Properties

Label 675.2.l.h.151.1
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.1
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.h.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.06784 - 1.73512i) q^{2} +(0.239124 - 1.71546i) q^{3} +(0.918006 + 5.20627i) q^{4} +(-3.47101 + 3.13239i) q^{6} +(-0.175710 + 0.996499i) q^{7} +(4.43585 - 7.68312i) q^{8} +(-2.88564 - 0.820419i) q^{9} +(-1.18249 + 0.430390i) q^{11} +(9.15069 - 0.329860i) q^{12} +(-3.17545 + 2.66452i) q^{13} +(2.09238 - 1.75572i) q^{14} +(-12.5682 + 4.57445i) q^{16} +(-1.95549 - 3.38700i) q^{17} +(4.54350 + 6.70342i) q^{18} +(0.433214 - 0.750349i) q^{19} +(1.66744 + 0.539711i) q^{21} +(3.19197 + 1.16178i) q^{22} +(0.479332 + 2.71843i) q^{23} +(-12.1194 - 9.44677i) q^{24} +11.1896 q^{26} +(-2.09743 + 4.75403i) q^{27} -5.34934 q^{28} +(6.00558 + 5.03928i) q^{29} +(0.941551 + 5.33980i) q^{31} +(17.2529 + 6.27953i) q^{32} +(0.455557 + 2.13143i) q^{33} +(-1.83323 + 10.3968i) q^{34} +(1.62229 - 15.7766i) q^{36} +(3.71964 + 6.44260i) q^{37} +(-2.19776 + 0.799919i) q^{38} +(3.81156 + 6.08452i) q^{39} +(-2.73623 + 2.29597i) q^{41} +(-2.51153 - 4.00925i) q^{42} +(-4.00634 + 1.45819i) q^{43} +(-3.32626 - 5.76125i) q^{44} +(3.72562 - 6.45296i) q^{46} +(-0.640847 + 3.63443i) q^{47} +(4.84195 + 22.6542i) q^{48} +(5.61571 + 2.04395i) q^{49} +(-6.27789 + 2.54465i) q^{51} +(-16.7873 - 14.0862i) q^{52} +0.485518 q^{53} +(12.5859 - 6.19126i) q^{54} +(6.87680 + 5.77032i) q^{56} +(-1.18360 - 0.922590i) q^{57} +(-3.67480 - 20.8408i) q^{58} +(1.47979 + 0.538599i) q^{59} +(0.286481 - 1.62472i) q^{61} +(7.31822 - 12.6755i) q^{62} +(1.32458 - 2.73138i) q^{63} +(-11.4056 - 19.7550i) q^{64} +(2.75627 - 5.19790i) q^{66} +(2.53969 - 2.13105i) q^{67} +(15.8385 - 13.2901i) q^{68} +(4.77798 - 0.172235i) q^{69} +(-4.95764 - 8.58688i) q^{71} +(-19.1036 + 18.5314i) q^{72} +(-2.63257 + 4.55975i) q^{73} +(3.48709 - 19.7763i) q^{74} +(4.30421 + 1.56660i) q^{76} +(-0.221109 - 1.25397i) q^{77} +(2.67570 - 19.1953i) q^{78} +(-6.41639 - 5.38399i) q^{79} +(7.65382 + 4.73487i) q^{81} +9.64185 q^{82} +(2.21851 + 1.86155i) q^{83} +(-1.27916 + 9.17661i) q^{84} +(10.8146 + 3.93619i) q^{86} +(10.0808 - 9.09735i) q^{87} +(-1.93860 + 10.9943i) q^{88} +(-8.03383 + 13.9150i) q^{89} +(-2.09723 - 3.63251i) q^{91} +(-13.7128 + 4.99106i) q^{92} +(9.38539 - 0.338321i) q^{93} +(7.63133 - 6.40345i) q^{94} +(14.8979 - 28.0951i) q^{96} +(-2.90290 + 1.05657i) q^{97} +(-8.06587 - 13.9705i) q^{98} +(3.76533 - 0.271815i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} - 6 q^{6} + 18 q^{9} - 6 q^{11} + 18 q^{14} - 24 q^{16} + 6 q^{19} + 24 q^{21} + 30 q^{24} + 48 q^{26} + 30 q^{29} - 30 q^{31} + 24 q^{34} + 54 q^{36} + 6 q^{39} - 12 q^{41} - 78 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.06784 1.73512i −1.46218 1.22692i −0.923043 0.384698i \(-0.874306\pi\)
−0.539138 0.842218i \(-0.681250\pi\)
\(3\) 0.239124 1.71546i 0.138059 0.990424i
\(4\) 0.918006 + 5.20627i 0.459003 + 2.60313i
\(5\) 0 0
\(6\) −3.47101 + 3.13239i −1.41703 + 1.27879i
\(7\) −0.175710 + 0.996499i −0.0664120 + 0.376641i 0.933428 + 0.358764i \(0.116802\pi\)
−0.999840 + 0.0178769i \(0.994309\pi\)
\(8\) 4.43585 7.68312i 1.56831 2.71639i
\(9\) −2.88564 0.820419i −0.961880 0.273473i
\(10\) 0 0
\(11\) −1.18249 + 0.430390i −0.356533 + 0.129767i −0.514076 0.857745i \(-0.671865\pi\)
0.157543 + 0.987512i \(0.449643\pi\)
\(12\) 9.15069 0.329860i 2.64158 0.0952225i
\(13\) −3.17545 + 2.66452i −0.880711 + 0.739004i −0.966325 0.257324i \(-0.917159\pi\)
0.0856143 + 0.996328i \(0.472715\pi\)
\(14\) 2.09238 1.75572i 0.559213 0.469235i
\(15\) 0 0
\(16\) −12.5682 + 4.57445i −3.14205 + 1.14361i
\(17\) −1.95549 3.38700i −0.474275 0.821469i 0.525291 0.850923i \(-0.323957\pi\)
−0.999566 + 0.0294538i \(0.990623\pi\)
\(18\) 4.54350 + 6.70342i 1.07091 + 1.58001i
\(19\) 0.433214 0.750349i 0.0993861 0.172142i −0.812045 0.583595i \(-0.801645\pi\)
0.911431 + 0.411454i \(0.134979\pi\)
\(20\) 0 0
\(21\) 1.66744 + 0.539711i 0.363866 + 0.117775i
\(22\) 3.19197 + 1.16178i 0.680530 + 0.247693i
\(23\) 0.479332 + 2.71843i 0.0999476 + 0.566831i 0.993119 + 0.117114i \(0.0373642\pi\)
−0.893171 + 0.449717i \(0.851525\pi\)
\(24\) −12.1194 9.44677i −2.47386 1.92831i
\(25\) 0 0
\(26\) 11.1896 2.19445
\(27\) −2.09743 + 4.75403i −0.403650 + 0.914913i
\(28\) −5.34934 −1.01093
\(29\) 6.00558 + 5.03928i 1.11521 + 0.935771i 0.998353 0.0573776i \(-0.0182739\pi\)
0.116856 + 0.993149i \(0.462718\pi\)
\(30\) 0 0
\(31\) 0.941551 + 5.33980i 0.169108 + 0.959057i 0.944728 + 0.327857i \(0.106326\pi\)
−0.775620 + 0.631200i \(0.782563\pi\)
\(32\) 17.2529 + 6.27953i 3.04991 + 1.11008i
\(33\) 0.455557 + 2.13143i 0.0793024 + 0.371035i
\(34\) −1.83323 + 10.3968i −0.314397 + 1.78303i
\(35\) 0 0
\(36\) 1.62229 15.7766i 0.270382 2.62943i
\(37\) 3.71964 + 6.44260i 0.611504 + 1.05916i 0.990987 + 0.133958i \(0.0427687\pi\)
−0.379483 + 0.925199i \(0.623898\pi\)
\(38\) −2.19776 + 0.799919i −0.356524 + 0.129764i
\(39\) 3.81156 + 6.08452i 0.610338 + 0.974303i
\(40\) 0 0
\(41\) −2.73623 + 2.29597i −0.427327 + 0.358570i −0.830942 0.556359i \(-0.812198\pi\)
0.403615 + 0.914929i \(0.367754\pi\)
\(42\) −2.51153 4.00925i −0.387538 0.618640i
\(43\) −4.00634 + 1.45819i −0.610962 + 0.222372i −0.628924 0.777467i \(-0.716504\pi\)
0.0179623 + 0.999839i \(0.494282\pi\)
\(44\) −3.32626 5.76125i −0.501452 0.868540i
\(45\) 0 0
\(46\) 3.72562 6.45296i 0.549312 0.951436i
\(47\) −0.640847 + 3.63443i −0.0934772 + 0.530136i 0.901726 + 0.432308i \(0.142301\pi\)
−0.995203 + 0.0978279i \(0.968811\pi\)
\(48\) 4.84195 + 22.6542i 0.698875 + 3.26985i
\(49\) 5.61571 + 2.04395i 0.802245 + 0.291993i
\(50\) 0 0
\(51\) −6.27789 + 2.54465i −0.879080 + 0.356323i
\(52\) −16.7873 14.0862i −2.32798 1.95340i
\(53\) 0.485518 0.0666910 0.0333455 0.999444i \(-0.489384\pi\)
0.0333455 + 0.999444i \(0.489384\pi\)
\(54\) 12.5859 6.19126i 1.71273 0.842524i
\(55\) 0 0
\(56\) 6.87680 + 5.77032i 0.918951 + 0.771091i
\(57\) −1.18360 0.922590i −0.156772 0.122200i
\(58\) −3.67480 20.8408i −0.482525 2.73653i
\(59\) 1.47979 + 0.538599i 0.192652 + 0.0701196i 0.436544 0.899683i \(-0.356202\pi\)
−0.243892 + 0.969802i \(0.578424\pi\)
\(60\) 0 0
\(61\) 0.286481 1.62472i 0.0366802 0.208023i −0.960960 0.276689i \(-0.910763\pi\)
0.997640 + 0.0686652i \(0.0218740\pi\)
\(62\) 7.31822 12.6755i 0.929415 1.60979i
\(63\) 1.32458 2.73138i 0.166882 0.344122i
\(64\) −11.4056 19.7550i −1.42569 2.46938i
\(65\) 0 0
\(66\) 2.75627 5.19790i 0.339274 0.639817i
\(67\) 2.53969 2.13105i 0.310272 0.260349i −0.474332 0.880346i \(-0.657310\pi\)
0.784604 + 0.619997i \(0.212866\pi\)
\(68\) 15.8385 13.2901i 1.92070 1.61166i
\(69\) 4.77798 0.172235i 0.575202 0.0207346i
\(70\) 0 0
\(71\) −4.95764 8.58688i −0.588363 1.01907i −0.994447 0.105239i \(-0.966439\pi\)
0.406084 0.913836i \(-0.366894\pi\)
\(72\) −19.1036 + 18.5314i −2.25139 + 2.18395i
\(73\) −2.63257 + 4.55975i −0.308119 + 0.533678i −0.977951 0.208835i \(-0.933033\pi\)
0.669832 + 0.742513i \(0.266366\pi\)
\(74\) 3.48709 19.7763i 0.405366 2.29894i
\(75\) 0 0
\(76\) 4.30421 + 1.56660i 0.493727 + 0.179702i
\(77\) −0.221109 1.25397i −0.0251977 0.142903i
\(78\) 2.67570 19.1953i 0.302963 2.17344i
\(79\) −6.41639 5.38399i −0.721901 0.605747i 0.206010 0.978550i \(-0.433952\pi\)
−0.927910 + 0.372803i \(0.878397\pi\)
\(80\) 0 0
\(81\) 7.65382 + 4.73487i 0.850425 + 0.526096i
\(82\) 9.64185 1.06476
\(83\) 2.21851 + 1.86155i 0.243513 + 0.204331i 0.756373 0.654141i \(-0.226970\pi\)
−0.512860 + 0.858472i \(0.671414\pi\)
\(84\) −1.27916 + 9.17661i −0.139568 + 1.00125i
\(85\) 0 0
\(86\) 10.8146 + 3.93619i 1.16617 + 0.424450i
\(87\) 10.0808 9.09735i 1.08077 0.975338i
\(88\) −1.93860 + 10.9943i −0.206655 + 1.17200i
\(89\) −8.03383 + 13.9150i −0.851584 + 1.47499i 0.0281944 + 0.999602i \(0.491024\pi\)
−0.879778 + 0.475384i \(0.842309\pi\)
\(90\) 0 0
\(91\) −2.09723 3.63251i −0.219850 0.380791i
\(92\) −13.7128 + 4.99106i −1.42966 + 0.520354i
\(93\) 9.38539 0.338321i 0.973220 0.0350822i
\(94\) 7.63133 6.40345i 0.787112 0.660465i
\(95\) 0 0
\(96\) 14.8979 28.0951i 1.52051 2.86745i
\(97\) −2.90290 + 1.05657i −0.294745 + 0.107278i −0.485160 0.874425i \(-0.661239\pi\)
0.190416 + 0.981704i \(0.439016\pi\)
\(98\) −8.06587 13.9705i −0.814776 1.41123i
\(99\) 3.76533 0.271815i 0.378430 0.0273185i
\(100\) 0 0
\(101\) 1.48218 8.40586i 0.147482 0.836415i −0.817858 0.575420i \(-0.804838\pi\)
0.965340 0.260994i \(-0.0840504\pi\)
\(102\) 17.3969 + 5.63097i 1.72255 + 0.557549i
\(103\) 14.9916 + 5.45651i 1.47717 + 0.537646i 0.950037 0.312136i \(-0.101045\pi\)
0.527134 + 0.849782i \(0.323267\pi\)
\(104\) 6.38599 + 36.2167i 0.626198 + 3.55134i
\(105\) 0 0
\(106\) −1.00397 0.842432i −0.0975143 0.0818242i
\(107\) −9.20342 −0.889728 −0.444864 0.895598i \(-0.646748\pi\)
−0.444864 + 0.895598i \(0.646748\pi\)
\(108\) −26.6762 6.55554i −2.56692 0.630808i
\(109\) 4.98029 0.477025 0.238512 0.971139i \(-0.423340\pi\)
0.238512 + 0.971139i \(0.423340\pi\)
\(110\) 0 0
\(111\) 11.9415 4.84032i 1.13344 0.459423i
\(112\) −2.35008 13.3280i −0.222062 1.25938i
\(113\) −7.47831 2.72188i −0.703500 0.256053i −0.0345954 0.999401i \(-0.511014\pi\)
−0.668904 + 0.743348i \(0.733236\pi\)
\(114\) 0.846695 + 3.96146i 0.0793003 + 0.371025i
\(115\) 0 0
\(116\) −20.7227 + 35.8928i −1.92405 + 3.33256i
\(117\) 11.3492 5.08364i 1.04924 0.469982i
\(118\) −2.12542 3.68134i −0.195661 0.338895i
\(119\) 3.71874 1.35351i 0.340897 0.124076i
\(120\) 0 0
\(121\) −7.21345 + 6.05280i −0.655768 + 0.550255i
\(122\) −3.41147 + 2.86256i −0.308860 + 0.259164i
\(123\) 3.28435 + 5.24293i 0.296140 + 0.472739i
\(124\) −26.9361 + 9.80394i −2.41893 + 0.880420i
\(125\) 0 0
\(126\) −7.47829 + 3.34974i −0.666219 + 0.298418i
\(127\) −9.29062 + 16.0918i −0.824409 + 1.42792i 0.0779609 + 0.996956i \(0.475159\pi\)
−0.902370 + 0.430962i \(0.858174\pi\)
\(128\) −4.31608 + 24.4777i −0.381491 + 2.16354i
\(129\) 1.54346 + 7.22143i 0.135894 + 0.635812i
\(130\) 0 0
\(131\) 3.27027 + 18.5466i 0.285725 + 1.62043i 0.702685 + 0.711501i \(0.251984\pi\)
−0.416960 + 0.908925i \(0.636905\pi\)
\(132\) −10.6786 + 4.32842i −0.929453 + 0.376741i
\(133\) 0.671602 + 0.563541i 0.0582353 + 0.0488652i
\(134\) −8.94928 −0.773100
\(135\) 0 0
\(136\) −34.6970 −2.97524
\(137\) −12.2568 10.2847i −1.04717 0.878680i −0.0543771 0.998520i \(-0.517317\pi\)
−0.992793 + 0.119840i \(0.961762\pi\)
\(138\) −10.1789 7.93422i −0.866488 0.675406i
\(139\) −2.32924 13.2098i −0.197564 1.12044i −0.908720 0.417406i \(-0.862939\pi\)
0.711156 0.703034i \(-0.248172\pi\)
\(140\) 0 0
\(141\) 6.08149 + 1.96843i 0.512154 + 0.165772i
\(142\) −4.64769 + 26.3583i −0.390025 + 2.21194i
\(143\) 2.60814 4.51744i 0.218104 0.377767i
\(144\) 40.0203 2.88902i 3.33502 0.240752i
\(145\) 0 0
\(146\) 13.3554 4.86098i 1.10530 0.402297i
\(147\) 4.84918 9.14480i 0.399954 0.754250i
\(148\) −30.1273 + 25.2798i −2.47645 + 2.07798i
\(149\) −2.58412 + 2.16833i −0.211699 + 0.177637i −0.742471 0.669878i \(-0.766346\pi\)
0.530772 + 0.847515i \(0.321902\pi\)
\(150\) 0 0
\(151\) 21.6795 7.89070i 1.76426 0.642136i 0.764259 0.644910i \(-0.223105\pi\)
0.999996 + 0.00277330i \(0.000882769\pi\)
\(152\) −3.84335 6.65687i −0.311737 0.539943i
\(153\) 2.86407 + 11.3780i 0.231546 + 0.919856i
\(154\) −1.71857 + 2.97665i −0.138487 + 0.239866i
\(155\) 0 0
\(156\) −28.1786 + 25.4296i −2.25610 + 2.03600i
\(157\) 8.58300 + 3.12396i 0.684998 + 0.249319i 0.660992 0.750393i \(-0.270136\pi\)
0.0240060 + 0.999712i \(0.492358\pi\)
\(158\) 3.92617 + 22.2664i 0.312349 + 1.77142i
\(159\) 0.116099 0.832889i 0.00920726 0.0660524i
\(160\) 0 0
\(161\) −2.79313 −0.220130
\(162\) −7.61129 23.0712i −0.597999 1.81265i
\(163\) 7.32494 0.573734 0.286867 0.957970i \(-0.407386\pi\)
0.286867 + 0.957970i \(0.407386\pi\)
\(164\) −14.4653 12.1378i −1.12955 0.947806i
\(165\) 0 0
\(166\) −1.35750 7.69875i −0.105362 0.597539i
\(167\) 4.72696 + 1.72047i 0.365783 + 0.133134i 0.518371 0.855156i \(-0.326539\pi\)
−0.152588 + 0.988290i \(0.548761\pi\)
\(168\) 11.5432 10.4171i 0.890576 0.803695i
\(169\) 0.726391 4.11957i 0.0558763 0.316890i
\(170\) 0 0
\(171\) −1.86570 + 1.80982i −0.142674 + 0.138400i
\(172\) −11.2696 19.5195i −0.859297 1.48835i
\(173\) −18.0111 + 6.55550i −1.36936 + 0.498406i −0.918935 0.394410i \(-0.870949\pi\)
−0.450423 + 0.892815i \(0.648727\pi\)
\(174\) −36.6304 + 1.32044i −2.77694 + 0.100102i
\(175\) 0 0
\(176\) 12.8929 10.8185i 0.971842 0.815472i
\(177\) 1.27780 2.40973i 0.0960454 0.181127i
\(178\) 40.7568 14.8343i 3.05485 1.11188i
\(179\) −6.81005 11.7953i −0.509007 0.881626i −0.999946 0.0104315i \(-0.996679\pi\)
0.490939 0.871194i \(-0.336654\pi\)
\(180\) 0 0
\(181\) −4.25402 + 7.36817i −0.316198 + 0.547672i −0.979692 0.200511i \(-0.935740\pi\)
0.663493 + 0.748182i \(0.269073\pi\)
\(182\) −1.96611 + 11.1504i −0.145738 + 0.826521i
\(183\) −2.71864 0.879957i −0.200967 0.0650483i
\(184\) 23.0122 + 8.37577i 1.69648 + 0.617470i
\(185\) 0 0
\(186\) −19.9945 15.5852i −1.46607 1.14276i
\(187\) 3.77007 + 3.16346i 0.275695 + 0.231335i
\(188\) −19.5101 −1.42292
\(189\) −4.36885 2.92541i −0.317787 0.212792i
\(190\) 0 0
\(191\) −9.82022 8.24015i −0.710566 0.596236i 0.214192 0.976792i \(-0.431288\pi\)
−0.924758 + 0.380556i \(0.875733\pi\)
\(192\) −36.6164 + 14.8419i −2.64256 + 1.07112i
\(193\) 1.73065 + 9.81499i 0.124575 + 0.706498i 0.981560 + 0.191157i \(0.0612239\pi\)
−0.856985 + 0.515342i \(0.827665\pi\)
\(194\) 7.83599 + 2.85207i 0.562591 + 0.204766i
\(195\) 0 0
\(196\) −5.48611 + 31.1133i −0.391865 + 2.22238i
\(197\) −9.82458 + 17.0167i −0.699972 + 1.21239i 0.268503 + 0.963279i \(0.413471\pi\)
−0.968475 + 0.249109i \(0.919862\pi\)
\(198\) −8.25772 5.97123i −0.586850 0.424357i
\(199\) −1.80778 3.13117i −0.128150 0.221963i 0.794810 0.606859i \(-0.207571\pi\)
−0.922960 + 0.384896i \(0.874237\pi\)
\(200\) 0 0
\(201\) −3.04844 4.86633i −0.215020 0.343244i
\(202\) −17.6501 + 14.8102i −1.24186 + 1.04204i
\(203\) −6.07688 + 5.09911i −0.426513 + 0.357887i
\(204\) −19.0113 30.3484i −1.33106 2.12481i
\(205\) 0 0
\(206\) −21.5326 37.2955i −1.50024 2.59850i
\(207\) 0.847070 8.23765i 0.0588754 0.572556i
\(208\) 27.7210 48.0142i 1.92210 3.32918i
\(209\) −0.189327 + 1.07373i −0.0130960 + 0.0742714i
\(210\) 0 0
\(211\) −17.2131 6.26505i −1.18500 0.431304i −0.327033 0.945013i \(-0.606049\pi\)
−0.857964 + 0.513709i \(0.828271\pi\)
\(212\) 0.445708 + 2.52774i 0.0306114 + 0.173606i
\(213\) −15.9160 + 6.45132i −1.09054 + 0.442037i
\(214\) 19.0312 + 15.9690i 1.30094 + 1.09162i
\(215\) 0 0
\(216\) 27.2219 + 37.2029i 1.85222 + 2.53134i
\(217\) −5.48655 −0.372451
\(218\) −10.2984 8.64139i −0.697496 0.585269i
\(219\) 7.19257 + 5.60643i 0.486029 + 0.378847i
\(220\) 0 0
\(221\) 15.2343 + 5.54482i 1.02477 + 0.372985i
\(222\) −33.0916 10.7110i −2.22096 0.718873i
\(223\) −1.21714 + 6.90273i −0.0815055 + 0.462241i 0.916551 + 0.399919i \(0.130962\pi\)
−0.998056 + 0.0623220i \(0.980149\pi\)
\(224\) −9.28904 + 16.0891i −0.620650 + 1.07500i
\(225\) 0 0
\(226\) 10.7411 + 18.6042i 0.714488 + 1.23753i
\(227\) 12.6185 4.59274i 0.837516 0.304831i 0.112576 0.993643i \(-0.464090\pi\)
0.724940 + 0.688812i \(0.241868\pi\)
\(228\) 3.71670 7.00911i 0.246144 0.464190i
\(229\) −7.11646 + 5.97142i −0.470269 + 0.394602i −0.846893 0.531764i \(-0.821529\pi\)
0.376624 + 0.926366i \(0.377085\pi\)
\(230\) 0 0
\(231\) −2.20401 + 0.0794494i −0.145014 + 0.00522739i
\(232\) 65.3573 23.7881i 4.29091 1.56177i
\(233\) 5.10552 + 8.84302i 0.334474 + 0.579325i 0.983384 0.181540i \(-0.0581081\pi\)
−0.648910 + 0.760865i \(0.724775\pi\)
\(234\) −32.2890 9.18013i −2.11080 0.600124i
\(235\) 0 0
\(236\) −1.44564 + 8.19861i −0.0941029 + 0.533684i
\(237\) −10.7704 + 9.71965i −0.699611 + 0.631359i
\(238\) −10.0383 3.65363i −0.650683 0.236829i
\(239\) 0.450136 + 2.55285i 0.0291169 + 0.165130i 0.995899 0.0904719i \(-0.0288375\pi\)
−0.966782 + 0.255602i \(0.917726\pi\)
\(240\) 0 0
\(241\) −12.7419 10.6918i −0.820781 0.688717i 0.132374 0.991200i \(-0.457740\pi\)
−0.953155 + 0.302483i \(0.902185\pi\)
\(242\) 25.4186 1.63397
\(243\) 9.95271 11.9976i 0.638467 0.769649i
\(244\) 8.72170 0.558349
\(245\) 0 0
\(246\) 2.30560 16.5403i 0.147000 1.05457i
\(247\) 0.623669 + 3.53700i 0.0396831 + 0.225054i
\(248\) 45.2029 + 16.4525i 2.87039 + 1.04474i
\(249\) 3.72392 3.36063i 0.235994 0.212971i
\(250\) 0 0
\(251\) −6.10066 + 10.5667i −0.385070 + 0.666961i −0.991779 0.127963i \(-0.959156\pi\)
0.606709 + 0.794924i \(0.292489\pi\)
\(252\) 15.4363 + 4.38870i 0.972394 + 0.276462i
\(253\) −1.73679 3.00820i −0.109191 0.189124i
\(254\) 47.1327 17.1549i 2.95737 1.07639i
\(255\) 0 0
\(256\) 16.4481 13.8016i 1.02800 0.862597i
\(257\) −6.52086 + 5.47165i −0.406760 + 0.341312i −0.823100 0.567897i \(-0.807757\pi\)
0.416340 + 0.909209i \(0.363313\pi\)
\(258\) 9.33843 17.6108i 0.581385 1.09640i
\(259\) −7.07362 + 2.57459i −0.439533 + 0.159977i
\(260\) 0 0
\(261\) −13.1956 19.4686i −0.816788 1.20508i
\(262\) 25.4182 44.0257i 1.57034 2.71992i
\(263\) 1.60132 9.08152i 0.0987415 0.559991i −0.894795 0.446477i \(-0.852678\pi\)
0.993536 0.113514i \(-0.0362105\pi\)
\(264\) 18.3968 + 5.95461i 1.13225 + 0.366481i
\(265\) 0 0
\(266\) −0.410951 2.33062i −0.0251970 0.142899i
\(267\) 21.9496 + 17.1092i 1.34329 + 1.04706i
\(268\) 13.4263 + 11.2660i 0.820140 + 0.688179i
\(269\) −7.15347 −0.436155 −0.218078 0.975931i \(-0.569979\pi\)
−0.218078 + 0.975931i \(0.569979\pi\)
\(270\) 0 0
\(271\) 17.3418 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(272\) 40.0707 + 33.6233i 2.42964 + 2.03871i
\(273\) −6.73294 + 2.72910i −0.407496 + 0.165173i
\(274\) 7.49991 + 42.5341i 0.453086 + 2.56958i
\(275\) 0 0
\(276\) 5.28292 + 24.7174i 0.317994 + 1.48781i
\(277\) −1.83081 + 10.3831i −0.110003 + 0.623858i 0.879101 + 0.476636i \(0.158144\pi\)
−0.989104 + 0.147222i \(0.952967\pi\)
\(278\) −18.1041 + 31.3572i −1.08581 + 1.88068i
\(279\) 1.66390 16.1812i 0.0996150 0.968744i
\(280\) 0 0
\(281\) 20.1528 7.33501i 1.20221 0.437570i 0.338217 0.941068i \(-0.390176\pi\)
0.863996 + 0.503498i \(0.167954\pi\)
\(282\) −9.16005 14.6225i −0.545473 0.870758i
\(283\) 12.4408 10.4391i 0.739528 0.620538i −0.193183 0.981163i \(-0.561881\pi\)
0.932711 + 0.360625i \(0.117437\pi\)
\(284\) 40.1545 33.6936i 2.38273 1.99935i
\(285\) 0 0
\(286\) −13.2315 + 4.81588i −0.782396 + 0.284769i
\(287\) −1.80715 3.13007i −0.106673 0.184762i
\(288\) −44.6337 32.2751i −2.63007 1.90183i
\(289\) 0.852138 1.47595i 0.0501257 0.0868203i
\(290\) 0 0
\(291\) 1.11835 + 5.23247i 0.0655589 + 0.306733i
\(292\) −26.1560 9.52000i −1.53066 0.557116i
\(293\) −4.10392 23.2745i −0.239753 1.35971i −0.832368 0.554223i \(-0.813016\pi\)
0.592615 0.805486i \(-0.298096\pi\)
\(294\) −25.8946 + 10.4960i −1.51021 + 0.612141i
\(295\) 0 0
\(296\) 65.9990 3.83611
\(297\) 0.434093 6.52429i 0.0251886 0.378578i
\(298\) 9.10584 0.527487
\(299\) −8.76538 7.35503i −0.506915 0.425352i
\(300\) 0 0
\(301\) −0.749131 4.24853i −0.0431792 0.244881i
\(302\) −58.5210 21.2999i −3.36751 1.22567i
\(303\) −14.0655 4.55268i −0.808044 0.261544i
\(304\) −2.01229 + 11.4123i −0.115413 + 0.654538i
\(305\) 0 0
\(306\) 13.8198 28.4973i 0.790023 1.62908i
\(307\) 3.08468 + 5.34281i 0.176052 + 0.304931i 0.940525 0.339725i \(-0.110334\pi\)
−0.764473 + 0.644656i \(0.777001\pi\)
\(308\) 6.32553 2.30230i 0.360430 0.131186i
\(309\) 12.9453 24.4129i 0.736434 1.38880i
\(310\) 0 0
\(311\) −10.4699 + 8.78527i −0.593692 + 0.498167i −0.889411 0.457108i \(-0.848885\pi\)
0.295719 + 0.955275i \(0.404441\pi\)
\(312\) 63.6556 2.29463i 3.60379 0.129908i
\(313\) −7.42730 + 2.70332i −0.419816 + 0.152800i −0.543286 0.839548i \(-0.682820\pi\)
0.123470 + 0.992348i \(0.460598\pi\)
\(314\) −12.3278 21.3524i −0.695698 1.20498i
\(315\) 0 0
\(316\) 22.1402 38.3480i 1.24549 2.15724i
\(317\) −0.976298 + 5.53686i −0.0548344 + 0.310981i −0.999872 0.0159795i \(-0.994913\pi\)
0.945038 + 0.326961i \(0.106024\pi\)
\(318\) −1.68524 + 1.52083i −0.0945033 + 0.0852840i
\(319\) −9.27038 3.37414i −0.519042 0.188916i
\(320\) 0 0
\(321\) −2.20076 + 15.7881i −0.122835 + 0.881208i
\(322\) 5.77574 + 4.84642i 0.321869 + 0.270080i
\(323\) −3.38858 −0.188546
\(324\) −17.6247 + 44.1945i −0.979152 + 2.45525i
\(325\) 0 0
\(326\) −15.1468 12.7097i −0.838902 0.703923i
\(327\) 1.19091 8.54351i 0.0658574 0.472457i
\(328\) 5.50270 + 31.2073i 0.303836 + 1.72314i
\(329\) −3.50910 1.27721i −0.193463 0.0704147i
\(330\) 0 0
\(331\) 4.33246 24.5706i 0.238133 1.35052i −0.597780 0.801660i \(-0.703951\pi\)
0.835914 0.548861i \(-0.184938\pi\)
\(332\) −7.65512 + 13.2591i −0.420129 + 0.727685i
\(333\) −5.44790 21.6427i −0.298543 1.18601i
\(334\) −6.78935 11.7595i −0.371497 0.643451i
\(335\) 0 0
\(336\) −23.4256 + 0.844438i −1.27797 + 0.0460679i
\(337\) −8.27238 + 6.94135i −0.450625 + 0.378119i −0.839668 0.543100i \(-0.817250\pi\)
0.389043 + 0.921220i \(0.372806\pi\)
\(338\) −8.65001 + 7.25822i −0.470498 + 0.394795i
\(339\) −6.45754 + 12.1779i −0.350725 + 0.661413i
\(340\) 0 0
\(341\) −3.41157 5.90901i −0.184747 0.319991i
\(342\) 6.99821 0.505194i 0.378420 0.0273178i
\(343\) −6.56508 + 11.3711i −0.354481 + 0.613979i
\(344\) −6.56810 + 37.2495i −0.354128 + 2.00836i
\(345\) 0 0
\(346\) 48.6186 + 17.6957i 2.61375 + 0.951327i
\(347\) −4.49326 25.4825i −0.241211 1.36797i −0.829131 0.559055i \(-0.811164\pi\)
0.587920 0.808919i \(-0.299947\pi\)
\(348\) 56.6175 + 44.1319i 3.03502 + 2.36572i
\(349\) −11.7162 9.83109i −0.627156 0.526246i 0.272888 0.962046i \(-0.412021\pi\)
−0.900044 + 0.435799i \(0.856466\pi\)
\(350\) 0 0
\(351\) −6.00692 20.6848i −0.320626 1.10407i
\(352\) −23.1039 −1.23144
\(353\) 26.5412 + 22.2707i 1.41265 + 1.18535i 0.955144 + 0.296142i \(0.0957001\pi\)
0.457502 + 0.889209i \(0.348744\pi\)
\(354\) −6.82346 + 2.76579i −0.362663 + 0.147000i
\(355\) 0 0
\(356\) −79.8203 29.0522i −4.23047 1.53976i
\(357\) −1.43266 6.70303i −0.0758244 0.354762i
\(358\) −6.38429 + 36.2071i −0.337420 + 1.91360i
\(359\) 4.31838 7.47966i 0.227915 0.394761i −0.729275 0.684221i \(-0.760142\pi\)
0.957190 + 0.289460i \(0.0934757\pi\)
\(360\) 0 0
\(361\) 9.12465 + 15.8044i 0.480245 + 0.831808i
\(362\) 21.5813 7.85494i 1.13429 0.412846i
\(363\) 8.65846 + 13.8218i 0.454451 + 0.725456i
\(364\) 16.9866 14.2534i 0.890338 0.747082i
\(365\) 0 0
\(366\) 4.09486 + 6.53677i 0.214042 + 0.341682i
\(367\) 25.7417 9.36923i 1.34371 0.489070i 0.432729 0.901524i \(-0.357551\pi\)
0.910978 + 0.412454i \(0.135328\pi\)
\(368\) −18.4597 31.9731i −0.962276 1.66671i
\(369\) 9.77943 4.38048i 0.509097 0.228039i
\(370\) 0 0
\(371\) −0.0853101 + 0.483818i −0.00442908 + 0.0251186i
\(372\) 10.3772 + 48.5523i 0.538034 + 2.51732i
\(373\) −24.5318 8.92883i −1.27021 0.462317i −0.383025 0.923738i \(-0.625118\pi\)
−0.887181 + 0.461421i \(0.847340\pi\)
\(374\) −2.30689 13.0831i −0.119287 0.676508i
\(375\) 0 0
\(376\) 25.0810 + 21.0455i 1.29346 + 1.08534i
\(377\) −32.4977 −1.67372
\(378\) 3.95812 + 13.6297i 0.203583 + 0.701038i
\(379\) −10.9442 −0.562163 −0.281082 0.959684i \(-0.590693\pi\)
−0.281082 + 0.959684i \(0.590693\pi\)
\(380\) 0 0
\(381\) 25.3833 + 19.7857i 1.30043 + 1.01365i
\(382\) 6.00896 + 34.0785i 0.307445 + 1.74361i
\(383\) −2.07084 0.753724i −0.105815 0.0385135i 0.288570 0.957459i \(-0.406820\pi\)
−0.394385 + 0.918945i \(0.629042\pi\)
\(384\) 40.9586 + 13.2573i 2.09016 + 0.676534i
\(385\) 0 0
\(386\) 13.4515 23.2987i 0.684663 1.18587i
\(387\) 12.7572 0.920928i 0.648484 0.0468134i
\(388\) −8.16566 14.1433i −0.414548 0.718019i
\(389\) −22.8822 + 8.32844i −1.16017 + 0.422268i −0.849159 0.528137i \(-0.822891\pi\)
−0.311014 + 0.950405i \(0.600669\pi\)
\(390\) 0 0
\(391\) 8.26999 6.93935i 0.418231 0.350938i
\(392\) 40.6144 34.0795i 2.05134 1.72128i
\(393\) 32.5981 1.17508i 1.64436 0.0592750i
\(394\) 49.8416 18.1409i 2.51098 0.913923i
\(395\) 0 0
\(396\) 4.87174 + 19.3538i 0.244814 + 0.972565i
\(397\) −5.57711 + 9.65983i −0.279907 + 0.484813i −0.971361 0.237607i \(-0.923637\pi\)
0.691454 + 0.722420i \(0.256970\pi\)
\(398\) −1.69476 + 9.61146i −0.0849506 + 0.481779i
\(399\) 1.12733 1.01735i 0.0564371 0.0509313i
\(400\) 0 0
\(401\) 0.624022 + 3.53900i 0.0311621 + 0.176729i 0.996416 0.0845831i \(-0.0269558\pi\)
−0.965254 + 0.261312i \(0.915845\pi\)
\(402\) −2.13999 + 15.3522i −0.106733 + 0.765697i
\(403\) −17.2178 14.4475i −0.857682 0.719680i
\(404\) 45.1238 2.24500
\(405\) 0 0
\(406\) 21.4135 1.06274
\(407\) −7.17125 6.01739i −0.355466 0.298271i
\(408\) −8.29690 + 59.5215i −0.410758 + 2.94675i
\(409\) −1.50204 8.51848i −0.0742710 0.421212i −0.999160 0.0409749i \(-0.986954\pi\)
0.924889 0.380237i \(-0.124157\pi\)
\(410\) 0 0
\(411\) −20.5739 + 18.5668i −1.01484 + 0.915833i
\(412\) −14.6457 + 83.0597i −0.721540 + 4.09206i
\(413\) −0.796726 + 1.37997i −0.0392043 + 0.0679039i
\(414\) −16.0449 + 15.5643i −0.788564 + 0.764945i
\(415\) 0 0
\(416\) −71.5175 + 26.0303i −3.50644 + 1.27624i
\(417\) −23.2179 + 0.836950i −1.13699 + 0.0409856i
\(418\) 2.25455 1.89179i 0.110273 0.0925304i
\(419\) −28.1908 + 23.6549i −1.37721 + 1.15562i −0.406977 + 0.913438i \(0.633417\pi\)
−0.970232 + 0.242177i \(0.922139\pi\)
\(420\) 0 0
\(421\) −34.0828 + 12.4051i −1.66109 + 0.604588i −0.990534 0.137269i \(-0.956168\pi\)
−0.670558 + 0.741857i \(0.733945\pi\)
\(422\) 24.7232 + 42.8218i 1.20351 + 2.08453i
\(423\) 4.83101 9.96188i 0.234892 0.484363i
\(424\) 2.15368 3.73029i 0.104592 0.181159i
\(425\) 0 0
\(426\) 44.1054 + 14.2759i 2.13692 + 0.691668i
\(427\) 1.56869 + 0.570956i 0.0759142 + 0.0276305i
\(428\) −8.44879 47.9155i −0.408388 2.31608i
\(429\) −7.12583 5.55441i −0.344039 0.268169i
\(430\) 0 0
\(431\) −19.3566 −0.932373 −0.466187 0.884686i \(-0.654372\pi\)
−0.466187 + 0.884686i \(0.654372\pi\)
\(432\) 4.61381 69.3442i 0.221982 3.33633i
\(433\) 22.8003 1.09571 0.547855 0.836573i \(-0.315444\pi\)
0.547855 + 0.836573i \(0.315444\pi\)
\(434\) 11.3453 + 9.51981i 0.544591 + 0.456966i
\(435\) 0 0
\(436\) 4.57193 + 25.9287i 0.218956 + 1.24176i
\(437\) 2.24742 + 0.817994i 0.107509 + 0.0391300i
\(438\) −5.14523 24.0731i −0.245849 1.15026i
\(439\) 3.36657 19.0928i 0.160678 0.911248i −0.792732 0.609570i \(-0.791342\pi\)
0.953410 0.301678i \(-0.0975468\pi\)
\(440\) 0 0
\(441\) −14.5280 10.5053i −0.691811 0.500255i
\(442\) −21.8810 37.8991i −1.04078 1.80268i
\(443\) 3.65769 1.33129i 0.173782 0.0632516i −0.253664 0.967292i \(-0.581636\pi\)
0.427446 + 0.904041i \(0.359413\pi\)
\(444\) 36.1624 + 57.7273i 1.71619 + 2.73962i
\(445\) 0 0
\(446\) 14.4939 12.1618i 0.686306 0.575879i
\(447\) 3.10177 + 4.95146i 0.146709 + 0.234196i
\(448\) 21.6899 7.89448i 1.02475 0.372979i
\(449\) 10.9458 + 18.9586i 0.516562 + 0.894712i 0.999815 + 0.0192309i \(0.00612178\pi\)
−0.483253 + 0.875481i \(0.660545\pi\)
\(450\) 0 0
\(451\) 2.24739 3.89260i 0.105826 0.183295i
\(452\) 7.30572 41.4328i 0.343632 1.94883i
\(453\) −8.35212 39.0773i −0.392417 1.83601i
\(454\) −34.0618 12.3975i −1.59860 0.581843i
\(455\) 0 0
\(456\) −12.3387 + 5.00130i −0.577811 + 0.234208i
\(457\) −14.7842 12.4055i −0.691578 0.580303i 0.227786 0.973711i \(-0.426851\pi\)
−0.919364 + 0.393409i \(0.871296\pi\)
\(458\) 25.0768 1.17176
\(459\) 20.2034 2.19245i 0.943014 0.102335i
\(460\) 0 0
\(461\) 29.2721 + 24.5622i 1.36334 + 1.14398i 0.974936 + 0.222486i \(0.0714173\pi\)
0.388402 + 0.921490i \(0.373027\pi\)
\(462\) 4.69539 + 3.65994i 0.218449 + 0.170276i
\(463\) 3.87239 + 21.9614i 0.179965 + 1.02063i 0.932255 + 0.361801i \(0.117838\pi\)
−0.752290 + 0.658832i \(0.771051\pi\)
\(464\) −98.5314 35.8625i −4.57421 1.66487i
\(465\) 0 0
\(466\) 4.78632 27.1446i 0.221722 1.25745i
\(467\) 15.0806 26.1204i 0.697847 1.20871i −0.271365 0.962477i \(-0.587475\pi\)
0.969212 0.246229i \(-0.0791917\pi\)
\(468\) 36.8854 + 54.4203i 1.70503 + 2.51558i
\(469\) 1.67734 + 2.90524i 0.0774524 + 0.134152i
\(470\) 0 0
\(471\) 7.41144 13.9768i 0.341501 0.644018i
\(472\) 10.7022 8.98024i 0.492610 0.413349i
\(473\) 4.10986 3.44858i 0.188971 0.158566i
\(474\) 39.1361 1.41076i 1.79758 0.0647985i
\(475\) 0 0
\(476\) 10.4606 + 18.1182i 0.479460 + 0.830448i
\(477\) −1.40103 0.398328i −0.0641487 0.0182382i
\(478\) 3.49869 6.05991i 0.160026 0.277174i
\(479\) 2.47679 14.0466i 0.113167 0.641804i −0.874474 0.485073i \(-0.838793\pi\)
0.987641 0.156731i \(-0.0500957\pi\)
\(480\) 0 0
\(481\) −28.9779 10.5471i −1.32128 0.480907i
\(482\) 7.79676 + 44.2176i 0.355133 + 2.01406i
\(483\) −0.667906 + 4.79152i −0.0303908 + 0.218022i
\(484\) −38.1345 31.9987i −1.73339 1.45448i
\(485\) 0 0
\(486\) −41.3979 + 7.54000i −1.87785 + 0.342021i
\(487\) 20.9938 0.951318 0.475659 0.879630i \(-0.342210\pi\)
0.475659 + 0.879630i \(0.342210\pi\)
\(488\) −11.2121 9.40806i −0.507548 0.425883i
\(489\) 1.75157 12.5657i 0.0792089 0.568240i
\(490\) 0 0
\(491\) −4.84651 1.76398i −0.218720 0.0796075i 0.230336 0.973111i \(-0.426017\pi\)
−0.449056 + 0.893504i \(0.648240\pi\)
\(492\) −24.2810 + 21.9123i −1.09467 + 0.987882i
\(493\) 5.32423 30.1952i 0.239791 1.35992i
\(494\) 4.84748 8.39607i 0.218098 0.377757i
\(495\) 0 0
\(496\) −36.2603 62.8047i −1.62814 2.82001i
\(497\) 9.42792 3.43148i 0.422900 0.153923i
\(498\) −13.5315 + 0.487780i −0.606363 + 0.0218579i
\(499\) −27.2570 + 22.8713i −1.22019 + 1.02386i −0.221376 + 0.975189i \(0.571055\pi\)
−0.998815 + 0.0486726i \(0.984501\pi\)
\(500\) 0 0
\(501\) 4.08174 7.69753i 0.182359 0.343900i
\(502\) 30.9496 11.2647i 1.38135 0.502769i
\(503\) −1.70975 2.96137i −0.0762338 0.132041i 0.825388 0.564565i \(-0.190956\pi\)
−0.901622 + 0.432525i \(0.857623\pi\)
\(504\) −15.1099 22.2929i −0.673047 0.993005i
\(505\) 0 0
\(506\) −1.62820 + 9.23400i −0.0723825 + 0.410501i
\(507\) −6.89328 2.23119i −0.306141 0.0990906i
\(508\) −92.3072 33.5971i −4.09547 1.49063i
\(509\) 3.45809 + 19.6118i 0.153277 + 0.869277i 0.960344 + 0.278817i \(0.0899424\pi\)
−0.807067 + 0.590460i \(0.798946\pi\)
\(510\) 0 0
\(511\) −4.08121 3.42454i −0.180542 0.151493i
\(512\) −8.24859 −0.364540
\(513\) 2.65855 + 3.63331i 0.117378 + 0.160415i
\(514\) 22.9780 1.01352
\(515\) 0 0
\(516\) −36.1798 + 14.6650i −1.59273 + 0.645590i
\(517\) −0.806427 4.57348i −0.0354666 0.201141i
\(518\) 19.0943 + 6.94976i 0.838955 + 0.305355i
\(519\) 6.93884 + 32.4650i 0.304581 + 1.42505i
\(520\) 0 0
\(521\) −10.7424 + 18.6064i −0.470633 + 0.815160i −0.999436 0.0335849i \(-0.989308\pi\)
0.528803 + 0.848744i \(0.322641\pi\)
\(522\) −6.49406 + 63.1539i −0.284237 + 2.76417i
\(523\) −16.5963 28.7457i −0.725707 1.25696i −0.958682 0.284479i \(-0.908180\pi\)
0.232976 0.972483i \(-0.425154\pi\)
\(524\) −93.5566 + 34.0518i −4.08704 + 1.48756i
\(525\) 0 0
\(526\) −19.0688 + 16.0006i −0.831439 + 0.697660i
\(527\) 16.2447 13.6310i 0.707632 0.593774i
\(528\) −15.4757 24.7044i −0.673492 1.07512i
\(529\) 14.4529 5.26041i 0.628385 0.228713i
\(530\) 0 0
\(531\) −3.82826 2.76825i −0.166132 0.120132i
\(532\) −2.31741 + 4.01387i −0.100473 + 0.174024i
\(533\) 2.57110 14.5815i 0.111367 0.631593i
\(534\) −15.7017 73.4641i −0.679480 3.17910i
\(535\) 0 0
\(536\) −5.10744 28.9657i −0.220608 1.25113i
\(537\) −21.8629 + 8.86184i −0.943456 + 0.382417i
\(538\) 14.7922 + 12.4121i 0.637737 + 0.535125i
\(539\) −7.52020 −0.323918
\(540\) 0 0
\(541\) 2.83444 0.121862 0.0609309 0.998142i \(-0.480593\pi\)
0.0609309 + 0.998142i \(0.480593\pi\)
\(542\) −35.8601 30.0902i −1.54032 1.29248i
\(543\) 11.6226 + 9.05952i 0.498773 + 0.388781i
\(544\) −12.4690 70.7151i −0.534603 3.03188i
\(545\) 0 0
\(546\) 18.6579 + 6.03913i 0.798486 + 0.258451i
\(547\) 5.85741 33.2190i 0.250445 1.42034i −0.557055 0.830475i \(-0.688069\pi\)
0.807500 0.589868i \(-0.200820\pi\)
\(548\) 42.2930 73.2537i 1.80667 3.12924i
\(549\) −2.15963 + 4.45331i −0.0921707 + 0.190063i
\(550\) 0 0
\(551\) 6.38292 2.32319i 0.271922 0.0989714i
\(552\) 19.8711 37.4738i 0.845771 1.59499i
\(553\) 6.49256 5.44791i 0.276092 0.231669i
\(554\) 21.8017 18.2938i 0.926265 0.777229i
\(555\) 0 0
\(556\) 66.6355 24.2533i 2.82598 1.02857i
\(557\) −8.28915 14.3572i −0.351222 0.608335i 0.635242 0.772314i \(-0.280901\pi\)
−0.986464 + 0.163979i \(0.947567\pi\)
\(558\) −31.5170 + 30.5730i −1.33422 + 1.29426i
\(559\) 8.83656 15.3054i 0.373747 0.647349i
\(560\) 0 0
\(561\) 6.32833 5.71096i 0.267182 0.241117i
\(562\) −54.3997 19.7999i −2.29471 0.835208i
\(563\) 2.34303 + 13.2880i 0.0987471 + 0.560023i 0.993535 + 0.113530i \(0.0362159\pi\)
−0.894787 + 0.446492i \(0.852673\pi\)
\(564\) −4.66534 + 33.4689i −0.196446 + 1.40930i
\(565\) 0 0
\(566\) −43.8385 −1.84267
\(567\) −6.06314 + 6.79507i −0.254628 + 0.285366i
\(568\) −87.9653 −3.69094
\(569\) 14.0395 + 11.7805i 0.588565 + 0.493865i 0.887747 0.460331i \(-0.152269\pi\)
−0.299182 + 0.954196i \(0.596714\pi\)
\(570\) 0 0
\(571\) 1.67291 + 9.48757i 0.0700093 + 0.397043i 0.999596 + 0.0284379i \(0.00905327\pi\)
−0.929586 + 0.368605i \(0.879836\pi\)
\(572\) 25.9133 + 9.43167i 1.08349 + 0.394358i
\(573\) −16.4839 + 14.8758i −0.688626 + 0.621447i
\(574\) −1.69417 + 9.60809i −0.0707131 + 0.401034i
\(575\) 0 0
\(576\) 16.7049 + 66.3631i 0.696039 + 2.76513i
\(577\) −9.45304 16.3731i −0.393535 0.681623i 0.599378 0.800466i \(-0.295415\pi\)
−0.992913 + 0.118843i \(0.962081\pi\)
\(578\) −4.32302 + 1.57345i −0.179814 + 0.0654470i
\(579\) 17.2511 0.621861i 0.716932 0.0258437i
\(580\) 0 0
\(581\) −2.24484 + 1.88365i −0.0931318 + 0.0781468i
\(582\) 6.76639 12.7604i 0.280476 0.528934i
\(583\) −0.574118 + 0.208962i −0.0237776 + 0.00865432i
\(584\) 23.3554 + 40.4527i 0.966452 + 1.67394i
\(585\) 0 0
\(586\) −31.8978 + 55.2485i −1.31768 + 2.28230i
\(587\) −6.83405 + 38.7578i −0.282071 + 1.59971i 0.433491 + 0.901158i \(0.357282\pi\)
−0.715563 + 0.698549i \(0.753830\pi\)
\(588\) 52.0619 + 16.8512i 2.14700 + 0.694931i
\(589\) 4.41461 + 1.60679i 0.181901 + 0.0662065i
\(590\) 0 0
\(591\) 26.8422 + 20.9228i 1.10414 + 0.860650i
\(592\) −76.2206 63.9566i −3.13265 2.62860i
\(593\) 1.34012 0.0550322 0.0275161 0.999621i \(-0.491240\pi\)
0.0275161 + 0.999621i \(0.491240\pi\)
\(594\) −12.2181 + 12.7380i −0.501313 + 0.522645i
\(595\) 0 0
\(596\) −13.6612 11.4631i −0.559583 0.469546i
\(597\) −5.80370 + 2.35245i −0.237529 + 0.0962792i
\(598\) 5.36351 + 30.4180i 0.219330 + 1.24388i
\(599\) 30.9748 + 11.2739i 1.26559 + 0.460639i 0.885643 0.464367i \(-0.153718\pi\)
0.379952 + 0.925006i \(0.375940\pi\)
\(600\) 0 0
\(601\) 5.62780 31.9168i 0.229563 1.30192i −0.624205 0.781261i \(-0.714577\pi\)
0.853767 0.520655i \(-0.174312\pi\)
\(602\) −5.82264 + 10.0851i −0.237313 + 0.411038i
\(603\) −9.07697 + 4.06583i −0.369643 + 0.165574i
\(604\) 60.9831 + 105.626i 2.48137 + 4.29785i
\(605\) 0 0
\(606\) 21.1858 + 33.8196i 0.860613 + 1.37383i
\(607\) 15.8543 13.3034i 0.643508 0.539967i −0.261585 0.965180i \(-0.584245\pi\)
0.905093 + 0.425213i \(0.139801\pi\)
\(608\) 12.1860 10.2253i 0.494209 0.414690i
\(609\) 7.29421 + 11.6440i 0.295576 + 0.471838i
\(610\) 0 0
\(611\) −7.64901 13.2485i −0.309446 0.535976i
\(612\) −56.6076 + 25.3562i −2.28823 + 1.02496i
\(613\) −16.8679 + 29.2160i −0.681287 + 1.18002i 0.293301 + 0.956020i \(0.405246\pi\)
−0.974588 + 0.224004i \(0.928087\pi\)
\(614\) 2.89182 16.4003i 0.116704 0.661864i
\(615\) 0 0
\(616\) −10.6152 3.86362i −0.427699 0.155670i
\(617\) 5.32646 + 30.2079i 0.214435 + 1.21612i 0.881884 + 0.471467i \(0.156275\pi\)
−0.667448 + 0.744656i \(0.732614\pi\)
\(618\) −69.1280 + 28.0201i −2.78074 + 1.12713i
\(619\) 22.9897 + 19.2906i 0.924033 + 0.775356i 0.974737 0.223358i \(-0.0717018\pi\)
−0.0507031 + 0.998714i \(0.516146\pi\)
\(620\) 0 0
\(621\) −13.9288 3.42294i −0.558945 0.137358i
\(622\) 36.8935 1.47929
\(623\) −12.4547 10.4507i −0.498985 0.418698i
\(624\) −75.7378 59.0357i −3.03194 2.36332i
\(625\) 0 0
\(626\) 20.0490 + 7.29725i 0.801320 + 0.291657i
\(627\) 1.79667 + 0.581539i 0.0717521 + 0.0232244i
\(628\) −8.38492 + 47.5532i −0.334595 + 1.89758i
\(629\) 14.5474 25.1968i 0.580043 1.00466i
\(630\) 0 0
\(631\) 22.1756 + 38.4093i 0.882797 + 1.52905i 0.848218 + 0.529647i \(0.177675\pi\)
0.0345781 + 0.999402i \(0.488991\pi\)
\(632\) −69.8280 + 25.4153i −2.77761 + 1.01097i
\(633\) −14.8635 + 28.0303i −0.590772 + 1.11410i
\(634\) 11.6259 9.75533i 0.461725 0.387433i
\(635\) 0 0
\(636\) 4.44282 0.160153i 0.176169 0.00635048i
\(637\) −23.2785 + 8.47270i −0.922330 + 0.335701i
\(638\) 13.3151 + 23.0624i 0.527149 + 0.913049i
\(639\) 7.26111 + 28.8460i 0.287245 + 1.14113i
\(640\) 0 0
\(641\) 5.79316 32.8547i 0.228816 1.29768i −0.626437 0.779472i \(-0.715488\pi\)
0.855254 0.518210i \(-0.173401\pi\)
\(642\) 31.9451 28.8287i 1.26077 1.13778i
\(643\) 15.2874 + 5.56415i 0.602875 + 0.219429i 0.625383 0.780318i \(-0.284943\pi\)
−0.0225078 + 0.999747i \(0.507165\pi\)
\(644\) −2.56411 14.5418i −0.101040 0.573027i
\(645\) 0 0
\(646\) 7.00702 + 5.87959i 0.275688 + 0.231329i
\(647\) 39.9222 1.56950 0.784751 0.619811i \(-0.212791\pi\)
0.784751 + 0.619811i \(0.212791\pi\)
\(648\) 70.3298 37.8021i 2.76281 1.48501i
\(649\) −1.98164 −0.0777861
\(650\) 0 0
\(651\) −1.31197 + 9.41198i −0.0514200 + 0.368884i
\(652\) 6.72434 + 38.1356i 0.263345 + 1.49351i
\(653\) 5.23644 + 1.90591i 0.204918 + 0.0745839i 0.442440 0.896798i \(-0.354113\pi\)
−0.237522 + 0.971382i \(0.576335\pi\)
\(654\) −17.2866 + 15.6002i −0.675960 + 0.610016i
\(655\) 0 0
\(656\) 23.8867 41.3730i 0.932619 1.61534i
\(657\) 11.3376 10.9980i 0.442320 0.429072i
\(658\) 5.04013 + 8.72976i 0.196485 + 0.340322i
\(659\) −6.70045 + 2.43876i −0.261012 + 0.0950007i −0.469212 0.883086i \(-0.655462\pi\)
0.208199 + 0.978086i \(0.433240\pi\)
\(660\) 0 0
\(661\) −11.1617 + 9.36578i −0.434140 + 0.364286i −0.833511 0.552503i \(-0.813673\pi\)
0.399371 + 0.916789i \(0.369228\pi\)
\(662\) −51.5917 + 43.2906i −2.00517 + 1.68254i
\(663\) 13.1548 24.8080i 0.510892 0.963462i
\(664\) 24.1435 8.78750i 0.936948 0.341021i
\(665\) 0 0
\(666\) −26.2873 + 54.2062i −1.01861 + 2.10045i
\(667\) −10.8202 + 18.7412i −0.418962 + 0.725663i
\(668\) −4.61787 + 26.1892i −0.178671 + 1.01329i
\(669\) 11.5503 + 3.73857i 0.446562 + 0.144541i
\(670\) 0 0
\(671\) 0.360501 + 2.04450i 0.0139170 + 0.0789272i
\(672\) 25.3790 + 19.7823i 0.979018 + 0.763120i
\(673\) −0.370154 0.310596i −0.0142684 0.0119726i 0.635626 0.771998i \(-0.280742\pi\)
−0.649894 + 0.760025i \(0.725187\pi\)
\(674\) 29.1500 1.12282
\(675\) 0 0
\(676\) 22.1144 0.850555
\(677\) 29.9869 + 25.1620i 1.15249 + 0.967055i 0.999775 0.0212148i \(-0.00675338\pi\)
0.152717 + 0.988270i \(0.451198\pi\)
\(678\) 34.4832 13.9773i 1.32432 0.536795i
\(679\) −0.542802 3.07838i −0.0208308 0.118137i
\(680\) 0 0
\(681\) −4.86131 22.7447i −0.186286 0.871581i
\(682\) −3.19828 + 18.1383i −0.122468 + 0.694553i
\(683\) 0.106584 0.184609i 0.00407832 0.00706386i −0.863979 0.503528i \(-0.832035\pi\)
0.868057 + 0.496464i \(0.165368\pi\)
\(684\) −11.1351 8.05191i −0.425762 0.307873i
\(685\) 0 0
\(686\) 33.3056 12.1223i 1.27162 0.462830i
\(687\) 8.54204 + 13.6359i 0.325899 + 0.520244i
\(688\) 43.6821 36.6537i 1.66537 1.39741i
\(689\) −1.54174 + 1.29367i −0.0587355 + 0.0492849i
\(690\) 0 0
\(691\) 20.5204 7.46881i 0.780633 0.284127i 0.0791962 0.996859i \(-0.474765\pi\)
0.701436 + 0.712732i \(0.252542\pi\)
\(692\) −50.6640 87.7526i −1.92596 3.33585i
\(693\) −0.390741 + 3.79991i −0.0148430 + 0.144347i
\(694\) −34.9239 + 60.4900i −1.32569 + 2.29617i
\(695\) 0 0
\(696\) −25.1791 117.806i −0.954412 4.46544i
\(697\) 13.1271 + 4.77788i 0.497225 + 0.180975i
\(698\) 7.16913 + 40.6582i 0.271356 + 1.53893i
\(699\) 16.3907 6.64376i 0.619955 0.251290i
\(700\) 0 0
\(701\) −35.4129 −1.33753 −0.668763 0.743476i \(-0.733176\pi\)
−0.668763 + 0.743476i \(0.733176\pi\)
\(702\) −23.4693 + 53.1955i −0.885791 + 2.00774i
\(703\) 6.44560 0.243100
\(704\) 21.9893 + 18.4512i 0.828752 + 0.695405i
\(705\) 0 0
\(706\) −16.2405 92.1044i −0.611219 3.46639i
\(707\) 8.11600 + 2.95398i 0.305234 + 0.111096i
\(708\) 13.7187 + 4.44043i 0.515582 + 0.166882i
\(709\) 1.16039 6.58093i 0.0435795 0.247152i −0.955234 0.295852i \(-0.904397\pi\)
0.998813 + 0.0486997i \(0.0155077\pi\)
\(710\) 0 0
\(711\) 14.0983 + 20.8004i 0.528726 + 0.780076i
\(712\) 71.2737 + 123.450i 2.67110 + 4.62647i
\(713\) −14.0645 + 5.11907i −0.526721 + 0.191711i
\(714\) −8.66806 + 16.3466i −0.324394 + 0.611756i
\(715\) 0 0
\(716\) 55.1581 46.2831i 2.06135 1.72968i
\(717\) 4.48696 0.161744i 0.167569 0.00604044i
\(718\) −21.9078 + 7.97379i −0.817592 + 0.297579i
\(719\) 1.59977 + 2.77089i 0.0596614 + 0.103337i 0.894313 0.447441i \(-0.147665\pi\)
−0.834652 + 0.550778i \(0.814331\pi\)
\(720\) 0 0
\(721\) −8.07159 + 13.9804i −0.300602 + 0.520657i
\(722\) 8.55418 48.5132i 0.318354 1.80547i
\(723\) −21.3883 + 19.3017i −0.795438 + 0.717838i
\(724\) −42.2659 15.3835i −1.57080 0.571724i
\(725\) 0 0
\(726\) 6.07820 43.6047i 0.225583 1.61832i
\(727\) −30.2941 25.4198i −1.12355 0.942768i −0.124769 0.992186i \(-0.539819\pi\)
−0.998778 + 0.0494182i \(0.984263\pi\)
\(728\) −37.2120 −1.37917
\(729\) −18.2016 19.9425i −0.674133 0.738610i
\(730\) 0 0
\(731\) 12.7732 + 10.7180i 0.472436 + 0.396421i
\(732\) 2.08557 14.9618i 0.0770849 0.553003i
\(733\) −8.28983 47.0139i −0.306192 1.73650i −0.617842 0.786302i \(-0.711993\pi\)
0.311650 0.950197i \(-0.399118\pi\)
\(734\) −69.4864 25.2910i −2.56479 0.933507i
\(735\) 0 0
\(736\) −8.80059 + 49.9106i −0.324394 + 1.83973i
\(737\) −2.08596 + 3.61299i −0.0768374 + 0.133086i
\(738\) −27.8229 7.91036i −1.02418 0.291184i
\(739\) −0.756718 1.31067i −0.0278363 0.0482139i 0.851772 0.523913i \(-0.175528\pi\)
−0.879608 + 0.475699i \(0.842195\pi\)
\(740\) 0 0
\(741\) 6.21673 0.224098i 0.228377 0.00823245i
\(742\) 1.01589 0.852432i 0.0372945 0.0312938i
\(743\) 14.9554 12.5490i 0.548659 0.460380i −0.325827 0.945429i \(-0.605643\pi\)
0.874487 + 0.485049i \(0.161198\pi\)
\(744\) 39.0328 73.6098i 1.43101 2.69867i
\(745\) 0 0
\(746\) 35.2351 + 61.0289i 1.29005 + 2.23443i
\(747\) −4.87456 7.19186i −0.178351 0.263136i
\(748\) −13.0089 + 22.5321i −0.475653 + 0.823855i
\(749\) 1.61713 9.17119i 0.0590886 0.335108i
\(750\) 0 0
\(751\) −20.9890 7.63937i −0.765900 0.278765i −0.0706193 0.997503i \(-0.522498\pi\)
−0.695280 + 0.718739i \(0.744720\pi\)
\(752\) −8.57121 48.6098i −0.312560 1.77262i
\(753\) 16.6679 + 12.9922i 0.607412 + 0.473463i
\(754\) 67.1998 + 56.3874i 2.44727 + 2.05351i
\(755\) 0 0
\(756\) 11.2199 25.4309i 0.408062 0.924914i
\(757\) −41.7562 −1.51766 −0.758828 0.651291i \(-0.774228\pi\)
−0.758828 + 0.651291i \(0.774228\pi\)
\(758\) 22.6307 + 18.9894i 0.821984 + 0.689727i
\(759\) −5.57577 + 2.26006i −0.202388 + 0.0820350i
\(760\) 0 0
\(761\) 31.4550 + 11.4487i 1.14024 + 0.415014i 0.842001 0.539476i \(-0.181378\pi\)
0.298241 + 0.954490i \(0.403600\pi\)
\(762\) −18.1581 84.9567i −0.657797 3.07766i
\(763\) −0.875084 + 4.96285i −0.0316802 + 0.179667i
\(764\) 33.8854 58.6912i 1.22593 2.12337i
\(765\) 0 0
\(766\) 2.97435 + 5.15173i 0.107468 + 0.186140i
\(767\) −6.13410 + 2.23263i −0.221489 + 0.0806155i
\(768\) −19.7430 31.5163i −0.712412 1.13725i
\(769\) −11.6956 + 9.81375i −0.421753 + 0.353893i −0.828830 0.559501i \(-0.810993\pi\)
0.407076 + 0.913394i \(0.366548\pi\)
\(770\) 0 0
\(771\) 7.82713 + 12.4947i 0.281887 + 0.449986i
\(772\) −49.5107 + 18.0204i −1.78193 + 0.648570i
\(773\) −13.4630 23.3186i −0.484230 0.838711i 0.515606 0.856826i \(-0.327567\pi\)
−0.999836 + 0.0181148i \(0.994234\pi\)
\(774\) −27.9777 20.2309i −1.00564 0.727186i
\(775\) 0 0
\(776\) −4.75908 + 26.9901i −0.170841 + 0.968887i
\(777\) 2.72514 + 12.7502i 0.0977638 + 0.457411i
\(778\) 61.7674 + 22.4815i 2.21447 + 0.806001i
\(779\) 0.537404 + 3.04777i 0.0192545 + 0.109198i
\(780\) 0 0
\(781\) 9.55805 + 8.02015i 0.342014 + 0.286984i
\(782\) −29.1416 −1.04210
\(783\) −36.5532 + 17.9812i −1.30630 + 0.642595i
\(784\) −79.9294 −2.85462
\(785\) 0 0
\(786\) −69.4464 54.1317i −2.47707 1.93081i
\(787\) −4.54419 25.7714i −0.161983 0.918650i −0.952121 0.305722i \(-0.901102\pi\)
0.790138 0.612929i \(-0.210009\pi\)
\(788\) −97.6124 35.5280i −3.47730 1.26563i
\(789\) −15.1961 4.91862i −0.540996 0.175107i
\(790\) 0 0
\(791\) 4.02636 6.97386i 0.143161 0.247962i
\(792\) 14.6141 30.1352i 0.519288 1.07081i
\(793\) 3.41938 + 5.92253i 0.121426 + 0.210315i
\(794\) 28.2935 10.2980i 1.00410 0.365462i
\(795\) 0 0
\(796\) 14.6422 12.2862i 0.518978 0.435474i
\(797\) 27.3057 22.9122i 0.967216 0.811591i −0.0148959 0.999889i \(-0.504742\pi\)
0.982112 + 0.188298i \(0.0602972\pi\)
\(798\) −4.09636 + 0.147664i −0.145010 + 0.00522725i
\(799\) 13.5630 4.93652i 0.479824 0.174642i
\(800\) 0 0
\(801\) 34.5989 33.5626i 1.22249 1.18587i
\(802\) 4.85022 8.40083i 0.171267 0.296643i
\(803\) 1.15051 6.52487i 0.0406006 0.230258i
\(804\) 22.5369 20.3383i 0.794816 0.717277i
\(805\) 0 0
\(806\) 10.5355 + 59.7500i 0.371099 + 2.10461i
\(807\) −1.71057 + 12.2715i −0.0602149 + 0.431978i
\(808\) −58.0085 48.6749i −2.04073 1.71238i
\(809\) −5.37671 −0.189035 −0.0945175 0.995523i \(-0.530131\pi\)
−0.0945175 + 0.995523i \(0.530131\pi\)
\(810\) 0 0
\(811\) 25.4236 0.892744 0.446372 0.894847i \(-0.352716\pi\)
0.446372 + 0.894847i \(0.352716\pi\)
\(812\) −32.1259 26.9569i −1.12740 0.946000i
\(813\) 4.14686 29.7493i 0.145437 1.04335i
\(814\) 4.38807 + 24.8860i 0.153802 + 0.872253i
\(815\) 0 0
\(816\) 67.2614 60.6997i 2.35462 2.12491i
\(817\) −0.641454 + 3.63786i −0.0224416 + 0.127273i
\(818\) −11.6746 + 20.2210i −0.408193 + 0.707012i
\(819\) 3.07167 + 12.2027i 0.107333 + 0.426398i
\(820\) 0 0
\(821\) 12.2590 4.46192i 0.427843 0.155722i −0.119118 0.992880i \(-0.538007\pi\)
0.546961 + 0.837158i \(0.315785\pi\)
\(822\) 74.7591 2.69489i 2.60752 0.0939950i
\(823\) 26.0965 21.8976i 0.909668 0.763302i −0.0623879 0.998052i \(-0.519872\pi\)
0.972056 + 0.234750i \(0.0754272\pi\)
\(824\) 108.424 90.9783i 3.77712 3.16938i
\(825\) 0 0
\(826\) 4.04191 1.47114i 0.140636 0.0511874i
\(827\) 16.0942 + 27.8760i 0.559651 + 0.969345i 0.997525 + 0.0703083i \(0.0223983\pi\)
−0.437874 + 0.899036i \(0.644268\pi\)
\(828\) 43.6650 3.15213i 1.51746 0.109544i
\(829\) −11.4430 + 19.8198i −0.397431 + 0.688371i −0.993408 0.114630i \(-0.963432\pi\)
0.595977 + 0.803001i \(0.296765\pi\)
\(830\) 0 0
\(831\) 17.3740 + 5.62354i 0.602697 + 0.195079i
\(832\) 88.8553 + 32.3407i 3.08050 + 1.12121i
\(833\) −4.05858 23.0174i −0.140622 0.797504i
\(834\) 49.4631 + 38.5552i 1.71277 + 1.33506i
\(835\) 0 0
\(836\) −5.76392 −0.199350
\(837\) −27.3604 6.72368i −0.945714 0.232404i
\(838\) 99.3379 3.43157
\(839\) 14.3141 + 12.0109i 0.494176 + 0.414663i 0.855520 0.517769i \(-0.173237\pi\)
−0.361344 + 0.932433i \(0.617682\pi\)
\(840\) 0 0
\(841\) 5.63686 + 31.9682i 0.194375 + 1.10235i
\(842\) 92.0019 + 33.4859i 3.17059 + 1.15400i
\(843\) −7.76393 36.3254i −0.267404 1.25111i
\(844\) 16.8158 95.3673i 0.578824 3.28268i
\(845\) 0 0
\(846\) −27.2748 + 12.2172i −0.937726 + 0.420034i
\(847\) −4.76414 8.25173i −0.163698 0.283533i
\(848\) −6.10209 + 2.22098i −0.209547 + 0.0762687i
\(849\) −14.9329 23.8380i −0.512497 0.818117i
\(850\) 0 0
\(851\) −15.7308 + 13.1997i −0.539244 + 0.452480i
\(852\) −48.1983 76.9405i −1.65125 2.63594i
\(853\) 20.1180 7.32234i 0.688826 0.250712i 0.0261934 0.999657i \(-0.491661\pi\)
0.662632 + 0.748945i \(0.269439\pi\)
\(854\) −2.25311 3.90251i −0.0771000 0.133541i
\(855\) 0 0
\(856\) −40.8250 + 70.7109i −1.39537 + 2.41685i
\(857\) −1.04514 + 5.92728i −0.0357013 + 0.202472i −0.997441 0.0714922i \(-0.977224\pi\)
0.961740 + 0.273964i \(0.0883350\pi\)
\(858\) 5.09749 + 23.8498i 0.174025 + 0.814218i
\(859\) 21.9131 + 7.97570i 0.747664 + 0.272128i 0.687623 0.726068i \(-0.258654\pi\)
0.0600417 + 0.998196i \(0.480877\pi\)
\(860\) 0 0
\(861\) −5.80166 + 2.35162i −0.197720 + 0.0801431i
\(862\) 40.0262 + 33.5860i 1.36330 + 1.14394i
\(863\) −19.5769 −0.666405 −0.333203 0.942855i \(-0.608129\pi\)
−0.333203 + 0.942855i \(0.608129\pi\)
\(864\) −66.0397 + 68.8498i −2.24672 + 2.34232i
\(865\) 0 0
\(866\) −47.1472 39.5612i −1.60213 1.34434i
\(867\) −2.32817 1.81475i −0.0790687 0.0616320i
\(868\) −5.03668 28.5644i −0.170956 0.969540i
\(869\) 9.90452 + 3.60495i 0.335988 + 0.122290i
\(870\) 0 0
\(871\) −2.38642 + 13.5341i −0.0808609 + 0.458585i
\(872\) 22.0918 38.2641i 0.748123 1.29579i
\(873\) 9.24354 0.667282i 0.312847 0.0225841i
\(874\) −3.22798 5.59102i −0.109188 0.189119i
\(875\) 0 0
\(876\) −22.5858 + 42.5932i −0.763102 + 1.43909i
\(877\) 38.4239 32.2415i 1.29748 1.08872i 0.306910 0.951739i \(-0.400705\pi\)
0.990574 0.136979i \(-0.0437394\pi\)
\(878\) −40.0898 + 33.6393i −1.35296 + 1.13527i
\(879\) −40.9079 + 1.47463i −1.37979 + 0.0497380i
\(880\) 0 0
\(881\) 4.92107 + 8.52354i 0.165795 + 0.287165i 0.936937 0.349497i \(-0.113648\pi\)
−0.771142 + 0.636663i \(0.780314\pi\)
\(882\) 11.8135 + 46.9312i 0.397782 + 1.58026i
\(883\) −8.11410 + 14.0540i −0.273061 + 0.472956i −0.969644 0.244520i \(-0.921369\pi\)
0.696583 + 0.717476i \(0.254703\pi\)
\(884\) −14.8827 + 84.4039i −0.500559 + 2.83881i
\(885\) 0 0
\(886\) −9.87346 3.59365i −0.331705 0.120731i
\(887\) 0.805833 + 4.57011i 0.0270572 + 0.153449i 0.995343 0.0963958i \(-0.0307315\pi\)
−0.968286 + 0.249845i \(0.919620\pi\)
\(888\) 15.7820 113.219i 0.529608 3.79938i
\(889\) −14.4030 12.0856i −0.483062 0.405337i
\(890\) 0 0
\(891\) −11.0884 2.30479i −0.371475 0.0772133i
\(892\) −37.0548 −1.24069
\(893\) 2.44946 + 2.05534i 0.0819682 + 0.0687795i
\(894\) 2.17743 15.6208i 0.0728241 0.522436i
\(895\) 0 0
\(896\) −23.6336 8.60194i −0.789544 0.287371i
\(897\) −14.7133 + 13.2779i −0.491263 + 0.443338i
\(898\) 10.2614 58.1955i 0.342428 1.94201i
\(899\) −21.2542 + 36.8134i −0.708867 + 1.22779i
\(900\) 0 0
\(901\) −0.949424 1.64445i −0.0316299 0.0547846i
\(902\) −11.4014 + 4.14976i −0.379624 + 0.138172i
\(903\) −7.46735 + 0.269180i −0.248498 + 0.00895774i
\(904\) −54.0852 + 45.3829i −1.79885 + 1.50941i
\(905\) 0 0
\(906\) −50.5330 + 95.2974i −1.67885 + 3.16604i
\(907\) −8.36499 + 3.04461i −0.277755 + 0.101094i −0.477142 0.878826i \(-0.658327\pi\)
0.199387 + 0.979921i \(0.436105\pi\)
\(908\) 35.4949 + 61.4789i 1.17794 + 2.04025i
\(909\) −11.1734 + 23.0403i −0.370597 + 0.764198i
\(910\) 0 0
\(911\) 5.06913 28.7484i 0.167948 0.952478i −0.778025 0.628233i \(-0.783779\pi\)
0.945973 0.324245i \(-0.105110\pi\)
\(912\) 19.0961 + 6.18096i 0.632336 + 0.204672i
\(913\) −3.42455 1.24643i −0.113336 0.0412509i
\(914\) 9.04643 + 51.3049i 0.299229 + 1.69701i
\(915\) 0 0
\(916\) −37.6218 31.5684i −1.24306 1.04305i
\(917\) −19.0563 −0.629295
\(918\) −45.5815 30.5217i −1.50441 1.00737i
\(919\) 48.7206 1.60714 0.803572 0.595208i \(-0.202930\pi\)
0.803572 + 0.595208i \(0.202930\pi\)
\(920\) 0 0
\(921\) 9.90303 4.01405i 0.326316 0.132268i
\(922\) −17.9115 101.581i −0.589884 3.34540i
\(923\) 38.6226 + 14.0575i 1.27128 + 0.462707i
\(924\) −2.43693 11.4018i −0.0801692 0.375090i
\(925\) 0 0
\(926\) 30.0982 52.1316i 0.989088 1.71315i
\(927\) −38.7839 28.0450i −1.27383 0.921117i
\(928\) 71.9692 + 124.654i 2.36251 + 4.09198i
\(929\) 34.3831 12.5144i 1.12807 0.410585i 0.290480 0.956881i \(-0.406185\pi\)
0.837592 + 0.546296i \(0.183963\pi\)
\(930\) 0 0
\(931\) 3.96648 3.32827i 0.129996 0.109080i
\(932\) −41.3522 + 34.6987i −1.35454 + 1.13659i
\(933\) 12.5672 + 20.0615i 0.411432 + 0.656783i
\(934\) −76.5061 + 27.8460i −2.50336 + 0.911148i
\(935\) 0 0
\(936\) 11.2853 109.748i 0.368870 3.58721i
\(937\) 11.4630 19.8545i 0.374480 0.648618i −0.615769 0.787927i \(-0.711155\pi\)
0.990249 + 0.139308i \(0.0444880\pi\)
\(938\) 1.57247 8.91795i 0.0513431 0.291181i
\(939\) 2.86140 + 13.3877i 0.0933781 + 0.436891i
\(940\) 0 0
\(941\) 2.11146 + 11.9747i 0.0688317 + 0.390364i 0.999688 + 0.0249784i \(0.00795170\pi\)
−0.930856 + 0.365385i \(0.880937\pi\)
\(942\) −39.5771 + 16.0420i −1.28949 + 0.522677i
\(943\) −7.55298 6.33770i −0.245959 0.206384i
\(944\) −21.0621 −0.685512
\(945\) 0 0
\(946\) −14.4822 −0.470857
\(947\) 9.82072 + 8.24056i 0.319130 + 0.267782i 0.788254 0.615351i \(-0.210986\pi\)
−0.469123 + 0.883133i \(0.655430\pi\)
\(948\) −60.4904 47.1507i −1.96464 1.53138i
\(949\) −3.78993 21.4938i −0.123026 0.697717i
\(950\) 0 0
\(951\) 9.26484 + 2.99880i 0.300433 + 0.0972429i
\(952\) 6.09660 34.5755i 0.197592 1.12060i
\(953\) −5.10838 + 8.84797i −0.165477 + 0.286614i −0.936824 0.349800i \(-0.886250\pi\)
0.771348 + 0.636414i \(0.219583\pi\)
\(954\) 2.20595 + 3.25463i 0.0714203 + 0.105373i
\(955\) 0 0
\(956\) −12.8776 + 4.68706i −0.416491 + 0.151590i
\(957\) −8.00500 + 15.0962i −0.258765 + 0.487990i
\(958\) −29.4941 + 24.7485i −0.952910 + 0.799586i
\(959\) 12.4023 10.4068i 0.400492 0.336053i
\(960\) 0 0
\(961\) 1.50350 0.547231i 0.0485002 0.0176526i
\(962\) 41.6211 + 72.0899i 1.34192 + 2.32427i
\(963\) 26.5577 + 7.55066i 0.855811 + 0.243317i
\(964\) 43.9670 76.1531i 1.41608 2.45273i
\(965\) 0 0
\(966\) 9.69498 8.74917i 0.311931 0.281500i
\(967\) 25.5290 + 9.29181i 0.820958 + 0.298804i 0.718143 0.695896i \(-0.244993\pi\)
0.102816 + 0.994700i \(0.467215\pi\)
\(968\) 14.5066 + 82.2711i 0.466260 + 2.64429i
\(969\) −0.810292 + 5.81299i −0.0260303 + 0.186740i
\(970\) 0 0
\(971\) −7.96515 −0.255614 −0.127807 0.991799i \(-0.540794\pi\)
−0.127807 + 0.991799i \(0.540794\pi\)
\(972\) 71.5996 + 40.8026i 2.29656 + 1.30874i
\(973\) 13.5728 0.435125
\(974\) −43.4117 36.4267i −1.39100 1.16719i
\(975\) 0 0
\(976\) 3.83163 + 21.7303i 0.122648 + 0.695569i
\(977\) 40.4381 + 14.7183i 1.29373 + 0.470879i 0.894949 0.446168i \(-0.147212\pi\)
0.398779 + 0.917047i \(0.369434\pi\)
\(978\) −25.4249 + 22.9446i −0.813000 + 0.733687i
\(979\) 3.51102 19.9120i 0.112213 0.636390i
\(980\) 0 0
\(981\) −14.3713 4.08592i −0.458841 0.130453i
\(982\) 6.96105 + 12.0569i 0.222136 + 0.384751i
\(983\) 40.3135 14.6729i 1.28580 0.467993i 0.393453 0.919345i \(-0.371280\pi\)
0.892346 + 0.451352i \(0.149058\pi\)
\(984\) 54.8509 1.97724i 1.74858 0.0630322i
\(985\) 0 0
\(986\) −63.4019 + 53.2005i −2.01913 + 1.69425i
\(987\) −3.03012 + 5.71432i −0.0964496 + 0.181889i
\(988\) −17.8420 + 6.49397i −0.567631 + 0.206601i
\(989\) −5.88435 10.1920i −0.187111 0.324086i
\(990\) 0 0
\(991\) 18.5127 32.0649i 0.588075 1.01858i −0.406410 0.913691i \(-0.633219\pi\)
0.994484 0.104884i \(-0.0334473\pi\)
\(992\) −17.2870 + 98.0394i −0.548863 + 3.11276i
\(993\) −41.1140 13.3076i −1.30471 0.422304i
\(994\) −25.4494 9.26283i −0.807206 0.293799i
\(995\) 0 0
\(996\) 20.9149 + 16.3027i 0.662714 + 0.516569i
\(997\) −19.3849 16.2659i −0.613927 0.515146i 0.281961 0.959426i \(-0.409015\pi\)
−0.895888 + 0.444280i \(0.853460\pi\)
\(998\) 96.0475 3.04033
\(999\) −38.4300 + 4.17038i −1.21587 + 0.131945i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.h.151.1 96
5.2 odd 4 135.2.p.a.124.16 yes 96
5.3 odd 4 135.2.p.a.124.1 yes 96
5.4 even 2 inner 675.2.l.h.151.16 96
15.2 even 4 405.2.p.a.289.1 96
15.8 even 4 405.2.p.a.289.16 96
27.22 even 9 inner 675.2.l.h.76.1 96
135.22 odd 36 135.2.p.a.49.1 96
135.32 even 36 405.2.p.a.199.16 96
135.49 even 18 inner 675.2.l.h.76.16 96
135.103 odd 36 135.2.p.a.49.16 yes 96
135.113 even 36 405.2.p.a.199.1 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.1 96 135.22 odd 36
135.2.p.a.49.16 yes 96 135.103 odd 36
135.2.p.a.124.1 yes 96 5.3 odd 4
135.2.p.a.124.16 yes 96 5.2 odd 4
405.2.p.a.199.1 96 135.113 even 36
405.2.p.a.199.16 96 135.32 even 36
405.2.p.a.289.1 96 15.2 even 4
405.2.p.a.289.16 96 15.8 even 4
675.2.l.h.76.1 96 27.22 even 9 inner
675.2.l.h.76.16 96 135.49 even 18 inner
675.2.l.h.151.1 96 1.1 even 1 trivial
675.2.l.h.151.16 96 5.4 even 2 inner