Newspace parameters
Level: | \( N \) | \(=\) | \( 680 = 2^{3} \cdot 5 \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 680.bl (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.42982733745\) |
Analytic rank: | \(0\) |
Dimension: | \(208\) |
Relative dimension: | \(104\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
123.1 | −1.41208 | + | 0.0777098i | 2.77161 | 1.98792 | − | 0.219464i | −2.02542 | − | 0.947459i | −3.91373 | + | 0.215381i | 2.38616i | −2.79004 | + | 0.464382i | 4.68182 | 2.93367 | + | 1.18049i | ||||||
123.2 | −1.41175 | − | 0.0834622i | −0.942276 | 1.98607 | + | 0.235655i | −1.58440 | − | 1.57787i | 1.33026 | + | 0.0786444i | 0.802214i | −2.78416 | − | 0.498447i | −2.11212 | 2.10508 | + | 2.35980i | ||||||
123.3 | −1.41161 | + | 0.0857726i | −3.33428 | 1.98529 | − | 0.242155i | 1.35641 | − | 1.77768i | 4.70670 | − | 0.285990i | 0.378310i | −2.78168 | + | 0.512112i | 8.11740 | −1.76225 | + | 2.62574i | ||||||
123.4 | −1.40232 | − | 0.183044i | 1.40881 | 1.93299 | + | 0.513372i | 2.20458 | − | 0.373952i | −1.97560 | − | 0.257874i | − | 0.664990i | −2.61670 | − | 1.07373i | −1.01525 | −3.15997 | + | 0.120865i | |||||
123.5 | −1.39133 | − | 0.253361i | 0.719242 | 1.87162 | + | 0.705020i | 0.825729 | + | 2.07802i | −1.00071 | − | 0.182228i | − | 1.97447i | −2.42542 | − | 1.45511i | −2.48269 | −0.622374 | − | 3.10043i | |||||
123.6 | −1.38955 | + | 0.262950i | 0.114761 | 1.86171 | − | 0.730766i | −1.62562 | + | 1.53537i | −0.159467 | + | 0.0301765i | 0.891454i | −2.39480 | + | 1.50498i | −2.98683 | 1.85516 | − | 2.56093i | ||||||
123.7 | −1.38536 | − | 0.284198i | −1.66268 | 1.83846 | + | 0.787434i | 1.75053 | + | 1.39127i | 2.30342 | + | 0.472530i | − | 0.572159i | −2.32315 | − | 1.61337i | −0.235488 | −2.02973 | − | 2.42491i | |||||
123.8 | −1.37806 | + | 0.317714i | 3.29489 | 1.79812 | − | 0.875660i | 2.03374 | + | 0.929456i | −4.54056 | + | 1.04683i | 2.70735i | −2.19971 | + | 1.77800i | 7.85628 | −3.09793 | − | 0.634700i | ||||||
123.9 | −1.36847 | − | 0.356773i | 2.93734 | 1.74543 | + | 0.976468i | −1.10520 | + | 1.94384i | −4.01967 | − | 1.04797i | − | 5.06704i | −2.04019 | − | 1.95899i | 5.62799 | 2.20595 | − | 2.26579i | |||||
123.10 | −1.34516 | + | 0.436527i | −2.03744 | 1.61889 | − | 1.17439i | −0.397855 | + | 2.20039i | 2.74068 | − | 0.889398i | − | 3.62989i | −1.66500 | + | 2.28643i | 1.15116 | −0.425353 | − | 3.13354i | |||||
123.11 | −1.34353 | + | 0.441514i | 1.08019 | 1.61013 | − | 1.18637i | 1.65925 | − | 1.49896i | −1.45127 | + | 0.476920i | − | 1.54588i | −1.63946 | + | 2.30482i | −1.83318 | −1.56744 | + | 2.74648i | |||||
123.12 | −1.34098 | − | 0.449197i | −2.30800 | 1.59644 | + | 1.20473i | −1.25162 | + | 1.85296i | 3.09497 | + | 1.03675i | 4.47457i | −1.59963 | − | 2.33263i | 2.32684 | 2.51074 | − | 1.92255i | ||||||
123.13 | −1.32841 | + | 0.485099i | 1.01540 | 1.52936 | − | 1.28882i | −1.74286 | − | 1.40087i | −1.34887 | + | 0.492569i | − | 4.93845i | −1.40641 | + | 2.45398i | −1.96896 | 2.99480 | + | 1.01547i | |||||
123.14 | −1.32444 | − | 0.495854i | −1.10496 | 1.50826 | + | 1.31345i | 0.236605 | − | 2.22351i | 1.46345 | + | 0.547901i | − | 2.48520i | −1.34631 | − | 2.48746i | −1.77905 | −1.41591 | + | 2.82758i | |||||
123.15 | −1.29592 | + | 0.566210i | −2.40143 | 1.35881 | − | 1.46752i | −2.19168 | − | 0.443317i | 3.11207 | − | 1.35972i | 0.998624i | −0.929985 | + | 2.67117i | 2.76689 | 3.09125 | − | 0.666449i | ||||||
123.16 | −1.24114 | + | 0.677911i | 1.66129 | 1.08087 | − | 1.68277i | 0.0270834 | + | 2.23590i | −2.06190 | + | 1.12621i | 2.02798i | −0.200753 | + | 2.82129i | −0.240104 | −1.54936 | − | 2.75672i | ||||||
123.17 | −1.23794 | − | 0.683748i | 1.23752 | 1.06498 | + | 1.69287i | 1.08259 | + | 1.95653i | −1.53197 | − | 0.846148i | 4.38346i | −0.160877 | − | 2.82385i | −1.46856 | −0.00241194 | − | 3.16228i | ||||||
123.18 | −1.20585 | − | 0.738875i | 2.74346 | 0.908129 | + | 1.78194i | 0.584289 | − | 2.15838i | −3.30818 | − | 2.02707i | − | 1.18693i | 0.221566 | − | 2.81974i | 4.52655 | −2.29933 | + | 2.17096i | |||||
123.19 | −1.19288 | − | 0.759626i | −0.380697 | 0.845937 | + | 1.81229i | −2.14321 | + | 0.637679i | 0.454127 | + | 0.289188i | − | 1.82524i | 0.367558 | − | 2.80444i | −2.85507 | 3.04100 | + | 0.867365i | |||||
123.20 | −1.17522 | − | 0.786672i | 1.61017 | 0.762294 | + | 1.84903i | −2.21833 | − | 0.281104i | −1.89231 | − | 1.26668i | 2.13601i | 0.558715 | − | 2.77270i | −0.407346 | 2.38589 | + | 2.07546i | ||||||
See next 80 embeddings (of 208 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
85.i | odd | 4 | 1 | inner |
680.bl | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 680.2.bl.a | yes | 208 |
5.c | odd | 4 | 1 | 680.2.t.a | ✓ | 208 | |
8.d | odd | 2 | 1 | inner | 680.2.bl.a | yes | 208 |
17.c | even | 4 | 1 | 680.2.t.a | ✓ | 208 | |
40.k | even | 4 | 1 | 680.2.t.a | ✓ | 208 | |
85.i | odd | 4 | 1 | inner | 680.2.bl.a | yes | 208 |
136.j | odd | 4 | 1 | 680.2.t.a | ✓ | 208 | |
680.bl | even | 4 | 1 | inner | 680.2.bl.a | yes | 208 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
680.2.t.a | ✓ | 208 | 5.c | odd | 4 | 1 | |
680.2.t.a | ✓ | 208 | 17.c | even | 4 | 1 | |
680.2.t.a | ✓ | 208 | 40.k | even | 4 | 1 | |
680.2.t.a | ✓ | 208 | 136.j | odd | 4 | 1 | |
680.2.bl.a | yes | 208 | 1.a | even | 1 | 1 | trivial |
680.2.bl.a | yes | 208 | 8.d | odd | 2 | 1 | inner |
680.2.bl.a | yes | 208 | 85.i | odd | 4 | 1 | inner |
680.2.bl.a | yes | 208 | 680.bl | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(680, [\chi])\).