Properties

Label 680.2.bl.a.123.16
Level $680$
Weight $2$
Character 680.123
Analytic conductor $5.430$
Analytic rank $0$
Dimension $208$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [680,2,Mod(123,680)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(680, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("680.123"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 680 = 2^{3} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 680.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.42982733745\)
Analytic rank: \(0\)
Dimension: \(208\)
Relative dimension: \(104\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 123.16
Character \(\chi\) \(=\) 680.123
Dual form 680.2.bl.a.387.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.24114 + 0.677911i) q^{2} +1.66129 q^{3} +(1.08087 - 1.68277i) q^{4} +(0.0270834 + 2.23590i) q^{5} +(-2.06190 + 1.12621i) q^{6} +2.02798i q^{7} +(-0.200753 + 2.82129i) q^{8} -0.240104 q^{9} +(-1.54936 - 2.75672i) q^{10} +(3.80452 + 3.80452i) q^{11} +(1.79565 - 2.79557i) q^{12} +(-1.67131 + 1.67131i) q^{13} +(-1.37479 - 2.51702i) q^{14} +(0.0449935 + 3.71449i) q^{15} +(-1.66342 - 3.63772i) q^{16} +(-2.14745 - 3.51972i) q^{17} +(0.298003 - 0.162769i) q^{18} -0.391006 q^{19} +(3.79178 + 2.37116i) q^{20} +3.36908i q^{21} +(-7.30108 - 2.14283i) q^{22} -2.62296 q^{23} +(-0.333509 + 4.68700i) q^{24} +(-4.99853 + 0.121112i) q^{25} +(0.941338 - 3.20734i) q^{26} -5.38276 q^{27} +(3.41263 + 2.19200i) q^{28} +(2.10479 - 2.10479i) q^{29} +(-2.57394 - 4.57972i) q^{30} +(-0.605139 - 0.605139i) q^{31} +(4.53060 + 3.38728i) q^{32} +(6.32043 + 6.32043i) q^{33} +(5.05136 + 2.91270i) q^{34} +(-4.53438 + 0.0549247i) q^{35} +(-0.259522 + 0.404039i) q^{36} -3.34301 q^{37} +(0.485294 - 0.265067i) q^{38} +(-2.77654 + 2.77654i) q^{39} +(-6.31358 - 0.372453i) q^{40} +(5.77901 + 5.77901i) q^{41} +(-2.28393 - 4.18151i) q^{42} +(1.25512 - 1.25512i) q^{43} +(10.5143 - 2.28992i) q^{44} +(-0.00650283 - 0.536849i) q^{45} +(3.25547 - 1.77813i) q^{46} +(0.349785 + 0.349785i) q^{47} +(-2.76343 - 6.04333i) q^{48} +2.88728 q^{49} +(6.12179 - 3.53888i) q^{50} +(-3.56755 - 5.84729i) q^{51} +(1.00596 + 4.61891i) q^{52} +(8.03639 + 8.03639i) q^{53} +(6.68078 - 3.64903i) q^{54} +(-8.40350 + 8.60958i) q^{55} +(-5.72154 - 0.407123i) q^{56} -0.649575 q^{57} +(-1.18549 + 4.03920i) q^{58} +14.2763 q^{59} +(6.29927 + 3.93919i) q^{60} +(-2.23576 + 2.23576i) q^{61} +(1.16129 + 0.340834i) q^{62} -0.486927i q^{63} +(-7.91940 - 1.13276i) q^{64} +(-3.78216 - 3.69163i) q^{65} +(-12.1292 - 3.55987i) q^{66} +(-3.63435 + 3.63435i) q^{67} +(-8.24401 - 0.190706i) q^{68} -4.35751 q^{69} +(5.59058 - 3.14207i) q^{70} +(-2.26465 - 2.26465i) q^{71} +(0.0482014 - 0.677403i) q^{72} +5.49453 q^{73} +(4.14916 - 2.26626i) q^{74} +(-8.30403 + 0.201202i) q^{75} +(-0.422628 + 0.657972i) q^{76} +(-7.71551 + 7.71551i) q^{77} +(1.56384 - 5.32834i) q^{78} +(0.632749 + 0.632749i) q^{79} +(8.08855 - 3.81778i) q^{80} -8.22204 q^{81} +(-11.0902 - 3.25493i) q^{82} +(4.30611 - 4.30611i) q^{83} +(5.66938 + 3.64155i) q^{84} +(7.81160 - 4.89683i) q^{85} +(-0.706927 + 2.40865i) q^{86} +(3.49667 - 3.49667i) q^{87} +(-11.4974 + 9.96990i) q^{88} +1.44599i q^{89} +(0.372007 + 0.661898i) q^{90} +(-3.38940 - 3.38940i) q^{91} +(-2.83509 + 4.41384i) q^{92} +(-1.00531 - 1.00531i) q^{93} +(-0.671257 - 0.197011i) q^{94} +(-0.0105898 - 0.874251i) q^{95} +(7.52665 + 5.62727i) q^{96} +15.7512i q^{97} +(-3.58353 + 1.95732i) q^{98} +(-0.913480 - 0.913480i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 208 q - 8 q^{3} - 8 q^{6} + 192 q^{9} - 6 q^{10} - 8 q^{11} + 16 q^{14} - 16 q^{16} - 12 q^{18} - 10 q^{20} - 16 q^{24} - 32 q^{27} - 24 q^{30} - 20 q^{32} - 8 q^{33} + 4 q^{34} - 8 q^{35} - 12 q^{38} + 38 q^{40}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/680\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(241\) \(341\) \(511\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.24114 + 0.677911i −0.877621 + 0.479355i
\(3\) 1.66129 0.959148 0.479574 0.877501i \(-0.340791\pi\)
0.479574 + 0.877501i \(0.340791\pi\)
\(4\) 1.08087 1.68277i 0.540437 0.841384i
\(5\) 0.0270834 + 2.23590i 0.0121121 + 0.999927i
\(6\) −2.06190 + 1.12621i −0.841769 + 0.459773i
\(7\) 2.02798i 0.766506i 0.923643 + 0.383253i \(0.125196\pi\)
−0.923643 + 0.383253i \(0.874804\pi\)
\(8\) −0.200753 + 2.82129i −0.0709768 + 0.997478i
\(9\) −0.240104 −0.0800346
\(10\) −1.54936 2.75672i −0.489950 0.871751i
\(11\) 3.80452 + 3.80452i 1.14711 + 1.14711i 0.987119 + 0.159987i \(0.0511453\pi\)
0.159987 + 0.987119i \(0.448855\pi\)
\(12\) 1.79565 2.79557i 0.518359 0.807012i
\(13\) −1.67131 + 1.67131i −0.463539 + 0.463539i −0.899814 0.436275i \(-0.856298\pi\)
0.436275 + 0.899814i \(0.356298\pi\)
\(14\) −1.37479 2.51702i −0.367429 0.672702i
\(15\) 0.0449935 + 3.71449i 0.0116173 + 0.959078i
\(16\) −1.66342 3.63772i −0.415856 0.909431i
\(17\) −2.14745 3.51972i −0.520834 0.853658i
\(18\) 0.298003 0.162769i 0.0702400 0.0383650i
\(19\) −0.391006 −0.0897029 −0.0448514 0.998994i \(-0.514281\pi\)
−0.0448514 + 0.998994i \(0.514281\pi\)
\(20\) 3.79178 + 2.37116i 0.847869 + 0.530206i
\(21\) 3.36908i 0.735193i
\(22\) −7.30108 2.14283i −1.55660 0.456853i
\(23\) −2.62296 −0.546925 −0.273462 0.961883i \(-0.588169\pi\)
−0.273462 + 0.961883i \(0.588169\pi\)
\(24\) −0.333509 + 4.68700i −0.0680772 + 0.956729i
\(25\) −4.99853 + 0.121112i −0.999707 + 0.0242224i
\(26\) 0.941338 3.20734i 0.184612 0.629011i
\(27\) −5.38276 −1.03591
\(28\) 3.41263 + 2.19200i 0.644926 + 0.414248i
\(29\) 2.10479 2.10479i 0.390849 0.390849i −0.484141 0.874990i \(-0.660868\pi\)
0.874990 + 0.484141i \(0.160868\pi\)
\(30\) −2.57394 4.57972i −0.469935 0.836138i
\(31\) −0.605139 0.605139i −0.108686 0.108686i 0.650672 0.759359i \(-0.274487\pi\)
−0.759359 + 0.650672i \(0.774487\pi\)
\(32\) 4.53060 + 3.38728i 0.800904 + 0.598793i
\(33\) 6.32043 + 6.32043i 1.10025 + 1.10025i
\(34\) 5.05136 + 2.91270i 0.866300 + 0.499523i
\(35\) −4.53438 + 0.0549247i −0.766450 + 0.00928398i
\(36\) −0.259522 + 0.404039i −0.0432536 + 0.0673398i
\(37\) −3.34301 −0.549588 −0.274794 0.961503i \(-0.588610\pi\)
−0.274794 + 0.961503i \(0.588610\pi\)
\(38\) 0.485294 0.265067i 0.0787251 0.0429995i
\(39\) −2.77654 + 2.77654i −0.444603 + 0.444603i
\(40\) −6.31358 0.372453i −0.998264 0.0588900i
\(41\) 5.77901 + 5.77901i 0.902530 + 0.902530i 0.995655 0.0931242i \(-0.0296854\pi\)
−0.0931242 + 0.995655i \(0.529685\pi\)
\(42\) −2.28393 4.18151i −0.352419 0.645221i
\(43\) 1.25512 1.25512i 0.191405 0.191405i −0.604898 0.796303i \(-0.706786\pi\)
0.796303 + 0.604898i \(0.206786\pi\)
\(44\) 10.5143 2.28992i 1.58510 0.345219i
\(45\) −0.00650283 0.536849i −0.000969384 0.0800287i
\(46\) 3.25547 1.77813i 0.479993 0.262171i
\(47\) 0.349785 + 0.349785i 0.0510214 + 0.0510214i 0.732157 0.681136i \(-0.238514\pi\)
−0.681136 + 0.732157i \(0.738514\pi\)
\(48\) −2.76343 6.04333i −0.398867 0.872279i
\(49\) 2.88728 0.412468
\(50\) 6.12179 3.53888i 0.865752 0.500473i
\(51\) −3.56755 5.84729i −0.499557 0.818784i
\(52\) 1.00596 + 4.61891i 0.139501 + 0.640528i
\(53\) 8.03639 + 8.03639i 1.10388 + 1.10388i 0.993938 + 0.109945i \(0.0350675\pi\)
0.109945 + 0.993938i \(0.464932\pi\)
\(54\) 6.68078 3.64903i 0.909139 0.496571i
\(55\) −8.40350 + 8.60958i −1.13313 + 1.16092i
\(56\) −5.72154 0.407123i −0.764573 0.0544041i
\(57\) −0.649575 −0.0860383
\(58\) −1.18549 + 4.03920i −0.155662 + 0.530373i
\(59\) 14.2763 1.85862 0.929308 0.369305i \(-0.120404\pi\)
0.929308 + 0.369305i \(0.120404\pi\)
\(60\) 6.29927 + 3.93919i 0.813232 + 0.508547i
\(61\) −2.23576 + 2.23576i −0.286260 + 0.286260i −0.835599 0.549339i \(-0.814879\pi\)
0.549339 + 0.835599i \(0.314879\pi\)
\(62\) 1.16129 + 0.340834i 0.147485 + 0.0432860i
\(63\) 0.486927i 0.0613470i
\(64\) −7.91940 1.13276i −0.989925 0.141596i
\(65\) −3.78216 3.69163i −0.469119 0.457891i
\(66\) −12.1292 3.55987i −1.49301 0.438190i
\(67\) −3.63435 + 3.63435i −0.444007 + 0.444007i −0.893356 0.449349i \(-0.851656\pi\)
0.449349 + 0.893356i \(0.351656\pi\)
\(68\) −8.24401 0.190706i −0.999733 0.0231265i
\(69\) −4.35751 −0.524582
\(70\) 5.59058 3.14207i 0.668202 0.375550i
\(71\) −2.26465 2.26465i −0.268764 0.268764i 0.559838 0.828602i \(-0.310863\pi\)
−0.828602 + 0.559838i \(0.810863\pi\)
\(72\) 0.0482014 0.677403i 0.00568059 0.0798327i
\(73\) 5.49453 0.643086 0.321543 0.946895i \(-0.395799\pi\)
0.321543 + 0.946895i \(0.395799\pi\)
\(74\) 4.14916 2.26626i 0.482330 0.263448i
\(75\) −8.30403 + 0.201202i −0.958867 + 0.0232328i
\(76\) −0.422628 + 0.657972i −0.0484787 + 0.0754746i
\(77\) −7.71551 + 7.71551i −0.879264 + 0.879264i
\(78\) 1.56384 5.32834i 0.177070 0.603315i
\(79\) 0.632749 + 0.632749i 0.0711899 + 0.0711899i 0.741805 0.670615i \(-0.233970\pi\)
−0.670615 + 0.741805i \(0.733970\pi\)
\(80\) 8.08855 3.81778i 0.904327 0.426840i
\(81\) −8.22204 −0.913560
\(82\) −11.0902 3.25493i −1.22471 0.359447i
\(83\) 4.30611 4.30611i 0.472657 0.472657i −0.430116 0.902773i \(-0.641527\pi\)
0.902773 + 0.430116i \(0.141527\pi\)
\(84\) 5.66938 + 3.64155i 0.618580 + 0.397326i
\(85\) 7.81160 4.89683i 0.847287 0.531136i
\(86\) −0.706927 + 2.40865i −0.0762298 + 0.259731i
\(87\) 3.49667 3.49667i 0.374883 0.374883i
\(88\) −11.4974 + 9.96990i −1.22563 + 1.06280i
\(89\) 1.44599i 0.153275i 0.997059 + 0.0766373i \(0.0244183\pi\)
−0.997059 + 0.0766373i \(0.975582\pi\)
\(90\) 0.372007 + 0.661898i 0.0392129 + 0.0697702i
\(91\) −3.38940 3.38940i −0.355305 0.355305i
\(92\) −2.83509 + 4.41384i −0.295578 + 0.460174i
\(93\) −1.00531 1.00531i −0.104246 0.104246i
\(94\) −0.671257 0.197011i −0.0692349 0.0203201i
\(95\) −0.0105898 0.874251i −0.00108649 0.0896963i
\(96\) 7.52665 + 5.62727i 0.768186 + 0.574331i
\(97\) 15.7512i 1.59930i 0.600468 + 0.799649i \(0.294981\pi\)
−0.600468 + 0.799649i \(0.705019\pi\)
\(98\) −3.58353 + 1.95732i −0.361991 + 0.197719i
\(99\) −0.913480 0.913480i −0.0918082 0.0918082i
\(100\) −5.19898 + 8.54228i −0.519898 + 0.854228i
\(101\) 9.19554i 0.914990i −0.889212 0.457495i \(-0.848747\pi\)
0.889212 0.457495i \(-0.151253\pi\)
\(102\) 8.39178 + 4.83884i 0.830911 + 0.479117i
\(103\) −5.23005 + 5.23005i −0.515332 + 0.515332i −0.916155 0.400823i \(-0.868724\pi\)
0.400823 + 0.916155i \(0.368724\pi\)
\(104\) −4.37975 5.05079i −0.429469 0.495270i
\(105\) −7.53294 + 0.0912461i −0.735139 + 0.00890471i
\(106\) −15.4223 4.52636i −1.49794 0.439639i
\(107\) 1.16905i 0.113016i −0.998402 0.0565081i \(-0.982003\pi\)
0.998402 0.0565081i \(-0.0179967\pi\)
\(108\) −5.81809 + 9.05795i −0.559846 + 0.871601i
\(109\) −8.15324 8.15324i −0.780939 0.780939i 0.199051 0.979989i \(-0.436214\pi\)
−0.979989 + 0.199051i \(0.936214\pi\)
\(110\) 4.59343 16.3826i 0.437966 1.56202i
\(111\) −5.55373 −0.527136
\(112\) 7.37725 3.37340i 0.697084 0.318756i
\(113\) 8.12775i 0.764595i 0.924039 + 0.382297i \(0.124867\pi\)
−0.924039 + 0.382297i \(0.875133\pi\)
\(114\) 0.806216 0.440354i 0.0755091 0.0412429i
\(115\) −0.0710387 5.86469i −0.00662439 0.546885i
\(116\) −1.26686 5.81688i −0.117625 0.540084i
\(117\) 0.401289 0.401289i 0.0370991 0.0370991i
\(118\) −17.7189 + 9.67806i −1.63116 + 0.890938i
\(119\) 7.13794 4.35500i 0.654334 0.399223i
\(120\) −10.4887 0.618754i −0.957484 0.0564843i
\(121\) 17.9488i 1.63171i
\(122\) 1.25925 4.29055i 0.114007 0.388448i
\(123\) 9.60064 + 9.60064i 0.865660 + 0.865660i
\(124\) −1.67239 + 0.364230i −0.150185 + 0.0327088i
\(125\) −0.406172 11.1730i −0.0363291 0.999340i
\(126\) 0.330093 + 0.604346i 0.0294070 + 0.0538394i
\(127\) 11.9192 11.9192i 1.05766 1.05766i 0.0594222 0.998233i \(-0.481074\pi\)
0.998233 0.0594222i \(-0.0189258\pi\)
\(128\) 10.5970 3.96272i 0.936653 0.350258i
\(129\) 2.08513 2.08513i 0.183585 0.183585i
\(130\) 7.19680 + 2.01788i 0.631201 + 0.176979i
\(131\) 8.92454 8.92454i 0.779740 0.779740i −0.200046 0.979786i \(-0.564109\pi\)
0.979786 + 0.200046i \(0.0641092\pi\)
\(132\) 17.4674 3.80423i 1.52034 0.331116i
\(133\) 0.792954i 0.0687578i
\(134\) 2.04699 6.97452i 0.176833 0.602507i
\(135\) −0.145784 12.0353i −0.0125471 1.03584i
\(136\) 10.3613 5.35201i 0.888472 0.458931i
\(137\) 10.6505 10.6505i 0.909932 0.909932i −0.0863342 0.996266i \(-0.527515\pi\)
0.996266 + 0.0863342i \(0.0275153\pi\)
\(138\) 5.40829 2.95400i 0.460384 0.251461i
\(139\) −10.5860 10.5860i −0.897894 0.897894i 0.0973558 0.995250i \(-0.468962\pi\)
−0.995250 + 0.0973558i \(0.968962\pi\)
\(140\) −4.80867 + 7.68968i −0.406407 + 0.649897i
\(141\) 0.581096 + 0.581096i 0.0489371 + 0.0489371i
\(142\) 4.34598 + 1.27552i 0.364706 + 0.107039i
\(143\) −12.7171 −1.06346
\(144\) 0.399394 + 0.873431i 0.0332828 + 0.0727859i
\(145\) 4.76311 + 4.64910i 0.395555 + 0.386087i
\(146\) −6.81950 + 3.72480i −0.564386 + 0.308267i
\(147\) 4.79662 0.395618
\(148\) −3.61338 + 5.62552i −0.297018 + 0.462415i
\(149\) 10.3389 0.846995 0.423498 0.905897i \(-0.360802\pi\)
0.423498 + 0.905897i \(0.360802\pi\)
\(150\) 10.1701 5.87911i 0.830385 0.480028i
\(151\) 20.2404 1.64714 0.823570 0.567214i \(-0.191979\pi\)
0.823570 + 0.567214i \(0.191979\pi\)
\(152\) 0.0784954 1.10314i 0.00636682 0.0894766i
\(153\) 0.515612 + 0.845098i 0.0416847 + 0.0683221i
\(154\) 4.34563 14.8065i 0.350181 1.19314i
\(155\) 1.33664 1.36942i 0.107362 0.109995i
\(156\) 1.67119 + 7.67337i 0.133802 + 0.614361i
\(157\) 16.9071 + 16.9071i 1.34933 + 1.34933i 0.886385 + 0.462949i \(0.153209\pi\)
0.462949 + 0.886385i \(0.346791\pi\)
\(158\) −1.21428 0.356385i −0.0966030 0.0283525i
\(159\) 13.3508 + 13.3508i 1.05879 + 1.05879i
\(160\) −7.45094 + 10.2217i −0.589048 + 0.808098i
\(161\) 5.31932i 0.419221i
\(162\) 10.2047 5.57381i 0.801759 0.437920i
\(163\) 13.1876i 1.03293i −0.856308 0.516466i \(-0.827247\pi\)
0.856308 0.516466i \(-0.172753\pi\)
\(164\) 15.9711 3.47836i 1.24714 0.271614i
\(165\) −13.9607 + 14.3030i −1.08684 + 1.11349i
\(166\) −2.42534 + 8.26366i −0.188243 + 0.641385i
\(167\) −19.7352 −1.52716 −0.763578 0.645715i \(-0.776559\pi\)
−0.763578 + 0.645715i \(0.776559\pi\)
\(168\) −9.50516 0.676351i −0.733339 0.0521816i
\(169\) 7.41342i 0.570263i
\(170\) −6.37570 + 11.3732i −0.488994 + 0.872287i
\(171\) 0.0938819 0.00717933
\(172\) −0.755452 3.46871i −0.0576027 0.264487i
\(173\) 9.28097i 0.705619i −0.935695 0.352810i \(-0.885226\pi\)
0.935695 0.352810i \(-0.114774\pi\)
\(174\) −1.96944 + 6.71030i −0.149303 + 0.508707i
\(175\) −0.245613 10.1369i −0.0185666 0.766281i
\(176\) 7.51127 20.1683i 0.566183 1.52024i
\(177\) 23.7171 1.78269
\(178\) −0.980251 1.79468i −0.0734729 0.134517i
\(179\) 13.7415 1.02709 0.513544 0.858063i \(-0.328332\pi\)
0.513544 + 0.858063i \(0.328332\pi\)
\(180\) −0.910421 0.569323i −0.0678588 0.0424348i
\(181\) 14.5581 14.5581i 1.08210 1.08210i 0.0857812 0.996314i \(-0.472661\pi\)
0.996314 0.0857812i \(-0.0273386\pi\)
\(182\) 6.50444 + 1.90902i 0.482141 + 0.141506i
\(183\) −3.71426 + 3.71426i −0.274566 + 0.274566i
\(184\) 0.526566 7.40014i 0.0388190 0.545546i
\(185\) −0.0905402 7.47466i −0.00665665 0.549548i
\(186\) 1.92925 + 0.566226i 0.141460 + 0.0415177i
\(187\) 5.22082 21.5609i 0.381784 1.57669i
\(188\) 0.966682 0.210534i 0.0705025 0.0153548i
\(189\) 10.9162i 0.794034i
\(190\) 0.605808 + 1.07789i 0.0439499 + 0.0781985i
\(191\) 8.75406i 0.633421i 0.948522 + 0.316711i \(0.102578\pi\)
−0.948522 + 0.316711i \(0.897422\pi\)
\(192\) −13.1564 1.88185i −0.949484 0.135811i
\(193\) 15.8434i 1.14043i 0.821495 + 0.570216i \(0.193140\pi\)
−0.821495 + 0.570216i \(0.806860\pi\)
\(194\) −10.6779 19.5496i −0.766631 1.40358i
\(195\) −6.28328 6.13288i −0.449955 0.439185i
\(196\) 3.12078 4.85862i 0.222913 0.347044i
\(197\) 12.8813i 0.917752i 0.888500 + 0.458876i \(0.151748\pi\)
−0.888500 + 0.458876i \(0.848252\pi\)
\(198\) 1.75302 + 0.514502i 0.124581 + 0.0365640i
\(199\) 2.10297 2.10297i 0.149075 0.149075i −0.628630 0.777705i \(-0.716384\pi\)
0.777705 + 0.628630i \(0.216384\pi\)
\(200\) 0.661776 14.1266i 0.0467947 0.998905i
\(201\) −6.03772 + 6.03772i −0.425868 + 0.425868i
\(202\) 6.23375 + 11.4130i 0.438605 + 0.803014i
\(203\) 4.26848 + 4.26848i 0.299589 + 0.299589i
\(204\) −13.6957 0.316819i −0.958892 0.0221818i
\(205\) −12.7648 + 13.0778i −0.891533 + 0.913396i
\(206\) 2.94574 10.0368i 0.205239 0.699294i
\(207\) 0.629782 0.0437729
\(208\) 8.85988 + 3.29967i 0.614322 + 0.228791i
\(209\) −1.48759 1.48759i −0.102899 0.102899i
\(210\) 9.28760 5.21991i 0.640905 0.360208i
\(211\) −16.3772 16.3772i −1.12745 1.12745i −0.990590 0.136862i \(-0.956298\pi\)
−0.136862 0.990590i \(-0.543702\pi\)
\(212\) 22.2097 4.83706i 1.52537 0.332211i
\(213\) −3.76224 3.76224i −0.257785 0.257785i
\(214\) 0.792511 + 1.45096i 0.0541750 + 0.0991855i
\(215\) 2.84033 + 2.77234i 0.193709 + 0.189072i
\(216\) 1.08060 15.1864i 0.0735258 1.03330i
\(217\) 1.22721 1.22721i 0.0833086 0.0833086i
\(218\) 15.6465 + 4.59217i 1.05972 + 0.311021i
\(219\) 9.12803 0.616815
\(220\) 5.40481 + 23.4470i 0.364392 + 1.58080i
\(221\) 9.47163 + 2.29349i 0.637131 + 0.154277i
\(222\) 6.89297 3.76493i 0.462626 0.252686i
\(223\) −11.1310 11.1310i −0.745386 0.745386i 0.228223 0.973609i \(-0.426709\pi\)
−0.973609 + 0.228223i \(0.926709\pi\)
\(224\) −6.86936 + 9.18798i −0.458978 + 0.613898i
\(225\) 1.20017 0.0290794i 0.0800111 0.00193863i
\(226\) −5.50989 10.0877i −0.366512 0.671024i
\(227\) −18.8489 −1.25104 −0.625522 0.780206i \(-0.715114\pi\)
−0.625522 + 0.780206i \(0.715114\pi\)
\(228\) −0.702109 + 1.09309i −0.0464983 + 0.0723913i
\(229\) 19.2708i 1.27345i −0.771092 0.636724i \(-0.780289\pi\)
0.771092 0.636724i \(-0.219711\pi\)
\(230\) 4.06390 + 7.23076i 0.267966 + 0.476782i
\(231\) −12.8177 + 12.8177i −0.843345 + 0.843345i
\(232\) 5.51569 + 6.36077i 0.362122 + 0.417605i
\(233\) −5.29078 −0.346611 −0.173305 0.984868i \(-0.555445\pi\)
−0.173305 + 0.984868i \(0.555445\pi\)
\(234\) −0.226019 + 0.770094i −0.0147753 + 0.0503427i
\(235\) −0.772613 + 0.791560i −0.0503997 + 0.0516357i
\(236\) 15.4309 24.0237i 1.00447 1.56381i
\(237\) 1.05118 + 1.05118i 0.0682817 + 0.0682817i
\(238\) −5.90691 + 10.2441i −0.382888 + 0.664025i
\(239\) 2.05961 0.133225 0.0666126 0.997779i \(-0.478781\pi\)
0.0666126 + 0.997779i \(0.478781\pi\)
\(240\) 13.4375 6.34245i 0.867384 0.409403i
\(241\) −5.76525 + 5.76525i −0.371372 + 0.371372i −0.867977 0.496605i \(-0.834580\pi\)
0.496605 + 0.867977i \(0.334580\pi\)
\(242\) −12.1677 22.2770i −0.782167 1.43202i
\(243\) 2.48907 0.159674
\(244\) 1.34569 + 6.17885i 0.0861492 + 0.395560i
\(245\) 0.0781973 + 6.45568i 0.00499584 + 0.412438i
\(246\) −18.4241 5.40739i −1.17468 0.344763i
\(247\) 0.653493 0.653493i 0.0415808 0.0415808i
\(248\) 1.82876 1.58579i 0.116126 0.100698i
\(249\) 7.15372 7.15372i 0.453348 0.453348i
\(250\) 8.07839 + 13.5919i 0.510922 + 0.859627i
\(251\) −9.17446 −0.579087 −0.289544 0.957165i \(-0.593503\pi\)
−0.289544 + 0.957165i \(0.593503\pi\)
\(252\) −0.819385 0.526306i −0.0516164 0.0331542i
\(253\) −9.97911 9.97911i −0.627381 0.627381i
\(254\) −6.71327 + 22.8735i −0.421228 + 1.43521i
\(255\) 12.9774 8.13507i 0.812674 0.509438i
\(256\) −10.4661 + 12.1021i −0.654128 + 0.756384i
\(257\) 15.7791 + 15.7791i 0.984276 + 0.984276i 0.999878 0.0156020i \(-0.00496647\pi\)
−0.0156020 + 0.999878i \(0.504966\pi\)
\(258\) −1.17441 + 4.00147i −0.0731157 + 0.249121i
\(259\) 6.77958i 0.421263i
\(260\) −10.3002 + 2.37431i −0.638791 + 0.147249i
\(261\) −0.505368 + 0.505368i −0.0312815 + 0.0312815i
\(262\) −5.02659 + 17.1267i −0.310544 + 1.05809i
\(263\) −16.7952 16.7952i −1.03564 1.03564i −0.999341 0.0362977i \(-0.988444\pi\)
−0.0362977 0.999341i \(-0.511556\pi\)
\(264\) −19.1006 + 16.5629i −1.17556 + 1.01938i
\(265\) −17.7509 + 18.1862i −1.09043 + 1.11717i
\(266\) 0.537552 + 0.984169i 0.0329594 + 0.0603433i
\(267\) 2.40221i 0.147013i
\(268\) 2.18750 + 10.0440i 0.133623 + 0.613538i
\(269\) 3.81403 3.81403i 0.232546 0.232546i −0.581209 0.813754i \(-0.697420\pi\)
0.813754 + 0.581209i \(0.197420\pi\)
\(270\) 8.33983 + 14.8388i 0.507546 + 0.903058i
\(271\) 17.3406i 1.05337i −0.850061 0.526684i \(-0.823435\pi\)
0.850061 0.526684i \(-0.176565\pi\)
\(272\) −9.23165 + 13.6666i −0.559751 + 0.828661i
\(273\) −5.63079 5.63079i −0.340791 0.340791i
\(274\) −5.99870 + 20.4389i −0.362395 + 1.23476i
\(275\) −19.4778 18.5563i −1.17456 1.11898i
\(276\) −4.70992 + 7.33268i −0.283504 + 0.441375i
\(277\) 3.72812 0.224001 0.112000 0.993708i \(-0.464274\pi\)
0.112000 + 0.993708i \(0.464274\pi\)
\(278\) 20.3151 + 5.96239i 1.21842 + 0.357600i
\(279\) 0.145296 + 0.145296i 0.00869865 + 0.00869865i
\(280\) 0.755330 12.8038i 0.0451396 0.765176i
\(281\) 10.7940i 0.643914i 0.946754 + 0.321957i \(0.104341\pi\)
−0.946754 + 0.321957i \(0.895659\pi\)
\(282\) −1.11516 0.327292i −0.0664065 0.0194900i
\(283\) 1.68858i 0.100376i −0.998740 0.0501878i \(-0.984018\pi\)
0.998740 0.0501878i \(-0.0159820\pi\)
\(284\) −6.25867 + 1.36308i −0.371384 + 0.0808838i
\(285\) −0.0175927 1.45239i −0.00104210 0.0860320i
\(286\) 15.7837 8.62106i 0.933312 0.509774i
\(287\) −11.7198 + 11.7198i −0.691795 + 0.691795i
\(288\) −1.08781 0.813299i −0.0641000 0.0479241i
\(289\) −7.77688 + 15.1169i −0.457464 + 0.889228i
\(290\) −9.06338 2.54124i −0.532220 0.149227i
\(291\) 26.1674i 1.53396i
\(292\) 5.93889 9.24602i 0.347548 0.541083i
\(293\) 21.4800 21.4800i 1.25487 1.25487i 0.301366 0.953508i \(-0.402557\pi\)
0.953508 0.301366i \(-0.0974427\pi\)
\(294\) −5.95329 + 3.25168i −0.347203 + 0.189642i
\(295\) 0.386651 + 31.9204i 0.0225117 + 1.85848i
\(296\) 0.671119 9.43162i 0.0390080 0.548202i
\(297\) −20.4788 20.4788i −1.18830 1.18830i
\(298\) −12.8321 + 7.00885i −0.743341 + 0.406012i
\(299\) 4.38379 4.38379i 0.253521 0.253521i
\(300\) −8.63703 + 14.1912i −0.498659 + 0.819332i
\(301\) 2.54537 + 2.54537i 0.146713 + 0.146713i
\(302\) −25.1212 + 13.7212i −1.44557 + 0.789566i
\(303\) 15.2765i 0.877611i
\(304\) 0.650408 + 1.42237i 0.0373034 + 0.0815785i
\(305\) −5.05950 4.93840i −0.289706 0.282772i
\(306\) −1.21285 0.699349i −0.0693340 0.0399791i
\(307\) −8.39246 + 8.39246i −0.478983 + 0.478983i −0.904806 0.425823i \(-0.859984\pi\)
0.425823 + 0.904806i \(0.359984\pi\)
\(308\) 4.64393 + 21.3229i 0.264612 + 1.21499i
\(309\) −8.68865 + 8.68865i −0.494280 + 0.494280i
\(310\) −0.730621 + 2.60577i −0.0414965 + 0.147998i
\(311\) 19.8394 + 19.8394i 1.12499 + 1.12499i 0.990980 + 0.134006i \(0.0427843\pi\)
0.134006 + 0.990980i \(0.457216\pi\)
\(312\) −7.27604 8.39084i −0.411925 0.475038i
\(313\) 28.6023i 1.61670i −0.588704 0.808349i \(-0.700362\pi\)
0.588704 0.808349i \(-0.299638\pi\)
\(314\) −32.4457 9.52264i −1.83101 0.537393i
\(315\) 1.08872 0.0131876i 0.0613425 0.000743039i
\(316\) 1.74869 0.380849i 0.0983717 0.0214244i
\(317\) 19.8739i 1.11623i 0.829763 + 0.558116i \(0.188475\pi\)
−0.829763 + 0.558116i \(0.811525\pi\)
\(318\) −25.6209 7.51961i −1.43675 0.421679i
\(319\) 16.0154 0.896692
\(320\) 2.31827 17.7377i 0.129595 0.991567i
\(321\) 1.94213i 0.108399i
\(322\) 3.60603 + 6.60204i 0.200956 + 0.367917i
\(323\) 0.839667 + 1.37623i 0.0467203 + 0.0765756i
\(324\) −8.88699 + 13.8358i −0.493722 + 0.768655i
\(325\) 8.15170 8.55653i 0.452175 0.474631i
\(326\) 8.94001 + 16.3677i 0.495142 + 0.906523i
\(327\) −13.5449 13.5449i −0.749036 0.749036i
\(328\) −17.4644 + 15.1441i −0.964313 + 0.836195i
\(329\) −0.709360 + 0.709360i −0.0391083 + 0.0391083i
\(330\) 7.63103 27.2162i 0.420074 1.49820i
\(331\) 22.2818i 1.22472i 0.790580 + 0.612359i \(0.209779\pi\)
−0.790580 + 0.612359i \(0.790221\pi\)
\(332\) −2.59183 11.9006i −0.142245 0.653128i
\(333\) 0.802670 0.0439860
\(334\) 24.4942 13.3787i 1.34026 0.732050i
\(335\) −8.22449 8.02763i −0.449352 0.438596i
\(336\) 12.2558 5.60420i 0.668607 0.305734i
\(337\) 17.4659i 0.951429i −0.879600 0.475714i \(-0.842190\pi\)
0.879600 0.475714i \(-0.157810\pi\)
\(338\) −5.02564 9.20112i −0.273359 0.500475i
\(339\) 13.5026i 0.733360i
\(340\) 0.203125 18.4380i 0.0110160 0.999939i
\(341\) 4.60453i 0.249349i
\(342\) −0.116521 + 0.0636436i −0.00630073 + 0.00344145i
\(343\) 20.0512i 1.08267i
\(344\) 3.28910 + 3.79304i 0.177337 + 0.204507i
\(345\) −0.118016 9.74296i −0.00635377 0.524544i
\(346\) 6.29167 + 11.5190i 0.338242 + 0.619266i
\(347\) 4.81572 0.258521 0.129261 0.991611i \(-0.458740\pi\)
0.129261 + 0.991611i \(0.458740\pi\)
\(348\) −2.10463 9.66355i −0.112820 0.518021i
\(349\) 33.3515i 1.78526i 0.450788 + 0.892631i \(0.351143\pi\)
−0.450788 + 0.892631i \(0.648857\pi\)
\(350\) 7.17679 + 12.4149i 0.383615 + 0.663605i
\(351\) 8.99629 8.99629i 0.480186 0.480186i
\(352\) 4.34976 + 30.1237i 0.231843 + 1.60560i
\(353\) −7.01055 7.01055i −0.373134 0.373134i 0.495484 0.868617i \(-0.334991\pi\)
−0.868617 + 0.495484i \(0.834991\pi\)
\(354\) −29.4364 + 16.0781i −1.56452 + 0.854541i
\(355\) 5.00220 5.12486i 0.265489 0.272000i
\(356\) 2.43327 + 1.56293i 0.128963 + 0.0828352i
\(357\) 11.8582 7.23494i 0.627603 0.382914i
\(358\) −17.0552 + 9.31551i −0.901394 + 0.492340i
\(359\) 34.9508i 1.84463i 0.386436 + 0.922316i \(0.373706\pi\)
−0.386436 + 0.922316i \(0.626294\pi\)
\(360\) 1.51591 + 0.0894274i 0.0798957 + 0.00471324i
\(361\) −18.8471 −0.991953
\(362\) −8.19960 + 27.9378i −0.430961 + 1.46838i
\(363\) 29.8182i 1.56505i
\(364\) −9.36709 + 2.04006i −0.490969 + 0.106928i
\(365\) 0.148811 + 12.2852i 0.00778910 + 0.643039i
\(366\) 2.09199 7.12786i 0.109350 0.372579i
\(367\) 34.8185i 1.81751i −0.417330 0.908755i \(-0.637034\pi\)
0.417330 0.908755i \(-0.362966\pi\)
\(368\) 4.36309 + 9.54160i 0.227442 + 0.497390i
\(369\) −1.38756 1.38756i −0.0722336 0.0722336i
\(370\) 5.17952 + 9.21574i 0.269271 + 0.479104i
\(371\) −16.2977 + 16.2977i −0.846133 + 0.846133i
\(372\) −2.77833 + 0.605093i −0.144050 + 0.0313726i
\(373\) 18.8892 18.8892i 0.978047 0.978047i −0.0217171 0.999764i \(-0.506913\pi\)
0.999764 + 0.0217171i \(0.00691331\pi\)
\(374\) 8.13657 + 30.2994i 0.420732 + 1.56675i
\(375\) −0.674770 18.5616i −0.0348450 0.958515i
\(376\) −1.05707 + 0.916627i −0.0545141 + 0.0472714i
\(377\) 7.03552i 0.362348i
\(378\) 7.40018 + 13.5485i 0.380624 + 0.696861i
\(379\) −17.0957 17.0957i −0.878145 0.878145i 0.115197 0.993343i \(-0.463250\pi\)
−0.993343 + 0.115197i \(0.963250\pi\)
\(380\) −1.48261 0.927135i −0.0760562 0.0475610i
\(381\) 19.8012 19.8012i 1.01445 1.01445i
\(382\) −5.93447 10.8650i −0.303634 0.555904i
\(383\) 4.65399 + 4.65399i 0.237808 + 0.237808i 0.815942 0.578134i \(-0.196219\pi\)
−0.578134 + 0.815942i \(0.696219\pi\)
\(384\) 17.6048 6.58324i 0.898389 0.335950i
\(385\) −17.4601 17.0422i −0.889849 0.868550i
\(386\) −10.7404 19.6639i −0.546672 1.00087i
\(387\) −0.301360 + 0.301360i −0.0153190 + 0.0153190i
\(388\) 26.5057 + 17.0251i 1.34562 + 0.864319i
\(389\) 24.1708i 1.22551i −0.790275 0.612753i \(-0.790062\pi\)
0.790275 0.612753i \(-0.209938\pi\)
\(390\) 11.9560 + 3.35229i 0.605416 + 0.169750i
\(391\) 5.63269 + 9.23209i 0.284857 + 0.466887i
\(392\) −0.579628 + 8.14586i −0.0292757 + 0.411428i
\(393\) 14.8263 14.8263i 0.747887 0.747887i
\(394\) −8.73234 15.9875i −0.439929 0.805438i
\(395\) −1.39763 + 1.43190i −0.0703224 + 0.0720469i
\(396\) −2.52453 + 0.549819i −0.126862 + 0.0276294i
\(397\) 35.1264i 1.76294i 0.472239 + 0.881471i \(0.343446\pi\)
−0.472239 + 0.881471i \(0.656554\pi\)
\(398\) −1.18446 + 4.03571i −0.0593716 + 0.202292i
\(399\) 1.31733i 0.0659489i
\(400\) 8.75524 + 17.9818i 0.437762 + 0.899091i
\(401\) 0.129883 + 0.129883i 0.00648603 + 0.00648603i 0.710342 0.703856i \(-0.248540\pi\)
−0.703856 + 0.710342i \(0.748540\pi\)
\(402\) 3.40064 11.5867i 0.169609 0.577893i
\(403\) 2.02275 0.100761
\(404\) −15.4740 9.93922i −0.769858 0.494494i
\(405\) −0.222681 18.3837i −0.0110651 0.913493i
\(406\) −8.19144 2.40415i −0.406534 0.119316i
\(407\) −12.7186 12.7186i −0.630436 0.630436i
\(408\) 17.2131 8.89125i 0.852176 0.440183i
\(409\) 3.44732i 0.170459i −0.996361 0.0852294i \(-0.972838\pi\)
0.996361 0.0852294i \(-0.0271623\pi\)
\(410\) 6.97735 24.8849i 0.344587 1.22898i
\(411\) 17.6936 17.6936i 0.872760 0.872760i
\(412\) 3.14794 + 14.4540i 0.155088 + 0.712097i
\(413\) 28.9521i 1.42464i
\(414\) −0.781650 + 0.426936i −0.0384160 + 0.0209828i
\(415\) 9.74468 + 9.51143i 0.478347 + 0.466898i
\(416\) −13.2333 + 1.91084i −0.648814 + 0.0936864i
\(417\) −17.5865 17.5865i −0.861213 0.861213i
\(418\) 2.85476 + 0.837859i 0.139631 + 0.0409810i
\(419\) −7.11796 + 7.11796i −0.347735 + 0.347735i −0.859265 0.511530i \(-0.829079\pi\)
0.511530 + 0.859265i \(0.329079\pi\)
\(420\) −7.98861 + 12.7748i −0.389804 + 0.623347i
\(421\) 9.88208i 0.481623i −0.970572 0.240812i \(-0.922586\pi\)
0.970572 0.240812i \(-0.0774136\pi\)
\(422\) 31.4287 + 9.22417i 1.52993 + 0.449026i
\(423\) −0.0839848 0.0839848i −0.00408348 0.00408348i
\(424\) −24.2863 + 21.0597i −1.17945 + 1.02275i
\(425\) 11.1604 + 17.3334i 0.541359 + 0.840792i
\(426\) 7.21994 + 2.11902i 0.349807 + 0.102667i
\(427\) −4.53409 4.53409i −0.219420 0.219420i
\(428\) −1.96724 1.26360i −0.0950902 0.0610782i
\(429\) −21.1268 −1.02001
\(430\) −5.40466 1.51539i −0.260636 0.0730784i
\(431\) −5.70212 + 5.70212i −0.274662 + 0.274662i −0.830974 0.556312i \(-0.812216\pi\)
0.556312 + 0.830974i \(0.312216\pi\)
\(432\) 8.95381 + 19.5810i 0.430790 + 0.942091i
\(433\) 1.92567 1.92567i 0.0925418 0.0925418i −0.659320 0.751862i \(-0.729156\pi\)
0.751862 + 0.659320i \(0.229156\pi\)
\(434\) −0.691206 + 2.35509i −0.0331790 + 0.113048i
\(435\) 7.91292 + 7.72352i 0.379396 + 0.370314i
\(436\) −22.5326 + 4.90739i −1.07912 + 0.235021i
\(437\) 1.02559 0.0490607
\(438\) −11.3292 + 6.18799i −0.541330 + 0.295673i
\(439\) 3.40492 3.40492i 0.162508 0.162508i −0.621169 0.783677i \(-0.713342\pi\)
0.783677 + 0.621169i \(0.213342\pi\)
\(440\) −22.6031 25.4372i −1.07756 1.21267i
\(441\) −0.693246 −0.0330117
\(442\) −13.3104 + 3.57437i −0.633113 + 0.170015i
\(443\) 11.7307 + 11.7307i 0.557345 + 0.557345i 0.928551 0.371206i \(-0.121056\pi\)
−0.371206 + 0.928551i \(0.621056\pi\)
\(444\) −6.00288 + 9.34564i −0.284884 + 0.443524i
\(445\) −3.23309 + 0.0391623i −0.153263 + 0.00185647i
\(446\) 21.3610 + 6.26934i 1.01147 + 0.296862i
\(447\) 17.1759 0.812394
\(448\) 2.29723 16.0604i 0.108534 0.758783i
\(449\) 4.89774 4.89774i 0.231139 0.231139i −0.582029 0.813168i \(-0.697741\pi\)
0.813168 + 0.582029i \(0.197741\pi\)
\(450\) −1.46987 + 0.849697i −0.0692901 + 0.0400551i
\(451\) 43.9728i 2.07060i
\(452\) 13.6771 + 8.78508i 0.643318 + 0.413215i
\(453\) 33.6253 1.57985
\(454\) 23.3942 12.7779i 1.09794 0.599695i
\(455\) 7.48657 7.67017i 0.350976 0.359583i
\(456\) 0.130404 1.83264i 0.00610672 0.0858214i
\(457\) −18.8779 18.8779i −0.883073 0.883073i 0.110773 0.993846i \(-0.464667\pi\)
−0.993846 + 0.110773i \(0.964667\pi\)
\(458\) 13.0639 + 23.9178i 0.610434 + 1.11760i
\(459\) 11.5592 + 18.9458i 0.539539 + 0.884316i
\(460\) −9.94570 6.21945i −0.463720 0.289983i
\(461\) −37.7181 −1.75671 −0.878355 0.478009i \(-0.841358\pi\)
−0.878355 + 0.478009i \(0.841358\pi\)
\(462\) 7.21936 24.5979i 0.335875 1.14440i
\(463\) 11.9943 11.9943i 0.557421 0.557421i −0.371151 0.928573i \(-0.621037\pi\)
0.928573 + 0.371151i \(0.121037\pi\)
\(464\) −11.1578 4.15548i −0.517987 0.192914i
\(465\) 2.22056 2.27501i 0.102976 0.105501i
\(466\) 6.56662 3.58668i 0.304193 0.166150i
\(467\) 3.79544 + 3.79544i 0.175632 + 0.175632i 0.789449 0.613817i \(-0.210367\pi\)
−0.613817 + 0.789449i \(0.710367\pi\)
\(468\) −0.241534 1.10902i −0.0111649 0.0512644i
\(469\) −7.37041 7.37041i −0.340334 0.340334i
\(470\) 0.422317 1.50620i 0.0194800 0.0694759i
\(471\) 28.0877 + 28.0877i 1.29421 + 1.29421i
\(472\) −2.86600 + 40.2776i −0.131919 + 1.85393i
\(473\) 9.55029 0.439123
\(474\) −2.01728 0.592060i −0.0926566 0.0271942i
\(475\) 1.95445 0.0473554i 0.0896765 0.00217282i
\(476\) 0.386750 16.7187i 0.0177266 0.766301i
\(477\) −1.92957 1.92957i −0.0883488 0.0883488i
\(478\) −2.55627 + 1.39623i −0.116921 + 0.0638622i
\(479\) 26.2920 26.2920i 1.20131 1.20131i 0.227543 0.973768i \(-0.426931\pi\)
0.973768 0.227543i \(-0.0730694\pi\)
\(480\) −12.3782 + 16.9813i −0.564985 + 0.775086i
\(481\) 5.58722 5.58722i 0.254755 0.254755i
\(482\) 3.24718 11.0638i 0.147905 0.503943i
\(483\) 8.83696i 0.402095i
\(484\) 30.2036 + 19.4004i 1.37289 + 0.881834i
\(485\) −35.2183 + 0.426598i −1.59918 + 0.0193708i
\(486\) −3.08929 + 1.68737i −0.140133 + 0.0765405i
\(487\) 18.8448i 0.853938i −0.904266 0.426969i \(-0.859581\pi\)
0.904266 0.426969i \(-0.140419\pi\)
\(488\) −5.85890 6.75657i −0.265220 0.305856i
\(489\) 21.9085i 0.990735i
\(490\) −4.47343 7.95941i −0.202089 0.359569i
\(491\) 13.6969i 0.618133i 0.951040 + 0.309067i \(0.100017\pi\)
−0.951040 + 0.309067i \(0.899983\pi\)
\(492\) 26.5327 5.77858i 1.19619 0.260518i
\(493\) −11.9282 2.88833i −0.537219 0.130084i
\(494\) −0.368069 + 1.25409i −0.0165602 + 0.0564241i
\(495\) 2.01771 2.06719i 0.0906894 0.0929134i
\(496\) −1.19473 + 3.20793i −0.0536448 + 0.144040i
\(497\) 4.59267 4.59267i 0.206009 0.206009i
\(498\) −4.02921 + 13.7284i −0.180553 + 0.615183i
\(499\) 17.6916 17.6916i 0.791986 0.791986i −0.189831 0.981817i \(-0.560794\pi\)
0.981817 + 0.189831i \(0.0607940\pi\)
\(500\) −19.2405 11.3931i −0.860463 0.509514i
\(501\) −32.7860 −1.46477
\(502\) 11.3868 6.21947i 0.508219 0.277588i
\(503\) −26.8518 −1.19726 −0.598631 0.801025i \(-0.704289\pi\)
−0.598631 + 0.801025i \(0.704289\pi\)
\(504\) 1.37376 + 0.0977518i 0.0611923 + 0.00435421i
\(505\) 20.5603 0.249046i 0.914923 0.0110824i
\(506\) 19.1504 + 5.62056i 0.851341 + 0.249864i
\(507\) 12.3159i 0.546967i
\(508\) −7.17409 32.9403i −0.318299 1.46149i
\(509\) 4.40293 0.195157 0.0975783 0.995228i \(-0.468890\pi\)
0.0975783 + 0.995228i \(0.468890\pi\)
\(510\) −10.5919 + 18.8943i −0.469018 + 0.836653i
\(511\) 11.1428i 0.492929i
\(512\) 4.78570 22.1155i 0.211500 0.977378i
\(513\) 2.10469 0.0929244
\(514\) −30.2810 8.88733i −1.33564 0.392003i
\(515\) −11.8355 11.5522i −0.521536 0.509053i
\(516\) −1.25503 5.76255i −0.0552495 0.253682i
\(517\) 2.66153i 0.117054i
\(518\) 4.59595 + 8.41443i 0.201934 + 0.369709i
\(519\) 15.4184i 0.676793i
\(520\) 11.1745 9.92948i 0.490032 0.435437i
\(521\) −4.39568 4.39568i −0.192578 0.192578i 0.604231 0.796809i \(-0.293480\pi\)
−0.796809 + 0.604231i \(0.793480\pi\)
\(522\) 0.284640 0.969828i 0.0124583 0.0424482i
\(523\) −23.1827 23.1827i −1.01371 1.01371i −0.999905 0.0138053i \(-0.995606\pi\)
−0.0138053 0.999905i \(-0.504394\pi\)
\(524\) −5.37163 24.6642i −0.234661 1.07746i
\(525\) −0.408035 16.8404i −0.0178081 0.734977i
\(526\) 32.2310 + 9.45963i 1.40534 + 0.412459i
\(527\) −0.830413 + 3.42943i −0.0361733 + 0.149388i
\(528\) 12.4784 33.5055i 0.543053 1.45814i
\(529\) −16.1201 −0.700873
\(530\) 9.70281 34.6053i 0.421463 1.50316i
\(531\) −3.42779 −0.148754
\(532\) −1.33436 0.857083i −0.0578517 0.0371593i
\(533\) −19.3171 −0.836716
\(534\) −1.62849 2.98149i −0.0704715 0.129022i
\(535\) 2.61388 0.0316619i 0.113008 0.00136886i
\(536\) −9.52397 10.9832i −0.411373 0.474401i
\(537\) 22.8287 0.985129
\(538\) −2.14819 + 7.31933i −0.0926149 + 0.315559i
\(539\) 10.9847 + 10.9847i 0.473145 + 0.473145i
\(540\) −20.4103 12.7634i −0.878318 0.549248i
\(541\) 21.8221 + 21.8221i 0.938205 + 0.938205i 0.998199 0.0599937i \(-0.0191080\pi\)
−0.0599937 + 0.998199i \(0.519108\pi\)
\(542\) 11.7554 + 21.5222i 0.504938 + 0.924458i
\(543\) 24.1853 24.1853i 1.03789 1.03789i
\(544\) 2.19304 23.2205i 0.0940260 0.995570i
\(545\) 18.0090 18.4507i 0.771423 0.790340i
\(546\) 10.8058 + 3.17144i 0.462445 + 0.135725i
\(547\) 39.3646i 1.68311i −0.540173 0.841554i \(-0.681641\pi\)
0.540173 0.841554i \(-0.318359\pi\)
\(548\) −6.41047 29.4341i −0.273842 1.25736i
\(549\) 0.536815 0.536815i 0.0229107 0.0229107i
\(550\) 36.7542 + 9.82676i 1.56721 + 0.419015i
\(551\) −0.822984 + 0.822984i −0.0350603 + 0.0350603i
\(552\) 0.874781 12.2938i 0.0372331 0.523259i
\(553\) −1.28321 + 1.28321i −0.0545675 + 0.0545675i
\(554\) −4.62713 + 2.52733i −0.196588 + 0.107376i
\(555\) −0.150414 12.4176i −0.00638471 0.527098i
\(556\) −29.2560 + 6.37167i −1.24073 + 0.270219i
\(557\) −24.6084 24.6084i −1.04269 1.04269i −0.999047 0.0436458i \(-0.986103\pi\)
−0.0436458 0.999047i \(-0.513897\pi\)
\(558\) −0.278831 0.0818355i −0.0118039 0.00346437i
\(559\) 4.19541i 0.177447i
\(560\) 7.74239 + 16.4035i 0.327176 + 0.693172i
\(561\) 8.67331 35.8190i 0.366188 1.51228i
\(562\) −7.31734 13.3969i −0.308664 0.565112i
\(563\) 1.03909 1.03909i 0.0437924 0.0437924i −0.684871 0.728664i \(-0.740142\pi\)
0.728664 + 0.684871i \(0.240142\pi\)
\(564\) 1.60594 0.349759i 0.0676224 0.0147275i
\(565\) −18.1729 + 0.220127i −0.764539 + 0.00926082i
\(566\) 1.14471 + 2.09577i 0.0481156 + 0.0880918i
\(567\) 16.6742i 0.700249i
\(568\) 6.84386 5.93460i 0.287162 0.249010i
\(569\) −2.09247 −0.0877209 −0.0438605 0.999038i \(-0.513966\pi\)
−0.0438605 + 0.999038i \(0.513966\pi\)
\(570\) 1.00642 + 1.79070i 0.0421545 + 0.0750040i
\(571\) 2.08508 + 2.08508i 0.0872581 + 0.0872581i 0.749389 0.662130i \(-0.230348\pi\)
−0.662130 + 0.749389i \(0.730348\pi\)
\(572\) −13.7456 + 21.3999i −0.574731 + 0.894776i
\(573\) 14.5431i 0.607545i
\(574\) 6.60095 22.4908i 0.275518 0.938750i
\(575\) 13.1110 0.317671i 0.546764 0.0132478i
\(576\) 1.90148 + 0.271981i 0.0792282 + 0.0113325i
\(577\) −30.5131 + 30.5131i −1.27028 + 1.27028i −0.324332 + 0.945943i \(0.605139\pi\)
−0.945943 + 0.324332i \(0.894861\pi\)
\(578\) −0.595673 24.0343i −0.0247767 0.999693i
\(579\) 26.3205i 1.09384i
\(580\) 12.9717 2.99012i 0.538620 0.124158i
\(581\) 8.73273 + 8.73273i 0.362295 + 0.362295i
\(582\) −17.7392 32.4776i −0.735313 1.34624i
\(583\) 61.1492i 2.53254i
\(584\) −1.10304 + 15.5017i −0.0456442 + 0.641464i
\(585\) 0.908111 + 0.886374i 0.0375458 + 0.0366471i
\(586\) −12.0982 + 41.2213i −0.499774 + 1.70284i
\(587\) 28.5467 + 28.5467i 1.17825 + 1.17825i 0.980190 + 0.198059i \(0.0634638\pi\)
0.198059 + 0.980190i \(0.436536\pi\)
\(588\) 5.18454 8.07160i 0.213807 0.332867i
\(589\) 0.236613 + 0.236613i 0.00974946 + 0.00974946i
\(590\) −22.1191 39.3557i −0.910629 1.62025i
\(591\) 21.3995i 0.880260i
\(592\) 5.56084 + 12.1610i 0.228549 + 0.499812i
\(593\) 31.2705 31.2705i 1.28412 1.28412i 0.345824 0.938299i \(-0.387599\pi\)
0.938299 0.345824i \(-0.112401\pi\)
\(594\) 39.3000 + 11.5344i 1.61250 + 0.473260i
\(595\) 9.93069 + 15.8418i 0.407119 + 0.649451i
\(596\) 11.1750 17.3980i 0.457748 0.712649i
\(597\) 3.49365 3.49365i 0.142985 0.142985i
\(598\) −2.46909 + 8.41273i −0.100969 + 0.344022i
\(599\) −12.2541 −0.500691 −0.250345 0.968157i \(-0.580544\pi\)
−0.250345 + 0.968157i \(0.580544\pi\)
\(600\) 1.09940 23.4685i 0.0448830 0.958098i
\(601\) 2.35845 + 2.35845i 0.0962031 + 0.0962031i 0.753570 0.657367i \(-0.228330\pi\)
−0.657367 + 0.753570i \(0.728330\pi\)
\(602\) −4.88471 1.43364i −0.199086 0.0584307i
\(603\) 0.872621 0.872621i 0.0355359 0.0355359i
\(604\) 21.8773 34.0599i 0.890176 1.38588i
\(605\) −40.1317 + 0.486114i −1.63159 + 0.0197633i
\(606\) 10.3561 + 18.9603i 0.420687 + 0.770210i
\(607\) 10.7760 0.437383 0.218691 0.975794i \(-0.429821\pi\)
0.218691 + 0.975794i \(0.429821\pi\)
\(608\) −1.77149 1.32445i −0.0718434 0.0537134i
\(609\) 7.09120 + 7.09120i 0.287350 + 0.287350i
\(610\) 9.62736 + 2.69937i 0.389800 + 0.109294i
\(611\) −1.16920 −0.0473009
\(612\) 1.97942 + 0.0457893i 0.0800132 + 0.00185092i
\(613\) −18.2214 + 18.2214i −0.735954 + 0.735954i −0.971792 0.235839i \(-0.924216\pi\)
0.235839 + 0.971792i \(0.424216\pi\)
\(614\) 4.72691 16.1056i 0.190762 0.649968i
\(615\) −21.2061 + 21.7261i −0.855112 + 0.876082i
\(616\) −20.2188 23.3166i −0.814639 0.939454i
\(617\) 27.5364i 1.10858i 0.832325 + 0.554288i \(0.187009\pi\)
−0.832325 + 0.554288i \(0.812991\pi\)
\(618\) 4.89373 16.6740i 0.196855 0.670726i
\(619\) −26.4722 + 26.4722i −1.06401 + 1.06401i −0.0661992 + 0.997806i \(0.521087\pi\)
−0.997806 + 0.0661992i \(0.978913\pi\)
\(620\) −0.859678 3.72944i −0.0345255 0.149778i
\(621\) 14.1188 0.566567
\(622\) −38.0728 11.1742i −1.52658 0.448044i
\(623\) −2.93244 −0.117486
\(624\) 14.7189 + 5.48173i 0.589226 + 0.219445i
\(625\) 24.9707 1.21076i 0.998827 0.0484305i
\(626\) 19.3898 + 35.4996i 0.774973 + 1.41885i
\(627\) −2.47132 2.47132i −0.0986951 0.0986951i
\(628\) 46.7252 10.1763i 1.86454 0.406079i
\(629\) 7.17897 + 11.7665i 0.286244 + 0.469160i
\(630\) −1.34232 + 0.754424i −0.0534793 + 0.0300570i
\(631\) −45.3466 −1.80522 −0.902610 0.430458i \(-0.858352\pi\)
−0.902610 + 0.430458i \(0.858352\pi\)
\(632\) −1.91220 + 1.65815i −0.0760632 + 0.0659575i
\(633\) −27.2073 27.2073i −1.08139 1.08139i
\(634\) −13.4727 24.6664i −0.535071 0.979628i
\(635\) 26.9729 + 26.3273i 1.07039 + 1.04477i
\(636\) 36.8968 8.03578i 1.46306 0.318639i
\(637\) −4.82555 + 4.82555i −0.191195 + 0.191195i
\(638\) −19.8774 + 10.8570i −0.786955 + 0.429834i
\(639\) 0.543750 + 0.543750i 0.0215104 + 0.0215104i
\(640\) 9.14727 + 23.5866i 0.361578 + 0.932342i
\(641\) 5.90140 5.90140i 0.233091 0.233091i −0.580891 0.813982i \(-0.697296\pi\)
0.813982 + 0.580891i \(0.197296\pi\)
\(642\) 1.31659 + 2.41047i 0.0519618 + 0.0951336i
\(643\) −3.51517 −0.138625 −0.0693124 0.997595i \(-0.522081\pi\)
−0.0693124 + 0.997595i \(0.522081\pi\)
\(644\) −8.95119 5.74952i −0.352726 0.226563i
\(645\) 4.71862 + 4.60567i 0.185795 + 0.181348i
\(646\) −1.97511 1.13888i −0.0777096 0.0448087i
\(647\) 15.5377 + 15.5377i 0.610848 + 0.610848i 0.943167 0.332319i \(-0.107831\pi\)
−0.332319 + 0.943167i \(0.607831\pi\)
\(648\) 1.65060 23.1968i 0.0648415 0.911256i
\(649\) 54.3145 + 54.3145i 2.13203 + 2.13203i
\(650\) −4.31686 + 16.1460i −0.169321 + 0.633299i
\(651\) 2.03876 2.03876i 0.0799053 0.0799053i
\(652\) −22.1917 14.2541i −0.869093 0.558235i
\(653\) 24.5762 0.961743 0.480871 0.876791i \(-0.340320\pi\)
0.480871 + 0.876791i \(0.340320\pi\)
\(654\) 25.9934 + 7.62894i 1.01642 + 0.298315i
\(655\) 20.1961 + 19.7127i 0.789128 + 0.770239i
\(656\) 11.4095 30.6354i 0.445466 1.19611i
\(657\) −1.31926 −0.0514691
\(658\) 0.399534 1.36130i 0.0155755 0.0530690i
\(659\) 11.8832i 0.462904i 0.972846 + 0.231452i \(0.0743477\pi\)
−0.972846 + 0.231452i \(0.925652\pi\)
\(660\) 8.97897 + 38.9524i 0.349506 + 1.51622i
\(661\) 31.5825 1.22842 0.614209 0.789144i \(-0.289475\pi\)
0.614209 + 0.789144i \(0.289475\pi\)
\(662\) −15.1051 27.6549i −0.587075 1.07484i
\(663\) 15.7352 + 3.81016i 0.611103 + 0.147974i
\(664\) 11.2843 + 13.0133i 0.437917 + 0.505013i
\(665\) 1.77297 0.0214759i 0.0687528 0.000832799i
\(666\) −0.996229 + 0.544139i −0.0386031 + 0.0210849i
\(667\) −5.52078 + 5.52078i −0.213765 + 0.213765i
\(668\) −21.3313 + 33.2098i −0.825332 + 1.28493i
\(669\) −18.4918 18.4918i −0.714936 0.714936i
\(670\) 15.6498 + 4.38797i 0.604604 + 0.169522i
\(671\) −17.0120 −0.656741
\(672\) −11.4120 + 15.2639i −0.440228 + 0.588819i
\(673\) 8.10867i 0.312566i 0.987712 + 0.156283i \(0.0499512\pi\)
−0.987712 + 0.156283i \(0.950049\pi\)
\(674\) 11.8403 + 21.6777i 0.456072 + 0.834994i
\(675\) 26.9059 0.651916i 1.03561 0.0250923i
\(676\) 12.4751 + 8.01298i 0.479811 + 0.308191i
\(677\) −17.4897 −0.672185 −0.336093 0.941829i \(-0.609105\pi\)
−0.336093 + 0.941829i \(0.609105\pi\)
\(678\) −9.15355 16.7586i −0.351540 0.643612i
\(679\) −31.9433 −1.22587
\(680\) 12.2472 + 23.0219i 0.469658 + 0.882848i
\(681\) −31.3135 −1.19994
\(682\) 3.12146 + 5.71488i 0.119527 + 0.218834i
\(683\) −19.6076 −0.750262 −0.375131 0.926972i \(-0.622402\pi\)
−0.375131 + 0.926972i \(0.622402\pi\)
\(684\) 0.101475 0.157982i 0.00387998 0.00604058i
\(685\) 24.1019 + 23.5250i 0.920886 + 0.898844i
\(686\) −13.5930 24.8865i −0.518982 0.950170i
\(687\) 32.0144i 1.22143i
\(688\) −6.65359 2.47799i −0.253666 0.0944725i
\(689\) −26.8626 −1.02339
\(690\) 6.75134 + 12.0124i 0.257019 + 0.457305i
\(691\) 32.2386 + 32.2386i 1.22641 + 1.22641i 0.965312 + 0.261101i \(0.0840855\pi\)
0.261101 + 0.965312i \(0.415914\pi\)
\(692\) −15.6177 10.0316i −0.593697 0.381343i
\(693\) 1.85252 1.85252i 0.0703715 0.0703715i
\(694\) −5.97700 + 3.26463i −0.226884 + 0.123924i
\(695\) 23.3826 23.9560i 0.886953 0.908703i
\(696\) 9.16317 + 10.5671i 0.347329 + 0.400545i
\(697\) 7.93035 32.7507i 0.300383 1.24052i
\(698\) −22.6093 41.3939i −0.855775 1.56678i
\(699\) −8.78954 −0.332451
\(700\) −17.3236 10.5435i −0.654771 0.398505i
\(701\) 29.7379i 1.12319i 0.827414 + 0.561593i \(0.189811\pi\)
−0.827414 + 0.561593i \(0.810189\pi\)
\(702\) −5.06700 + 17.2644i −0.191242 + 0.651601i
\(703\) 1.30714 0.0492996
\(704\) −25.8199 34.4391i −0.973124 1.29797i
\(705\) −1.28354 + 1.31501i −0.0483408 + 0.0495263i
\(706\) 13.4536 + 3.94857i 0.506334 + 0.148606i
\(707\) 18.6484 0.701345
\(708\) 25.6352 39.9104i 0.963431 1.49993i
\(709\) −10.1054 + 10.1054i −0.379517 + 0.379517i −0.870928 0.491411i \(-0.836481\pi\)
0.491411 + 0.870928i \(0.336481\pi\)
\(710\) −2.73424 + 9.75173i −0.102614 + 0.365976i
\(711\) −0.151925 0.151925i −0.00569765 0.00569765i
\(712\) −4.07956 0.290286i −0.152888 0.0108789i
\(713\) 1.58726 + 1.58726i 0.0594432 + 0.0594432i
\(714\) −9.81310 + 17.0184i −0.367246 + 0.636898i
\(715\) −0.344422 28.4342i −0.0128807 1.06338i
\(716\) 14.8528 23.1238i 0.555076 0.864176i
\(717\) 3.42162 0.127783
\(718\) −23.6935 43.3790i −0.884234 1.61889i
\(719\) −23.6636 + 23.6636i −0.882502 + 0.882502i −0.993788 0.111287i \(-0.964503\pi\)
0.111287 + 0.993788i \(0.464503\pi\)
\(720\) −1.94209 + 0.916662i −0.0723774 + 0.0341620i
\(721\) −10.6065 10.6065i −0.395005 0.395005i
\(722\) 23.3920 12.7767i 0.870559 0.475498i
\(723\) −9.57777 + 9.57777i −0.356201 + 0.356201i
\(724\) −8.76245 40.2334i −0.325654 1.49526i
\(725\) −10.2659 + 10.7758i −0.381267 + 0.400202i
\(726\) −20.2141 37.0086i −0.750214 1.37352i
\(727\) −15.9581 15.9581i −0.591853 0.591853i 0.346278 0.938132i \(-0.387445\pi\)
−0.938132 + 0.346278i \(0.887445\pi\)
\(728\) 10.2429 8.88206i 0.379628 0.329191i
\(729\) 28.8012 1.06671
\(730\) −8.51299 15.1469i −0.315080 0.560611i
\(731\) −7.11300 1.72236i −0.263084 0.0637040i
\(732\) 2.23559 + 10.2649i 0.0826298 + 0.379401i
\(733\) −26.9181 26.9181i −0.994242 0.994242i 0.00574169 0.999984i \(-0.498172\pi\)
−0.999984 + 0.00574169i \(0.998172\pi\)
\(734\) 23.6038 + 43.2147i 0.871233 + 1.59509i
\(735\) 0.129909 + 10.7248i 0.00479176 + 0.395589i
\(736\) −11.8836 8.88471i −0.438034 0.327495i
\(737\) −27.6539 −1.01865
\(738\) 2.66281 + 0.781521i 0.0980193 + 0.0287682i
\(739\) 19.0607 0.701158 0.350579 0.936533i \(-0.385985\pi\)
0.350579 + 0.936533i \(0.385985\pi\)
\(740\) −12.6760 7.92681i −0.465978 0.291395i
\(741\) 1.08564 1.08564i 0.0398821 0.0398821i
\(742\) 9.17938 31.2761i 0.336986 1.14818i
\(743\) 11.3135i 0.415053i 0.978229 + 0.207526i \(0.0665413\pi\)
−0.978229 + 0.207526i \(0.933459\pi\)
\(744\) 3.03810 2.63447i 0.111382 0.0965842i
\(745\) 0.280013 + 23.1168i 0.0102589 + 0.846933i
\(746\) −10.6390 + 36.2494i −0.389523 + 1.32719i
\(747\) −1.03391 + 1.03391i −0.0378289 + 0.0378289i
\(748\) −30.6389 32.0900i −1.12027 1.17333i
\(749\) 2.37082 0.0866277
\(750\) 13.4206 + 22.5801i 0.490050 + 0.824510i
\(751\) −23.2235 23.2235i −0.847438 0.847438i 0.142375 0.989813i \(-0.454526\pi\)
−0.989813 + 0.142375i \(0.954526\pi\)
\(752\) 0.690581 1.85426i 0.0251829 0.0676180i
\(753\) −15.2415 −0.555430
\(754\) −4.76946 8.73209i −0.173693 0.318004i
\(755\) 0.548179 + 45.2556i 0.0199503 + 1.64702i
\(756\) −18.3694 11.7990i −0.668088 0.429125i
\(757\) 0.996139 0.996139i 0.0362053 0.0362053i −0.688772 0.724978i \(-0.741850\pi\)
0.724978 + 0.688772i \(0.241850\pi\)
\(758\) 32.8075 + 9.62884i 1.19162 + 0.349735i
\(759\) −16.5782 16.5782i −0.601751 0.601751i
\(760\) 2.46865 + 0.145631i 0.0895472 + 0.00528260i
\(761\) 28.5821 1.03610 0.518050 0.855351i \(-0.326658\pi\)
0.518050 + 0.855351i \(0.326658\pi\)
\(762\) −11.1527 + 37.9996i −0.404020 + 1.37658i
\(763\) 16.5346 16.5346i 0.598594 0.598594i
\(764\) 14.7311 + 9.46203i 0.532951 + 0.342324i
\(765\) −1.87559 + 1.17575i −0.0678122 + 0.0425092i
\(766\) −8.93126 2.62128i −0.322700 0.0947107i
\(767\) −23.8602 + 23.8602i −0.861541 + 0.861541i
\(768\) −17.3872 + 20.1052i −0.627406 + 0.725484i
\(769\) 22.8890i 0.825399i −0.910867 0.412699i \(-0.864586\pi\)
0.910867 0.412699i \(-0.135414\pi\)
\(770\) 33.2236 + 9.31540i 1.19729 + 0.335704i
\(771\) 26.2138 + 26.2138i 0.944067 + 0.944067i
\(772\) 26.6607 + 17.1247i 0.959541 + 0.616331i
\(773\) 16.6265 + 16.6265i 0.598013 + 0.598013i 0.939783 0.341770i \(-0.111027\pi\)
−0.341770 + 0.939783i \(0.611027\pi\)
\(774\) 0.169736 0.578326i 0.00610102 0.0207875i
\(775\) 3.09810 + 2.95152i 0.111287 + 0.106022i
\(776\) −44.4389 3.16210i −1.59526 0.113513i
\(777\) 11.2629i 0.404053i
\(778\) 16.3856 + 29.9994i 0.587453 + 1.07553i
\(779\) −2.25963 2.25963i −0.0809596 0.0809596i
\(780\) −17.1117 + 3.94443i −0.612696 + 0.141233i
\(781\) 17.2318i 0.616602i
\(782\) −13.2495 7.63989i −0.473801 0.273202i
\(783\) −11.3296 + 11.3296i −0.404886 + 0.404886i
\(784\) −4.80276 10.5031i −0.171527 0.375111i
\(785\) −37.3448 + 38.2606i −1.33289 + 1.36558i
\(786\) −8.35064 + 28.4524i −0.297858 + 1.01486i
\(787\) 38.3124i 1.36569i −0.730563 0.682845i \(-0.760742\pi\)
0.730563 0.682845i \(-0.239258\pi\)
\(788\) 21.6762 + 13.9230i 0.772182 + 0.495987i
\(789\) −27.9018 27.9018i −0.993331 0.993331i
\(790\) 0.763956 2.72467i 0.0271803 0.0969393i
\(791\) −16.4830 −0.586067
\(792\) 2.76058 2.39381i 0.0980929 0.0850604i
\(793\) 7.47332i 0.265385i
\(794\) −23.8125 43.5968i −0.845075 1.54719i
\(795\) −29.4895 + 30.2127i −1.04589 + 1.07153i
\(796\) −1.26577 5.81185i −0.0448639 0.205996i
\(797\) −4.40772 + 4.40772i −0.156130 + 0.156130i −0.780849 0.624720i \(-0.785213\pi\)
0.624720 + 0.780849i \(0.285213\pi\)
\(798\) 0.893031 + 1.63499i 0.0316130 + 0.0578782i
\(799\) 0.479999 1.98230i 0.0169811 0.0701286i
\(800\) −23.0566 16.3827i −0.815173 0.579217i
\(801\) 0.347187i 0.0122673i
\(802\) −0.249252 0.0731542i −0.00880139 0.00258316i
\(803\) 20.9041 + 20.9041i 0.737688 + 0.737688i
\(804\) 3.63408 + 16.6861i 0.128164 + 0.588474i
\(805\) 11.8935 0.144065i 0.419191 0.00507764i
\(806\) −2.51053 + 1.37125i −0.0884296 + 0.0483001i
\(807\) 6.33623 6.33623i 0.223046 0.223046i
\(808\) 25.9433 + 1.84603i 0.912682 + 0.0649430i
\(809\) −15.4970 + 15.4970i −0.544847 + 0.544847i −0.924946 0.380099i \(-0.875890\pi\)
0.380099 + 0.924946i \(0.375890\pi\)
\(810\) 12.7389 + 22.6658i 0.447599 + 0.796396i
\(811\) 15.0750 15.0750i 0.529354 0.529354i −0.391026 0.920380i \(-0.627880\pi\)
0.920380 + 0.391026i \(0.127880\pi\)
\(812\) 11.7966 2.56918i 0.413978 0.0901604i
\(813\) 28.8079i 1.01034i
\(814\) 24.4076 + 7.16351i 0.855487 + 0.251081i
\(815\) 29.4862 0.357165i 1.03286 0.0125109i
\(816\) −15.3365 + 22.7043i −0.536884 + 0.794809i
\(817\) −0.490760 + 0.490760i −0.0171695 + 0.0171695i
\(818\) 2.33697 + 4.27861i 0.0817104 + 0.149598i
\(819\) 0.813807 + 0.813807i 0.0284367 + 0.0284367i
\(820\) 8.20983 + 35.6157i 0.286700 + 1.24375i
\(821\) 6.89783 + 6.89783i 0.240736 + 0.240736i 0.817155 0.576419i \(-0.195550\pi\)
−0.576419 + 0.817155i \(0.695550\pi\)
\(822\) −9.96560 + 33.9549i −0.347590 + 1.18431i
\(823\) −27.4990 −0.958555 −0.479277 0.877663i \(-0.659101\pi\)
−0.479277 + 0.877663i \(0.659101\pi\)
\(824\) −13.7056 15.8055i −0.477456 0.550609i
\(825\) −32.3583 30.8274i −1.12657 1.07327i
\(826\) −19.6270 35.9337i −0.682909 1.25029i
\(827\) −33.7721 −1.17437 −0.587185 0.809453i \(-0.699764\pi\)
−0.587185 + 0.809453i \(0.699764\pi\)
\(828\) 0.680715 1.05978i 0.0236565 0.0368298i
\(829\) 37.6185 1.30654 0.653272 0.757123i \(-0.273396\pi\)
0.653272 + 0.757123i \(0.273396\pi\)
\(830\) −18.5424 5.19903i −0.643618 0.180461i
\(831\) 6.19350 0.214850
\(832\) 15.1290 11.3426i 0.524504 0.393234i
\(833\) −6.20030 10.1624i −0.214828 0.352107i
\(834\) 33.7494 + 9.90528i 1.16865 + 0.342992i
\(835\) −0.534497 44.1260i −0.0184970 1.52704i
\(836\) −4.11117 + 0.895372i −0.142188 + 0.0309671i
\(837\) 3.25732 + 3.25732i 0.112589 + 0.112589i
\(838\) 4.00907 13.6598i 0.138491 0.471869i
\(839\) 9.28426 + 9.28426i 0.320528 + 0.320528i 0.848970 0.528441i \(-0.177223\pi\)
−0.528441 + 0.848970i \(0.677223\pi\)
\(840\) 1.25482 21.2709i 0.0432955 0.733917i
\(841\) 20.1397i 0.694473i
\(842\) 6.69917 + 12.2651i 0.230869 + 0.422683i
\(843\) 17.9319i 0.617609i
\(844\) −45.2607 + 9.85735i −1.55794 + 0.339304i
\(845\) −16.5757 + 0.200781i −0.570221 + 0.00690707i
\(846\) 0.161171 + 0.0473030i 0.00554118 + 0.00162631i
\(847\) −36.3998 −1.25071
\(848\) 15.8662 42.6021i 0.544849 1.46296i
\(849\) 2.80523i 0.0962751i
\(850\) −25.6021 13.9474i −0.878146 0.478393i
\(851\) 8.76859 0.300583
\(852\) −10.3975 + 2.26447i −0.356212 + 0.0775796i
\(853\) 0.850374i 0.0291162i −0.999894 0.0145581i \(-0.995366\pi\)
0.999894 0.0145581i \(-0.00463416\pi\)
\(854\) 8.70116 + 2.55375i 0.297748 + 0.0873874i
\(855\) 0.00254264 + 0.209911i 8.69565e−5 + 0.00717880i
\(856\) 3.29823 + 0.234690i 0.112731 + 0.00802153i
\(857\) 40.7991 1.39367 0.696836 0.717231i \(-0.254591\pi\)
0.696836 + 0.717231i \(0.254591\pi\)
\(858\) 26.2214 14.3221i 0.895185 0.488949i
\(859\) −18.1487 −0.619227 −0.309614 0.950862i \(-0.600200\pi\)
−0.309614 + 0.950862i \(0.600200\pi\)
\(860\) 7.73525 1.78306i 0.263770 0.0608020i
\(861\) −19.4699 + 19.4699i −0.663534 + 0.663534i
\(862\) 3.21162 10.9427i 0.109388 0.372709i
\(863\) 26.9558 26.9558i 0.917587 0.917587i −0.0792669 0.996853i \(-0.525258\pi\)
0.996853 + 0.0792669i \(0.0252579\pi\)
\(864\) −24.3871 18.2329i −0.829667 0.620297i
\(865\) 20.7514 0.251360i 0.705567 0.00854651i
\(866\) −1.08460 + 3.69547i −0.0368562 + 0.125577i
\(867\) −12.9197 + 25.1136i −0.438775 + 0.852902i
\(868\) −0.738653 3.39158i −0.0250715 0.115118i
\(869\) 4.81462i 0.163325i
\(870\) −15.0569 4.22174i −0.510478 0.143130i
\(871\) 12.1483i 0.411629i
\(872\) 24.6395 21.3659i 0.834398 0.723541i
\(873\) 3.78193i 0.127999i
\(874\) −1.27291 + 0.695260i −0.0430567 + 0.0235175i
\(875\) 22.6586 0.823710i 0.766000 0.0278465i
\(876\) 9.86625 15.3604i 0.333350 0.518978i
\(877\) 4.54735i 0.153553i −0.997048 0.0767765i \(-0.975537\pi\)
0.997048 0.0767765i \(-0.0244628\pi\)
\(878\) −1.91776 + 6.53422i −0.0647213 + 0.220519i
\(879\) 35.6846 35.6846i 1.20361 1.20361i
\(880\) 45.2979 + 16.2482i 1.52699 + 0.547728i
\(881\) −4.90738 + 4.90738i −0.165334 + 0.165334i −0.784925 0.619591i \(-0.787298\pi\)
0.619591 + 0.784925i \(0.287298\pi\)
\(882\) 0.860418 0.469959i 0.0289718 0.0158243i
\(883\) 0.697857 + 0.697857i 0.0234848 + 0.0234848i 0.718752 0.695267i \(-0.244714\pi\)
−0.695267 + 0.718752i \(0.744714\pi\)
\(884\) 14.0970 13.4596i 0.474135 0.452695i
\(885\) 0.642341 + 53.0292i 0.0215920 + 1.78256i
\(886\) −22.5119 6.60714i −0.756303 0.221971i
\(887\) −25.7137 −0.863381 −0.431691 0.902022i \(-0.642083\pi\)
−0.431691 + 0.902022i \(0.642083\pi\)
\(888\) 1.11493 15.6687i 0.0374144 0.525807i
\(889\) 24.1719 + 24.1719i 0.810699 + 0.810699i
\(890\) 3.98618 2.24035i 0.133617 0.0750968i
\(891\) −31.2809 31.2809i −1.04795 1.04795i
\(892\) −30.7621 + 6.69969i −1.02999 + 0.224322i
\(893\) −0.136768 0.136768i −0.00457677 0.00457677i
\(894\) −21.3178 + 11.6438i −0.712974 + 0.389425i
\(895\) 0.372167 + 30.7247i 0.0124402 + 1.02701i
\(896\) 8.03634 + 21.4906i 0.268475 + 0.717950i
\(897\) 7.28276 7.28276i 0.243164 0.243164i
\(898\) −2.75857 + 9.39903i −0.0920546 + 0.313650i
\(899\) −2.54738 −0.0849599
\(900\) 1.24829 2.05103i 0.0416098 0.0683678i
\(901\) 11.0281 45.5436i 0.367398 1.51728i
\(902\) −29.8096 54.5765i −0.992551 1.81720i
\(903\) 4.22861 + 4.22861i 0.140719 + 0.140719i
\(904\) −22.9308 1.63167i −0.762666 0.0542685i
\(905\) 32.9448 + 32.1562i 1.09512 + 1.06891i
\(906\) −41.7338 + 22.7949i −1.38651 + 0.757311i
\(907\) 14.8081 0.491695 0.245848 0.969309i \(-0.420934\pi\)
0.245848 + 0.969309i \(0.420934\pi\)
\(908\) −20.3733 + 31.7183i −0.676111 + 1.05261i
\(909\) 2.20788i 0.0732308i
\(910\) −4.09222 + 14.5950i −0.135656 + 0.483820i
\(911\) −7.27657 + 7.27657i −0.241083 + 0.241083i −0.817298 0.576215i \(-0.804529\pi\)
0.576215 + 0.817298i \(0.304529\pi\)
\(912\) 1.08052 + 2.36297i 0.0357795 + 0.0782459i
\(913\) 32.7654 1.08438
\(914\) 36.2278 + 10.6327i 1.19831 + 0.351698i
\(915\) −8.40531 8.20412i −0.277871 0.271220i
\(916\) −32.4282 20.8293i −1.07146 0.688218i
\(917\) 18.0988 + 18.0988i 0.597676 + 0.597676i
\(918\) −27.1903 15.6784i −0.897412 0.517463i
\(919\) −55.9667 −1.84617 −0.923086 0.384593i \(-0.874342\pi\)
−0.923086 + 0.384593i \(0.874342\pi\)
\(920\) 16.5603 + 0.976930i 0.545976 + 0.0322084i
\(921\) −13.9423 + 13.9423i −0.459416 + 0.459416i
\(922\) 46.8136 25.5695i 1.54172 0.842088i
\(923\) 7.56987 0.249165
\(924\) 7.71493 + 35.4236i 0.253802 + 1.16535i
\(925\) 16.7102 0.404878i 0.549427 0.0133123i
\(926\) −6.75557 + 23.0177i −0.222002 + 0.756408i
\(927\) 1.25575 1.25575i 0.0412444 0.0412444i
\(928\) 16.6655 2.40643i 0.547071 0.0789951i
\(929\) −9.24929 + 9.24929i −0.303459 + 0.303459i −0.842366 0.538906i \(-0.818838\pi\)
0.538906 + 0.842366i \(0.318838\pi\)
\(930\) −1.21378 + 4.32896i −0.0398013 + 0.141952i
\(931\) −1.12894 −0.0369996
\(932\) −5.71867 + 8.90316i −0.187321 + 0.291633i
\(933\) 32.9590 + 32.9590i 1.07903 + 1.07903i
\(934\) −7.28366 2.13772i −0.238329 0.0699482i
\(935\) 48.3495 + 11.0893i 1.58120 + 0.362659i
\(936\) 1.05159 + 1.21271i 0.0343724 + 0.0396388i
\(937\) 8.77168 + 8.77168i 0.286558 + 0.286558i 0.835718 0.549159i \(-0.185052\pi\)
−0.549159 + 0.835718i \(0.685052\pi\)
\(938\) 14.1442 + 4.15126i 0.461825 + 0.135543i
\(939\) 47.5168i 1.55065i
\(940\) 0.496915 + 2.15571i 0.0162076 + 0.0703114i
\(941\) 41.1366 41.1366i 1.34101 1.34101i 0.445963 0.895051i \(-0.352861\pi\)
0.895051 0.445963i \(-0.147139\pi\)
\(942\) −53.9018 15.8199i −1.75621 0.515440i
\(943\) −15.1581 15.1581i −0.493616 0.493616i
\(944\) −23.7475 51.9332i −0.772916 1.69028i
\(945\) 24.4075 0.295647i 0.793976 0.00961739i
\(946\) −11.8533 + 6.47424i −0.385383 + 0.210496i
\(947\) 13.7599i 0.447137i 0.974688 + 0.223569i \(0.0717707\pi\)
−0.974688 + 0.223569i \(0.928229\pi\)
\(948\) 2.90509 0.632701i 0.0943531 0.0205492i
\(949\) −9.18308 + 9.18308i −0.298095 + 0.298095i
\(950\) −2.39366 + 1.38372i −0.0776605 + 0.0448938i
\(951\) 33.0164i 1.07063i
\(952\) 10.8538 + 21.0125i 0.351773 + 0.681019i
\(953\) 2.96837 + 2.96837i 0.0961550 + 0.0961550i 0.753548 0.657393i \(-0.228341\pi\)
−0.657393 + 0.753548i \(0.728341\pi\)
\(954\) 3.70294 + 1.08680i 0.119887 + 0.0351863i
\(955\) −19.5732 + 0.237090i −0.633375 + 0.00767204i
\(956\) 2.22618 3.46585i 0.0719998 0.112094i
\(957\) 26.6063 0.860060
\(958\) −14.8085 + 50.4557i −0.478441 + 1.63015i
\(959\) 21.5990 + 21.5990i 0.697469 + 0.697469i
\(960\) 3.85132 29.4675i 0.124301 0.951060i
\(961\) 30.2676i 0.976375i
\(962\) −3.14691 + 10.7222i −0.101460 + 0.345697i
\(963\) 0.280693i 0.00904521i
\(964\) 3.47007 + 15.9331i 0.111764 + 0.513170i
\(965\) −35.4243 + 0.429093i −1.14035 + 0.0138130i
\(966\) 5.99067 + 10.9679i 0.192747 + 0.352887i
\(967\) 4.48443 4.48443i 0.144210 0.144210i −0.631316 0.775526i \(-0.717485\pi\)
0.775526 + 0.631316i \(0.217485\pi\)
\(968\) −50.6387 3.60326i −1.62759 0.115813i
\(969\) 1.39493 + 2.28632i 0.0448117 + 0.0734473i
\(970\) 43.4217 24.4043i 1.39419 0.783575i
\(971\) 30.5032i 0.978893i −0.872033 0.489446i \(-0.837199\pi\)
0.872033 0.489446i \(-0.162801\pi\)
\(972\) 2.69037 4.18853i 0.0862937 0.134347i
\(973\) 21.4683 21.4683i 0.688241 0.688241i
\(974\) 12.7751 + 23.3890i 0.409339 + 0.749433i
\(975\) 13.5424 14.2149i 0.433703 0.455241i
\(976\) 11.8521 + 4.41406i 0.379376 + 0.141291i
\(977\) 15.4491 + 15.4491i 0.494259 + 0.494259i 0.909645 0.415386i \(-0.136354\pi\)
−0.415386 + 0.909645i \(0.636354\pi\)
\(978\) 14.8520 + 27.1916i 0.474914 + 0.869490i
\(979\) −5.50129 + 5.50129i −0.175822 + 0.175822i
\(980\) 10.9479 + 6.84618i 0.349719 + 0.218693i
\(981\) 1.95762 + 1.95762i 0.0625021 + 0.0625021i
\(982\) −9.28529 16.9998i −0.296305 0.542487i
\(983\) 36.4754i 1.16338i 0.813409 + 0.581692i \(0.197609\pi\)
−0.813409 + 0.581692i \(0.802391\pi\)
\(984\) −29.0136 + 25.1589i −0.924919 + 0.802035i
\(985\) −28.8013 + 0.348868i −0.917684 + 0.0111159i
\(986\) 16.7626 4.50142i 0.533831 0.143355i
\(987\) −1.17845 + 1.17845i −0.0375106 + 0.0375106i
\(988\) −0.393334 1.80602i −0.0125136 0.0574572i
\(989\) −3.29214 + 3.29214i −0.104684 + 0.104684i
\(990\) −1.10290 + 3.93351i −0.0350524 + 0.125015i
\(991\) −16.0396 16.0396i −0.509514 0.509514i 0.404863 0.914377i \(-0.367319\pi\)
−0.914377 + 0.404863i \(0.867319\pi\)
\(992\) −0.691864 4.79142i −0.0219667 0.152128i
\(993\) 37.0166i 1.17469i
\(994\) −2.58674 + 8.81358i −0.0820464 + 0.279550i
\(995\) 4.75899 + 4.64508i 0.150870 + 0.147259i
\(996\) −4.30579 19.7703i −0.136434 0.626446i
\(997\) 14.2198i 0.450345i −0.974319 0.225172i \(-0.927705\pi\)
0.974319 0.225172i \(-0.0722946\pi\)
\(998\) −9.96450 + 33.9512i −0.315421 + 1.07471i
\(999\) 17.9947 0.569326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 680.2.bl.a.123.16 yes 208
5.2 odd 4 680.2.t.a.667.37 yes 208
8.3 odd 2 inner 680.2.bl.a.123.68 yes 208
17.13 even 4 680.2.t.a.523.89 yes 208
40.27 even 4 680.2.t.a.667.89 yes 208
85.47 odd 4 inner 680.2.bl.a.387.68 yes 208
136.115 odd 4 680.2.t.a.523.37 208
680.387 even 4 inner 680.2.bl.a.387.16 yes 208
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
680.2.t.a.523.37 208 136.115 odd 4
680.2.t.a.523.89 yes 208 17.13 even 4
680.2.t.a.667.37 yes 208 5.2 odd 4
680.2.t.a.667.89 yes 208 40.27 even 4
680.2.bl.a.123.16 yes 208 1.1 even 1 trivial
680.2.bl.a.123.68 yes 208 8.3 odd 2 inner
680.2.bl.a.387.16 yes 208 680.387 even 4 inner
680.2.bl.a.387.68 yes 208 85.47 odd 4 inner