
\(666\) −0.544139 + 0.996229i −0.0210849 + 0.0386031i
\(667\) −5.52078 + 5.52078i −0.213765 + 0.213765i
\(668\) −21.3313 33.2098i −0.825332 1.28493i
\(669\) 18.4918 + 18.4918i 0.714936 + 0.714936i
\(670\) 15.5389 4.76576i 0.600321 0.184117i
\(671\) 17.0120 0.656741
\(672\) 15.2639 11.4120i 0.588819 0.440228i
\(673\) 8.10867i 0.312566i 0.987712 + 0.156283i \(0.0499512\pi\)
−0.987712 + 0.156283i \(0.950049\pi\)
\(674\) −21.6777 11.8403i −0.834994 0.456072i
\(675\) 26.9059 0.651916i 1.03561 0.0250923i
\(676\) 12.4751 8.01298i 0.479811 0.308191i
\(677\) 17.4897 0.672185 0.336093 0.941829i \(-0.390895\pi\)
0.336093 + 0.941829i \(0.390895\pi\)
\(678\) 16.7586 + 9.15355i 0.643612 + 0.351540i
\(679\) 31.9433 1.22587
\(680\) 21.0558 15.3836i 0.807452 0.589934i
\(681\) −31.3135 −1.19994
\(682\) 5.71488 + 3.12146i 0.218834 + 0.119527i
\(683\) −19.6076 −0.750262 −0.375131 0.926972i \(-0.622402\pi\)
−0.375131 + 0.926972i \(0.622402\pi\)
\(684\) −0.101475 0.157982i −0.00387998 0.00604058i
\(685\) −24.1019 23.5250i −0.920886 0.898844i
\(686\) −24.8865 13.5930i −0.950170 0.518982i
\(687\) 32.0144i 1.22143i
\(688\) 2.47799 + 6.65359i 0.0944725 + 0.253666i
\(689\) −26.8626 −1.02339
\(690\) −12.1724 6.45839i −0.463396 0.245867i
\(691\) 32.2386 + 32.2386i 1.22641 + 1.22641i 0.965312 + 0.261101i \(0.0840855\pi\)
0.261101 + 0.965312i \(0.415914\pi\)
\(692\) 15.6177 10.0316i 0.593697 0.381343i
\(693\) −1.85252 + 1.85252i −0.0703715 + 0.0703715i
\(694\) 3.26463 5.97700i 0.123924 0.226884i
\(695\) −23.3826 + 23.9560i −0.886953 + 0.908703i
\(696\) 9.16317 10.5671i 0.347329 0.400545i
\(697\) 7.93035 32.7507i 0.300383 1.24052i
\(698\) −41.3939 22.6093i −1.56678 0.855775i
\(699\) −8.78954 −0.332451
\(700\) 16.7927 11.3701i 0.634703 0.429748i
\(701\) 29.7379i 1.12319i −0.827414 0.561593i \(-0.810189\pi\)
0.827414 0.561593i \(-0.189811\pi\)
\(702\) 5.06700 + 17.2644i 0.191242 + 0.651601i
\(703\) −1.30714 −0.0492996
\(704\) 34.4391 + 25.8199i 1.29797 + 0.973124i
\(705\) −1.28354 + 1.31501i −0.0483408 + 0.0495263i
\(706\) −13.4536 + 3.94857i −0.506334 + 0.148606i
\(707\) 18.6484 0.701345
\(708\) −25.6352 39.9104i −0.963431 1.49993i
\(709\) 10.1054 10.1054i 0.379517 0.379517i −0.491411 0.870928i \(-0.663519\pi\)
0.870928 + 0.491411i \(0.163519\pi\)
\(710\) −2.96965 9.68264i −0.111449 0.363383i
\(711\) 0.151925 + 0.151925i 0.00569765 + 0.00569765i
\(712\) −0.290286 4.07956i −0.0108789 0.152888i
\(713\) 1.58726 + 1.58726i 0.0594432 + 0.0594432i
\(714\) 0.940787 + 19.6224i 0.0352081 + 0.734350i
\(715\) −0.344422 28.4342i −0.0128807 1.06338i
\(716\) −14.8528 23.1238i −0.555076 0.864176i
\(717\) −3.42162 −0.127783
\(718\) −43.3790 23.6935i −1.61889 0.884234i
\(719\) 23.6636 23.6636i 0.882502 0.882502i −0.111287 0.993788i \(-0.535497\pi\)
0.993788 + 0.111287i \(0.0354972\pi\)
\(720\) −1.96372 0.869351i −0.0731837 0.0323988i
\(721\) −10.6065 10.6065i −0.395005 0.395005i
\(722\) −12.7767 + 23.3920i −0.475498 + 0.870559i
\(723\) −9.57777 + 9.57777i −0.356201 + 0.356201i
\(724\) 40.2334 + 8.76245i 1.49526 + 0.325654i
\(725\) 10.2659 10.7758i 0.381267 0.400202i
\(726\) 37.0086 + 20.2141i 1.37352 + 0.750214i
\(727\) 15.9581 + 15.9581i 0.591853 + 0.591853i 0.938132 0.346278i \(-0.112555\pi\)
−0.346278 + 0.938132i \(0.612555\pi\)
\(728\) 10.2429 + 8.88206i 0.379628 + 0.329191i
\(729\) 28.8012 1.06671
\(730\) −15.3486 8.14360i −0.568078 0.301408i
\(731\) −7.11300 1.72236i −0.263084 0.0637040i
\(732\) −10.2649 2.23559i −0.379401 0.0826298i
\(733\) 26.9181 + 26.9181i 0.994242 + 0.994242i 0.999984 0.00574169i \(-0.00182765\pi\)
−0.00574169 + 0.999984i \(0.501828\pi\)
\(734\) 43.2147 + 23.6038i 1.59509 + 0.871233i
\(735\) −0.129909 10.7248i −0.00479176 0.395589i
\(736\) 8.88471 + 11.8836i 0.327495 + 0.438034i
\(737\) −27.6539 −1.01865
\(738\) −2.66281 + 0.781521i −0.0980193 + 0.0287682i
\(739\) 19.0607 0.701158 0.350579 0.936533i \(-0.385985\pi\)
0.350579 + 0.936533i \(0.385985\pi\)
\(740\) −12.4803 + 8.23152i −0.458783 + 0.302597i
\(741\) −1.08564 + 1.08564i −0.0398821 + 0.0398821i
\(742\) 9.17938 + 31.2761i 0.336986 + 1.14818i
\(743\) 11.3135i 0.415053i −0.978229 0.207526i \(-0.933459\pi\)
0.978229 0.207526i \(-0.0665413\pi\)
\(744\) −3.03810 2.63447i −0.111382 0.0965842i
\(745\) 0.280013 + 23.1168i 0.0102589 + 0.846933i
\(746\) 10.6390 + 36.2494i 0.389523 + 1.32719i
\(747\) −1.03391 + 1.03391i −0.0378289 + 0.0378289i
\(748\) −41.9250 + 14.5192i −1.53293 + 0.530874i
\(749\) −2.37082 −0.0866277
\(750\) 23.4950 + 11.7456i 0.857916 + 0.428889i
\(751\) 23.2235 + 23.2235i 0.847438 + 0.847438i 0.989813 0.142375i \(-0.0454738\pi\)
−0.142375 + 0.989813i \(0.545474\pi\)
\(752\) 1.85426 0.690581i 0.0676180 0.0251829i
\(753\) −15.2415 −0.555430
\(754\) 8.73209 + 4.76946i 0.318004 + 0.173693i
\(755\) 0.548179 + 45.2556i 0.0199503 + 1.64702i
\(756\) 18.3694 11.7990i 0.668088 0.429125i
\(757\) −0.996139 + 0.996139i −0.0362053 + 0.0362053i −0.724978 0.688772i \(-0.758150\pi\)
0.688772 + 0.724978i \(0.258150\pi\)
\(758\) −32.8075 + 9.62884i −1.19162 + 0.349735i
\(759\) 16.5782 + 16.5782i 0.601751 + 0.601751i
\(760\) −0.205385 2.46439i −0.00745010 0.0893929i
\(761\) 28.5821 1.03610 0.518050 0.855351i \(-0.326658\pi\)
0.518050 + 0.855351i \(0.326658\pi\)
\(762\) 11.1527 + 37.9996i 0.404020 + 1.37658i
\(763\) 16.5346 16.5346i 0.598594 0.598594i
\(764\) −14.7311 + 9.46203i −0.532951 + 0.342324i
\(765\) 1.87559 1.17575i 0.0678122 0.0425092i
\(766\) −8.93126 + 2.62128i −0.322700 + 0.0947107i
\(767\) 23.8602 23.8602i 0.861541 0.861541i
\(768\) −17.3872 20.1052i −0.627406 0.725484i
\(769\) 22.8890i 0.825399i −0.910867 0.412699i \(-0.864586\pi\)
0.910867 0.412699i \(-0.135414\pi\)
\(770\) −32.9882 + 10.1174i −1.18881 + 0.364606i
\(771\) 26.2138 + 26.2138i 0.944067 + 0.944067i
\(772\) 26.6607 17.1247i 0.959541 0.616331i
\(773\) −16.6265 16.6265i −0.598013 0.598013i 0.341770 0.939783i \(-0.388973\pi\)
−0.939783 + 0.341770i \(0.888973\pi\)
\(774\) 0.169736 + 0.578326i 0.00610102 + 0.0207875i
\(775\) −3.09810 2.95152i −0.111287 0.106022i
\(776\) −3.16210 44.4389i −0.113513 1.59526i
\(777\) 11.2629i 0.404053i
\(778\) 29.9994 + 16.3856i 1.07553 + 0.587453i
\(779\) −2.25963 2.25963i −0.0809596 0.0809596i
\(780\) −3.52879 + 17.2022i −0.126351 + 0.615937i
\(781\) 17.2318i 0.616602i
\(782\) −15.2768 + 0.732440i −0.546297 + 0.0261920i
\(783\) 11.3296 11.3296i 0.404886 0.404886i
\(784\) −4.80276 + 10.5031i −0.171527 + 0.375111i
\(785\) −37.3448 + 38.2606i −1.33289 + 1.36558i
\(786\) −8.35064 28.4524i −0.297858 1.01486i
\(787\) 38.3124i 1.36569i −0.730563 0.682845i \(-0.760742\pi\)
0.730563 0.682845i \(-0.239258\pi\)
\(788\) −21.6762 + 13.9230i −0.772182 + 0.495987i
\(789\) 27.9018 + 27.9018i 0.993331 + 0.993331i
\(790\) 0.829730 + 2.70536i 0.0295205 + 0.0962525i
\(791\) 16.4830 0.586067
\(792\) 2.76058 + 2.39381i 0.0980929 + 0.0850604i
\(793\) 7.47332i 0.265385i
\(794\) −43.5968 23.8125i −1.54719 0.845075i
\(795\) −29.4895 + 30.2127i −1.04589 + 1.07153i
\(796\) 5.81185 + 1.26577i 0.205996 + 0.0448639i
\(797\) 4.40772 4.40772i 0.156130 0.156130i −0.624720 0.780849i \(-0.714787\pi\)
0.780849 + 0.624720i \(0.214787\pi\)
\(798\) 1.63499 + 0.893031i 0.0578782 + 0.0316130i
\(799\) −0.479999 + 1.98230i −0.0169811 + 0.0701286i
\(800\) −17.4802 22.2361i −0.618017 0.786165i
\(801\) 0.347187i 0.0122673i
\(802\) 0.249252 0.0731542i 0.00880139 0.00258316i
\(803\) 20.9041 + 20.9041i 0.737688 + 0.737688i
\(804\) 16.6861 + 3.63408i 0.588474 + 0.128164i
\(805\) −11.8935 + 0.144065i −0.419191 + 0.00507764i
\(806\) 1.37125 2.51053i 0.0483001 0.0884296i
\(807\) −6.33623 + 6.33623i −0.223046 + 0.223046i
\(808\) −1.84603 25.9433i −0.0649430 0.912682i
\(809\) −15.4970 + 15.4970i −0.544847 + 0.544847i −0.924946 0.380099i \(-0.875890\pi\)
0.380099 + 0.924946i \(0.375890\pi\)
\(810\) 22.9678 + 12.1861i 0.807005 + 0.428177i
\(811\) 15.0750 15.0750i 0.529354 0.529354i −0.391026 0.920380i \(-0.627880\pi\)
0.920380 + 0.391026i \(0.127880\pi\)
\(812\) 2.56918 11.7966i 0.0901604 0.413978i
\(813\) 28.8079i 1.01034i
\(814\) 24.4076 7.16351i 0.855487 0.251081i
\(815\) −29.4862 + 0.357165i −1.03286 + 0.0125109i
\(816\) 27.2052 3.25125i 0.952371 0.113816i
\(817\) −0.490760 + 0.490760i −0.0171695 + 0.0171695i
\(818\) −4.27861 2.33697i −0.149598 0.0817104i
\(819\) 0.813807 + 0.813807i 0.0284367 + 0.0284367i
\(820\) −35.8041 7.34472i −1.25033 0.256489i
\(821\) −6.89783 6.89783i −0.240736 0.240736i 0.576419 0.817155i \(-0.304450\pi\)
−0.817155 + 0.576419i \(0.804450\pi\)
\(822\) −9.96560 33.9549i −0.347590 1.18431i
\(823\) 27.4990 0.958555 0.479277 0.877663i \(-0.340899\pi\)
0.479277 + 0.877663i \(0.340899\pi\)
\(824\) −13.7056 + 15.8055i −0.477456 + 0.550609i
\(825\) −32.3583 30.8274i −1.12657 1.07327i
\(826\) −35.9337 19.6270i −1.25029 0.682909i
\(827\) −33.7721 −1.17437 −0.587185 0.809453i \(-0.699764\pi\)
−0.587185 + 0.809453i \(0.699764\pi\)
\(828\) 0.680715 + 1.05978i 0.0236565 + 0.0368298i
\(829\) −37.6185 −1.30654 −0.653272 0.757123i \(-0.726604\pi\)
−0.653272 + 0.757123i \(0.726604\pi\)
\(830\) −18.4111 + 5.64664i −0.639058 + 0.195998i
\(831\) −6.19350 −0.214850
\(832\) 11.3426 15.1290i 0.393234 0.524504i
\(833\) −6.20030 10.1624i −0.214828 0.352107i
\(834\) −33.7494 + 9.90528i −1.16865 + 0.342992i
\(835\) −0.534497 44.1260i −0.0184970 1.52704i
\(836\) −0.895372 + 4.11117i −0.0309671 + 0.142188i
\(837\) −3.25732 3.25732i −0.112589 0.112589i
\(838\) 4.00907 + 13.6598i 0.138491 + 0.471869i
\(839\) −9.28426 9.28426i −0.320528 0.320528i 0.528441 0.848970i \(-0.322777\pi\)
−0.848970 + 0.528441i \(0.822777\pi\)
\(840\) 21.2343 1.76969i 0.732653 0.0610600i
\(841\) 20.1397i 0.694473i
\(842\) 12.2651 + 6.69917i 0.422683 + 0.230869i
\(843\) 17.9319i 0.617609i
\(844\) −9.85735 + 45.2607i −0.339304 + 1.55794i
\(845\) 16.5757 0.200781i 0.570221 0.00690707i
\(846\) 0.161171 0.0473030i 0.00554118 0.00162631i
\(847\) 36.3998 1.25071
\(848\) 42.6021 15.8662i 1.46296 0.544849i
\(849\) 2.80523i 0.0962751i
\(850\) 29.0789 2.10119i 0.997400 0.0720701i
\(851\) 8.76859 0.300583
\(852\) 2.26447 10.3975i 0.0775796 0.356212i
\(853\) 0.850374i 0.0291162i 0.999894 + 0.0145581i \(0.00463416\pi\)
−0.999894 + 0.0145581i \(0.995366\pi\)
\(854\) −8.70116 + 2.55375i −0.297748 + 0.0873874i
\(855\) −0.00254264 0.209911i −8.69565e−5 0.00717880i
\(856\) 0.234690 + 3.29823i 0.00802153 + 0.112731i
\(857\) 40.7991 1.39367 0.696836 0.717231i \(-0.254591\pi\)
0.696836 + 0.717231i \(0.254591\pi\)
\(858\) 14.3221 26.2214i 0.488949 0.895185i
\(859\) −18.1487 −0.619227 −0.309614 0.950862i \(-0.600200\pi\)
−0.309614 + 0.950862i \(0.600200\pi\)
\(860\) −1.59517 + 7.77617i −0.0543950 + 0.265165i
\(861\) 19.4699 19.4699i 0.663534 0.663534i
\(862\) −3.21162 10.9427i −0.109388 0.372709i
\(863\) −26.9558 + 26.9558i −0.917587 + 0.917587i −0.996853 0.0792669i \(-0.974742\pi\)
0.0792669 + 0.996853i \(0.474742\pi\)
\(864\) −18.2329 24.3871i −0.620297 0.829667i
\(865\) 20.7514 0.251360i 0.705567 0.00854651i
\(866\) −1.08460 3.69547i −0.0368562 0.125577i
\(867\) −12.9197 + 25.1136i −0.438775 + 0.852902i
\(868\) −3.39158 0.738653i −0.115118 0.0250715i
\(869\) 4.81462i 0.163325i
\(870\) 14.9503 4.58522i 0.506861 0.155453i
\(871\) 12.1483i 0.411629i
\(872\) −24.6395 21.3659i −0.834398 0.723541i
\(873\) 3.78193i 0.127999i
\(874\) −0.695260 + 1.27291i −0.0235175 + 0.0430567i
\(875\) 22.6586 0.823710i 0.766000 0.0278465i
\(876\) −9.86625 15.3604i −0.333350 0.518978i
\(877\) 4.54735i 0.153553i 0.997048 + 0.0767765i \(0.0244628\pi\)
−0.997048 + 0.0767765i \(0.975537\pi\)
\(878\) 1.91776 + 6.53422i 0.0647213 + 0.220519i
\(879\) −35.6846 + 35.6846i −1.20361 + 1.20361i
\(880\) 17.3407 + 44.8910i 0.584555 + 1.51328i
\(881\) −4.90738 + 4.90738i −0.165334 + 0.165334i −0.784925 0.619591i \(-0.787298\pi\)
0.619591 + 0.784925i \(0.287298\pi\)
\(882\) −0.469959 + 0.860418i −0.0158243 + 0.0289718i
\(883\) 0.697857 + 0.697857i 0.0234848 + 0.0234848i 0.718752 0.695267i \(-0.244714\pi\)
−0.695267 + 0.718752i \(0.744714\pi\)
\(884\) 6.37822 + 18.4175i 0.214523 + 0.619449i
\(885\) −0.642341 53.0292i −0.0215920 1.78256i
\(886\) 22.5119 6.60714i 0.756303 0.221971i
\(887\) 25.7137 0.863381 0.431691 0.902022i \(-0.357917\pi\)
0.431691 + 0.902022i \(0.357917\pi\)
\(888\) −15.6687 + 1.11493i −0.525807 + 0.0374144i
\(889\) 24.1719 + 24.1719i 0.810699 + 0.810699i
\(890\) 2.14314 4.03928i 0.0718383 0.135397i
\(891\) −31.2809 31.2809i −1.04795 1.04795i
\(892\) 6.69969 30.7621i 0.224322 1.02999i
\(893\) 0.136768 + 0.136768i 0.00457677 + 0.00457677i
\(894\) −11.6438 + 21.3178i −0.389425 + 0.712974i
\(895\) −0.372167 30.7247i −0.0124402 1.02701i
\(896\) −21.4906 8.03634i −0.717950 0.268475i
\(897\) 7.28276 7.28276i 0.243164 0.243164i
\(898\) −2.75857 9.39903i −0.0920546 0.313650i
\(899\) −2.54738 −0.0849599
\(900\) −1.34616 1.98817i −0.0448721 0.0662724i
\(901\) −11.0281 + 45.5436i −0.367398 + 1.51728i
\(902\) 54.5765 + 29.8096i 1.81720 + 0.992551i
\(903\) −4.22861 4.22861i −0.140719 0.140719i
\(904\) −1.63167 22.9308i −0.0542685 0.762666i
\(905\) 32.9448 + 32.1562i 1.09512 + 1.06891i
\(906\) −22.7949 + 41.7338i −0.757311 + 1.38651i
\(907\) 14.8081 0.491695 0.245848 0.969309i \(-0.420934\pi\)
0.245848 + 0.969309i \(0.420934\pi\)
\(908\) 20.3733 + 31.7183i 0.676111 + 1.05261i
\(909\) 2.20788i 0.0732308i
\(910\) 4.44455 + 14.4916i 0.147335 + 0.480392i
\(911\) 7.27657 7.27657i 0.241083 0.241083i −0.576215 0.817298i \(-0.695471\pi\)
0.817298 + 0.576215i \(0.195471\pi\)
\(912\) 1.08052 2.36297i 0.0357795 0.0782459i
\(913\) 32.7654 1.08438
\(914\) −36.2278 + 10.6327i −1.19831 + 0.351698i
\(915\) −8.40531 8.20412i −0.277871 0.271220i
\(916\) 32.4282 20.8293i 1.07146 0.688218i
\(917\) −18.0988 18.0988i −0.597676 0.597676i
\(918\) 31.3506 1.50309i 1.03472 0.0496094i
\(919\) 55.9667 1.84617 0.923086 0.384593i \(-0.125658\pi\)
0.923086 + 0.384593i \(0.125658\pi\)
\(920\) 1.37777 + 16.5317i 0.0454238 + 0.545035i
\(921\) −13.9423 + 13.9423i −0.459416 + 0.459416i
\(922\) 25.5695 46.8136i 0.842088 1.54172i
\(923\) 7.56987 0.249165
\(924\) −35.4236 7.71493i −1.16535 0.253802i
\(925\) −16.7102 + 0.404878i −0.549427 + 0.0133123i
\(926\) 6.75557 + 23.0177i 0.222002 + 0.756408i
\(927\) −1.25575 + 1.25575i −0.0412444 + 0.0412444i
\(928\) −16.6655 2.40643i −0.547071 0.0789951i
\(929\) −9.24929 + 9.24929i −0.303459 + 0.303459i −0.842366 0.538906i \(-0.818838\pi\)
0.538906 + 0.842366i \(0.318838\pi\)
\(930\) −1.31828 4.29829i −0.0432280 0.140946i
\(931\) −1.12894 −0.0369996
\(932\) 5.71867 + 8.90316i 0.187321 + 0.291633i
\(933\) −32.9590 32.9590i −1.07903 1.07903i
\(934\) 7.28366 2.13772i 0.238329 0.0699482i
\(935\) −48.3495 11.0893i −1.58120 0.362659i
\(936\) 1.05159 1.21271i 0.0343724 0.0396388i
\(937\) 8.77168 + 8.77168i 0.286558 + 0.286558i 0.835718 0.549159i \(-0.185052\pi\)
−0.549159 + 0.835718i \(0.685052\pi\)
\(938\) 14.1442 4.15126i 0.461825 0.135543i
\(939\) 47.5168i 1.55065i
\(940\) 2.16711 + 0.444553i 0.0706833 + 0.0144997i
\(941\) −41.1366 + 41.1366i −1.34101 + 1.34101i −0.445963 + 0.895051i \(0.647139\pi\)
−0.895051 + 0.445963i \(0.852861\pi\)
\(942\) −53.9018 + 15.8199i −1.75621 + 0.515440i
\(943\) 15.1581 + 15.1581i 0.493616 + 0.493616i
\(944\) −23.7475 + 51.9332i −0.772916 + 1.69028i
\(945\) 24.4075 0.295647i 0.793976 0.00961739i
\(946\) 6.47424 11.8533i 0.210496 0.385383i
\(947\) 13.7599i 0.447137i 0.974688 + 0.223569i \(0.0717707\pi\)
−0.974688 + 0.223569i \(0.928229\pi\)
\(948\) −0.632701 + 2.90509i −0.0205492 + 0.0943531i
\(949\) 9.18308 9.18308i 0.298095 0.298095i
\(950\) 1.26617 2.45786i 0.0410800 0.0797436i
\(951\) 33.0164i 1.07063i
\(952\) 19.2640 13.7197i 0.624348 0.444658i
\(953\) 2.96837 + 2.96837i 0.0961550 + 0.0961550i 0.753548 0.657393i \(-0.228341\pi\)
−0.657393 + 0.753548i \(0.728341\pi\)
\(954\) 3.70294 1.08680i 0.119887 0.0351863i
\(955\) −19.5732 + 0.237090i −0.633375 + 0.00767204i
\(956\) 2.22618 + 3.46585i 0.0719998 + 0.112094i
\(957\) −26.6063 −0.860060
\(958\) 14.8085 + 50.4557i 0.478441 + 1.63015i
\(959\) −21.5990 21.5990i −0.697469 0.697469i
\(960\) −4.56397 29.3656i −0.147301 0.947770i
\(961\) 30.2676i 0.976375i
\(962\) −3.14691 10.7222i −0.101460 0.345697i
\(963\) 0.280693i 0.00904521i
\(964\) 15.9331 + 3.47007i 0.513170 + 0.111764i
\(965\) 35.4243 0.429093i 1.14035 0.0138130i
\(966\) −10.9679 5.99067i −0.352887 0.192747i
\(967\) −4.48443 + 4.48443i −0.144210 + 0.144210i −0.775526 0.631316i \(-0.782515\pi\)
0.631316 + 0.775526i \(0.282515\pi\)
\(968\) −3.60326 50.6387i −0.115813 1.62759i
\(969\) 1.39493 + 2.28632i 0.0448117 + 0.0734473i
\(970\) 23.3454 44.0001i 0.749575 1.41276i
\(971\) 30.5032i 0.978893i −0.872033 0.489446i \(-0.837199\pi\)
0.872033 0.489446i \(-0.162801\pi\)
\(972\) −2.69037 4.18853i −0.0862937 0.134347i
\(973\) −21.4683 + 21.4683i −0.688241 + 0.688241i
\(974\) 23.3890 + 12.7751i 0.749433 + 0.409339i
\(975\) −13.5424 + 14.2149i −0.433703 + 0.455241i
\(976\) 4.41406 + 11.8521i 0.141291 + 0.379376i
\(977\) 15.4491 + 15.4491i 0.494259 + 0.494259i 0.909645 0.415386i \(-0.136354\pi\)
−0.415386 + 0.909645i \(0.636354\pi\)
\(978\) −27.1916 14.8520i −0.869490 0.474914i
\(979\) −5.50129 + 5.50129i −0.175822 + 0.175822i
\(980\) −10.7789 + 7.10936i −0.344319 + 0.227100i
\(981\) −1.95762 1.95762i −0.0625021 0.0625021i
\(982\) 16.9998 + 9.28529i 0.542487 + 0.296305i
\(983\) 36.4754i 1.16338i −0.813409 0.581692i \(-0.802391\pi\)
0.813409 0.581692i \(-0.197609\pi\)
\(984\) −29.0136 25.1589i −0.924919 0.802035i
\(985\) −28.8013 + 0.348868i −0.917684 + 0.0111159i
\(986\) 11.6711 12.8466i 0.371683 0.409119i
\(987\) −1.17845 + 1.17845i −0.0375106 + 0.0375106i
\(988\) 1.80602 + 0.393334i 0.0574572 + 0.0125136i
\(989\) 3.29214 3.29214i 0.104684 0.104684i
\(990\) 1.19785 + 3.90564i 0.0380703 + 0.124129i
\(991\) 16.0396 + 16.0396i 0.509514 + 0.509514i 0.914377 0.404863i \(-0.132681\pi\)
−0.404863 + 0.914377i \(0.632681\pi\)
\(992\) −0.691864 + 4.79142i −0.0219667 + 0.152128i
\(993\) 37.0166i 1.17469i
\(994\) −2.58674 8.81358i −0.0820464 0.279550i
\(995\) 4.75899 + 4.64508i 0.150870 + 0.147259i
\(996\) −19.7703 4.30579i −0.626446 0.136434i
\(997\) 14.2198i 0.450345i 0.974319 + 0.225172i \(0.0722946\pi\)
−0.974319 + 0.225172i \(0.927705\pi\)
\(998\) −9.96450 33.9512i −0.315421 1.07471i
\(999\) −17.9947 −0.569326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bl.a.123.68 yes 208
5.2 odd 4 680.2.t.a.667.89 yes 208
8.3 odd 2 inner 680.2.bl.a.123.16 yes 208
17.13 even 4 680.2.t.a.523.37 208
40.27 even 4 680.2.t.a.667.37 yes 208
85.47 odd 4 inner 680.2.bl.a.387.16 yes 208
136.115 odd 4 680.2.t.a.523.89 yes 208
680.387 even 4 inner 680.2.bl.a.387.68 yes 208
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.t.a.523.37 208 17.13 even 4
680.2.t.a.523.89 yes 208 136.115 odd 4
680.2.t.a.667.37 yes 208 40.27 even 4
680.2.t.a.667.89 yes 208 5.2 odd 4
680.2.bl.a.123.16 yes 208 8.3 odd 2 inner
680.2.bl.a.123.68 yes 208 1.1 even 1 trivial
680.2.bl.a.387.16 yes 208 85.47 odd 4 inner
680.2.bl.a.387.68 yes 208 680.387 even 4 inner