Properties

Label 405.2.p.a.289.1
Level $405$
Weight $2$
Character 405.289
Analytic conductor $3.234$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,2,Mod(19,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([16, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 405.p (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.23394128186\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 289.1
Character \(\chi\) \(=\) 405.289
Dual form 405.2.p.a.199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73512 + 2.06784i) q^{2} +(-0.918006 - 5.20627i) q^{4} +(-1.79745 - 1.33011i) q^{5} +(-0.996499 - 0.175710i) q^{7} +(7.68312 + 4.43585i) q^{8} +(5.86923 - 1.40893i) q^{10} +(1.18249 - 0.430390i) q^{11} +(2.66452 + 3.17545i) q^{13} +(2.09238 - 1.75572i) q^{14} +(-12.5682 + 4.57445i) q^{16} +(-3.38700 + 1.95549i) q^{17} +(-0.433214 + 0.750349i) q^{19} +(-5.27482 + 10.5790i) q^{20} +(-1.16178 + 3.19197i) q^{22} +(-2.71843 + 0.479332i) q^{23} +(1.46164 + 4.78159i) q^{25} -11.1896 q^{26} +5.34934i q^{28} +(6.00558 + 5.03928i) q^{29} +(0.941551 + 5.33980i) q^{31} +(6.27953 - 17.2529i) q^{32} +(1.83323 - 10.3968i) q^{34} +(1.55744 + 1.64128i) q^{35} +(-6.44260 + 3.71964i) q^{37} +(-0.799919 - 2.19776i) q^{38} +(-7.90986 - 18.1926i) q^{40} +(2.73623 - 2.29597i) q^{41} +(1.45819 + 4.00634i) q^{43} +(-3.32626 - 5.76125i) q^{44} +(3.72562 - 6.45296i) q^{46} +(3.63443 + 0.640847i) q^{47} +(-5.61571 - 2.04395i) q^{49} +(-12.4237 - 5.27421i) q^{50} +(14.0862 - 16.7873i) q^{52} +0.485518i q^{53} +(-2.69792 - 0.799229i) q^{55} +(-6.87680 - 5.77032i) q^{56} +(-20.8408 + 3.67480i) q^{58} +(1.47979 + 0.538599i) q^{59} +(0.286481 - 1.62472i) q^{61} +(-12.6755 - 7.31822i) q^{62} +(11.4056 + 19.7550i) q^{64} +(-0.565650 - 9.25179i) q^{65} +(2.13105 + 2.53969i) q^{67} +(13.2901 + 15.8385i) q^{68} +(-6.09624 + 0.372721i) q^{70} +(4.95764 + 8.58688i) q^{71} +(4.55975 + 2.63257i) q^{73} +(3.48709 - 19.7763i) q^{74} +(4.30421 + 1.56660i) q^{76} +(-1.25397 + 0.221109i) q^{77} +(6.41639 + 5.38399i) q^{79} +(28.6752 + 8.49470i) q^{80} +9.64185i q^{82} +(-1.86155 + 2.21851i) q^{83} +(8.68897 + 0.990186i) q^{85} +(-10.8146 - 3.93619i) q^{86} +(10.9943 + 1.93860i) q^{88} +(-8.03383 + 13.9150i) q^{89} +(-2.09723 - 3.63251i) q^{91} +(4.99106 + 13.7128i) q^{92} +(-7.63133 + 6.40345i) q^{94} +(1.77672 - 0.772492i) q^{95} +(-1.05657 - 2.90290i) q^{97} +(13.9705 - 8.06587i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q - 12 q^{4} + 9 q^{5} - 3 q^{10} + 6 q^{11} + 18 q^{14} - 24 q^{16} - 6 q^{19} + 57 q^{20} + 3 q^{25} - 48 q^{26} + 30 q^{29} - 30 q^{31} - 24 q^{34} + 12 q^{35} - 9 q^{40} + 12 q^{41} - 78 q^{44} - 6 q^{46}+ \cdots - 87 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73512 + 2.06784i −1.22692 + 1.46218i −0.384698 + 0.923043i \(0.625694\pi\)
−0.842218 + 0.539138i \(0.818750\pi\)
\(3\) 0 0
\(4\) −0.918006 5.20627i −0.459003 2.60313i
\(5\) −1.79745 1.33011i −0.803843 0.594841i
\(6\) 0 0
\(7\) −0.996499 0.175710i −0.376641 0.0664120i −0.0178769 0.999840i \(-0.505691\pi\)
−0.358764 + 0.933428i \(0.616802\pi\)
\(8\) 7.68312 + 4.43585i 2.71639 + 1.56831i
\(9\) 0 0
\(10\) 5.86923 1.40893i 1.85601 0.445544i
\(11\) 1.18249 0.430390i 0.356533 0.129767i −0.157543 0.987512i \(-0.550357\pi\)
0.514076 + 0.857745i \(0.328135\pi\)
\(12\) 0 0
\(13\) 2.66452 + 3.17545i 0.739004 + 0.880711i 0.996328 0.0856143i \(-0.0272853\pi\)
−0.257324 + 0.966325i \(0.582841\pi\)
\(14\) 2.09238 1.75572i 0.559213 0.469235i
\(15\) 0 0
\(16\) −12.5682 + 4.57445i −3.14205 + 1.14361i
\(17\) −3.38700 + 1.95549i −0.821469 + 0.474275i −0.850923 0.525291i \(-0.823957\pi\)
0.0294538 + 0.999566i \(0.490623\pi\)
\(18\) 0 0
\(19\) −0.433214 + 0.750349i −0.0993861 + 0.172142i −0.911431 0.411454i \(-0.865021\pi\)
0.812045 + 0.583595i \(0.198355\pi\)
\(20\) −5.27482 + 10.5790i −1.17949 + 2.36555i
\(21\) 0 0
\(22\) −1.16178 + 3.19197i −0.247693 + 0.680530i
\(23\) −2.71843 + 0.479332i −0.566831 + 0.0999476i −0.449717 0.893171i \(-0.648475\pi\)
−0.117114 + 0.993119i \(0.537364\pi\)
\(24\) 0 0
\(25\) 1.46164 + 4.78159i 0.292328 + 0.956318i
\(26\) −11.1896 −2.19445
\(27\) 0 0
\(28\) 5.34934i 1.01093i
\(29\) 6.00558 + 5.03928i 1.11521 + 0.935771i 0.998353 0.0573776i \(-0.0182739\pi\)
0.116856 + 0.993149i \(0.462718\pi\)
\(30\) 0 0
\(31\) 0.941551 + 5.33980i 0.169108 + 0.959057i 0.944728 + 0.327857i \(0.106326\pi\)
−0.775620 + 0.631200i \(0.782563\pi\)
\(32\) 6.27953 17.2529i 1.11008 3.04991i
\(33\) 0 0
\(34\) 1.83323 10.3968i 0.314397 1.78303i
\(35\) 1.55744 + 1.64128i 0.263256 + 0.277427i
\(36\) 0 0
\(37\) −6.44260 + 3.71964i −1.05916 + 0.611504i −0.925199 0.379483i \(-0.876102\pi\)
−0.133958 + 0.990987i \(0.542769\pi\)
\(38\) −0.799919 2.19776i −0.129764 0.356524i
\(39\) 0 0
\(40\) −7.90986 18.1926i −1.25066 2.87650i
\(41\) 2.73623 2.29597i 0.427327 0.358570i −0.403615 0.914929i \(-0.632246\pi\)
0.830942 + 0.556359i \(0.187802\pi\)
\(42\) 0 0
\(43\) 1.45819 + 4.00634i 0.222372 + 0.610962i 0.999839 0.0179623i \(-0.00571788\pi\)
−0.777467 + 0.628924i \(0.783496\pi\)
\(44\) −3.32626 5.76125i −0.501452 0.868540i
\(45\) 0 0
\(46\) 3.72562 6.45296i 0.549312 0.951436i
\(47\) 3.63443 + 0.640847i 0.530136 + 0.0934772i 0.432308 0.901726i \(-0.357699\pi\)
0.0978279 + 0.995203i \(0.468811\pi\)
\(48\) 0 0
\(49\) −5.61571 2.04395i −0.802245 0.291993i
\(50\) −12.4237 5.27421i −1.75697 0.745886i
\(51\) 0 0
\(52\) 14.0862 16.7873i 1.95340 2.32798i
\(53\) 0.485518i 0.0666910i 0.999444 + 0.0333455i \(0.0106162\pi\)
−0.999444 + 0.0333455i \(0.989384\pi\)
\(54\) 0 0
\(55\) −2.69792 0.799229i −0.363788 0.107768i
\(56\) −6.87680 5.77032i −0.918951 0.771091i
\(57\) 0 0
\(58\) −20.8408 + 3.67480i −2.73653 + 0.482525i
\(59\) 1.47979 + 0.538599i 0.192652 + 0.0701196i 0.436544 0.899683i \(-0.356202\pi\)
−0.243892 + 0.969802i \(0.578424\pi\)
\(60\) 0 0
\(61\) 0.286481 1.62472i 0.0366802 0.208023i −0.960960 0.276689i \(-0.910763\pi\)
0.997640 + 0.0686652i \(0.0218740\pi\)
\(62\) −12.6755 7.31822i −1.60979 0.929415i
\(63\) 0 0
\(64\) 11.4056 + 19.7550i 1.42569 + 2.46938i
\(65\) −0.565650 9.25179i −0.0701602 1.14754i
\(66\) 0 0
\(67\) 2.13105 + 2.53969i 0.260349 + 0.310272i 0.880346 0.474332i \(-0.157310\pi\)
−0.619997 + 0.784604i \(0.712866\pi\)
\(68\) 13.2901 + 15.8385i 1.61166 + 1.92070i
\(69\) 0 0
\(70\) −6.09624 + 0.372721i −0.728640 + 0.0445487i
\(71\) 4.95764 + 8.58688i 0.588363 + 1.01907i 0.994447 + 0.105239i \(0.0335608\pi\)
−0.406084 + 0.913836i \(0.633106\pi\)
\(72\) 0 0
\(73\) 4.55975 + 2.63257i 0.533678 + 0.308119i 0.742513 0.669832i \(-0.233634\pi\)
−0.208835 + 0.977951i \(0.566967\pi\)
\(74\) 3.48709 19.7763i 0.405366 2.29894i
\(75\) 0 0
\(76\) 4.30421 + 1.56660i 0.493727 + 0.179702i
\(77\) −1.25397 + 0.221109i −0.142903 + 0.0251977i
\(78\) 0 0
\(79\) 6.41639 + 5.38399i 0.721901 + 0.605747i 0.927910 0.372803i \(-0.121603\pi\)
−0.206010 + 0.978550i \(0.566048\pi\)
\(80\) 28.6752 + 8.49470i 3.20599 + 0.949737i
\(81\) 0 0
\(82\) 9.64185i 1.06476i
\(83\) −1.86155 + 2.21851i −0.204331 + 0.243513i −0.858472 0.512860i \(-0.828586\pi\)
0.654141 + 0.756373i \(0.273030\pi\)
\(84\) 0 0
\(85\) 8.68897 + 0.990186i 0.942451 + 0.107401i
\(86\) −10.8146 3.93619i −1.16617 0.424450i
\(87\) 0 0
\(88\) 10.9943 + 1.93860i 1.17200 + 0.206655i
\(89\) −8.03383 + 13.9150i −0.851584 + 1.47499i 0.0281944 + 0.999602i \(0.491024\pi\)
−0.879778 + 0.475384i \(0.842309\pi\)
\(90\) 0 0
\(91\) −2.09723 3.63251i −0.219850 0.380791i
\(92\) 4.99106 + 13.7128i 0.520354 + 1.42966i
\(93\) 0 0
\(94\) −7.63133 + 6.40345i −0.787112 + 0.660465i
\(95\) 1.77672 0.772492i 0.182288 0.0792561i
\(96\) 0 0
\(97\) −1.05657 2.90290i −0.107278 0.294745i 0.874425 0.485160i \(-0.161239\pi\)
−0.981704 + 0.190416i \(0.939016\pi\)
\(98\) 13.9705 8.06587i 1.41123 0.814776i
\(99\) 0 0
\(100\) 23.5525 11.9992i 2.35525 1.19992i
\(101\) −1.48218 + 8.40586i −0.147482 + 0.836415i 0.817858 + 0.575420i \(0.195162\pi\)
−0.965340 + 0.260994i \(0.915950\pi\)
\(102\) 0 0
\(103\) 5.45651 14.9916i 0.537646 1.47717i −0.312136 0.950037i \(-0.601045\pi\)
0.849782 0.527134i \(-0.176733\pi\)
\(104\) 6.38599 + 36.2167i 0.626198 + 3.55134i
\(105\) 0 0
\(106\) −1.00397 0.842432i −0.0975143 0.0818242i
\(107\) 9.20342i 0.889728i 0.895598 + 0.444864i \(0.146748\pi\)
−0.895598 + 0.444864i \(0.853252\pi\)
\(108\) 0 0
\(109\) −4.98029 −0.477025 −0.238512 0.971139i \(-0.576660\pi\)
−0.238512 + 0.971139i \(0.576660\pi\)
\(110\) 6.33389 4.19210i 0.603913 0.399701i
\(111\) 0 0
\(112\) 13.3280 2.35008i 1.25938 0.222062i
\(113\) 2.72188 7.47831i 0.256053 0.703500i −0.743348 0.668904i \(-0.766764\pi\)
0.999401 0.0345954i \(-0.0110143\pi\)
\(114\) 0 0
\(115\) 5.52379 + 2.75422i 0.515096 + 0.256832i
\(116\) 20.7227 35.8928i 1.92405 3.33256i
\(117\) 0 0
\(118\) −3.68134 + 2.12542i −0.338895 + 0.195661i
\(119\) 3.71874 1.35351i 0.340897 0.124076i
\(120\) 0 0
\(121\) −7.21345 + 6.05280i −0.655768 + 0.550255i
\(122\) 2.86256 + 3.41147i 0.259164 + 0.308860i
\(123\) 0 0
\(124\) 26.9361 9.80394i 2.41893 0.880420i
\(125\) 3.73280 10.5388i 0.333872 0.942618i
\(126\) 0 0
\(127\) −16.0918 9.29062i −1.42792 0.824409i −0.430962 0.902370i \(-0.641826\pi\)
−0.996956 + 0.0779609i \(0.975159\pi\)
\(128\) −24.4777 4.31608i −2.16354 0.381491i
\(129\) 0 0
\(130\) 20.1127 + 14.8833i 1.76400 + 1.30535i
\(131\) −3.27027 18.5466i −0.285725 1.62043i −0.702685 0.711501i \(-0.748016\pi\)
0.416960 0.908925i \(-0.363095\pi\)
\(132\) 0 0
\(133\) 0.563541 0.671602i 0.0488652 0.0582353i
\(134\) −8.94928 −0.773100
\(135\) 0 0
\(136\) −34.6970 −2.97524
\(137\) −10.2847 + 12.2568i −0.878680 + 1.04717i 0.119840 + 0.992793i \(0.461762\pi\)
−0.998520 + 0.0543771i \(0.982683\pi\)
\(138\) 0 0
\(139\) 2.32924 + 13.2098i 0.197564 + 1.12044i 0.908720 + 0.417406i \(0.137061\pi\)
−0.711156 + 0.703034i \(0.751828\pi\)
\(140\) 7.11519 9.61517i 0.601344 0.812630i
\(141\) 0 0
\(142\) −26.3583 4.64769i −2.21194 0.390025i
\(143\) 4.51744 + 2.60814i 0.377767 + 0.218104i
\(144\) 0 0
\(145\) −4.09194 17.0459i −0.339818 1.41559i
\(146\) −13.3554 + 4.86098i −1.10530 + 0.402297i
\(147\) 0 0
\(148\) 25.2798 + 30.1273i 2.07798 + 2.47645i
\(149\) −2.58412 + 2.16833i −0.211699 + 0.177637i −0.742471 0.669878i \(-0.766346\pi\)
0.530772 + 0.847515i \(0.321902\pi\)
\(150\) 0 0
\(151\) 21.6795 7.89070i 1.76426 0.642136i 0.764259 0.644910i \(-0.223105\pi\)
0.999996 + 0.00277330i \(0.000882769\pi\)
\(152\) −6.65687 + 3.84335i −0.539943 + 0.311737i
\(153\) 0 0
\(154\) 1.71857 2.97665i 0.138487 0.239866i
\(155\) 5.41011 10.8504i 0.434551 0.871523i
\(156\) 0 0
\(157\) −3.12396 + 8.58300i −0.249319 + 0.684998i 0.750393 + 0.660992i \(0.229864\pi\)
−0.999712 + 0.0240060i \(0.992358\pi\)
\(158\) −22.2664 + 3.92617i −1.77142 + 0.312349i
\(159\) 0 0
\(160\) −34.2353 + 22.6587i −2.70654 + 1.79133i
\(161\) 2.79313 0.220130
\(162\) 0 0
\(163\) 7.32494i 0.573734i −0.957970 0.286867i \(-0.907386\pi\)
0.957970 0.286867i \(-0.0926137\pi\)
\(164\) −14.4653 12.1378i −1.12955 0.947806i
\(165\) 0 0
\(166\) −1.35750 7.69875i −0.105362 0.597539i
\(167\) 1.72047 4.72696i 0.133134 0.365783i −0.855156 0.518371i \(-0.826539\pi\)
0.988290 + 0.152588i \(0.0487608\pi\)
\(168\) 0 0
\(169\) −0.726391 + 4.11957i −0.0558763 + 0.316890i
\(170\) −17.1239 + 16.2493i −1.31335 + 1.24626i
\(171\) 0 0
\(172\) 19.5195 11.2696i 1.48835 0.859297i
\(173\) −6.55550 18.0111i −0.498406 1.36936i −0.892815 0.450423i \(-0.851273\pi\)
0.394410 0.918935i \(-0.370949\pi\)
\(174\) 0 0
\(175\) −0.616349 5.02167i −0.0465916 0.379603i
\(176\) −12.8929 + 10.8185i −0.971842 + 0.815472i
\(177\) 0 0
\(178\) −14.8343 40.7568i −1.11188 3.05485i
\(179\) −6.81005 11.7953i −0.509007 0.881626i −0.999946 0.0104315i \(-0.996679\pi\)
0.490939 0.871194i \(-0.336654\pi\)
\(180\) 0 0
\(181\) −4.25402 + 7.36817i −0.316198 + 0.547672i −0.979692 0.200511i \(-0.935740\pi\)
0.663493 + 0.748182i \(0.269073\pi\)
\(182\) 11.1504 + 1.96611i 0.826521 + 0.145738i
\(183\) 0 0
\(184\) −23.0122 8.37577i −1.69648 0.617470i
\(185\) 16.5277 + 1.88348i 1.21514 + 0.138477i
\(186\) 0 0
\(187\) −3.16346 + 3.77007i −0.231335 + 0.275695i
\(188\) 19.5101i 1.42292i
\(189\) 0 0
\(190\) −1.48544 + 5.01434i −0.107765 + 0.363778i
\(191\) 9.82022 + 8.24015i 0.710566 + 0.596236i 0.924758 0.380556i \(-0.124267\pi\)
−0.214192 + 0.976792i \(0.568712\pi\)
\(192\) 0 0
\(193\) 9.81499 1.73065i 0.706498 0.124575i 0.191157 0.981560i \(-0.438776\pi\)
0.515342 + 0.856985i \(0.327665\pi\)
\(194\) 7.83599 + 2.85207i 0.562591 + 0.204766i
\(195\) 0 0
\(196\) −5.48611 + 31.1133i −0.391865 + 2.22238i
\(197\) 17.0167 + 9.82458i 1.21239 + 0.699972i 0.963279 0.268503i \(-0.0865289\pi\)
0.249109 + 0.968475i \(0.419862\pi\)
\(198\) 0 0
\(199\) 1.80778 + 3.13117i 0.128150 + 0.221963i 0.922960 0.384896i \(-0.125763\pi\)
−0.794810 + 0.606859i \(0.792429\pi\)
\(200\) −9.98048 + 43.2211i −0.705727 + 3.05620i
\(201\) 0 0
\(202\) −14.8102 17.6501i −1.04204 1.24186i
\(203\) −5.09911 6.07688i −0.357887 0.426513i
\(204\) 0 0
\(205\) −7.97211 + 0.487411i −0.556796 + 0.0340422i
\(206\) 21.5326 + 37.2955i 1.50024 + 2.59850i
\(207\) 0 0
\(208\) −48.0142 27.7210i −3.32918 1.92210i
\(209\) −0.189327 + 1.07373i −0.0130960 + 0.0742714i
\(210\) 0 0
\(211\) −17.2131 6.26505i −1.18500 0.431304i −0.327033 0.945013i \(-0.606049\pi\)
−0.857964 + 0.513709i \(0.828271\pi\)
\(212\) 2.52774 0.445708i 0.173606 0.0306114i
\(213\) 0 0
\(214\) −19.0312 15.9690i −1.30094 1.09162i
\(215\) 2.70784 9.14074i 0.184673 0.623393i
\(216\) 0 0
\(217\) 5.48655i 0.372451i
\(218\) 8.64139 10.2984i 0.585269 0.697496i
\(219\) 0 0
\(220\) −1.68429 + 14.7798i −0.113555 + 0.996455i
\(221\) −15.2343 5.54482i −1.02477 0.372985i
\(222\) 0 0
\(223\) 6.90273 + 1.21714i 0.462241 + 0.0815055i 0.399919 0.916551i \(-0.369038\pi\)
0.0623220 + 0.998056i \(0.480149\pi\)
\(224\) −9.28904 + 16.0891i −0.620650 + 1.07500i
\(225\) 0 0
\(226\) 10.7411 + 18.6042i 0.714488 + 1.23753i
\(227\) −4.59274 12.6185i −0.304831 0.837516i −0.993643 0.112576i \(-0.964090\pi\)
0.688812 0.724940i \(-0.258132\pi\)
\(228\) 0 0
\(229\) 7.11646 5.97142i 0.470269 0.394602i −0.376624 0.926366i \(-0.622915\pi\)
0.846893 + 0.531764i \(0.178471\pi\)
\(230\) −15.2797 + 6.64339i −1.00751 + 0.438052i
\(231\) 0 0
\(232\) 23.7881 + 65.3573i 1.56177 + 4.29091i
\(233\) −8.84302 + 5.10552i −0.579325 + 0.334474i −0.760865 0.648910i \(-0.775225\pi\)
0.181540 + 0.983384i \(0.441892\pi\)
\(234\) 0 0
\(235\) −5.68030 5.98606i −0.370542 0.390488i
\(236\) 1.44564 8.19861i 0.0941029 0.533684i
\(237\) 0 0
\(238\) −3.65363 + 10.0383i −0.236829 + 0.650683i
\(239\) 0.450136 + 2.55285i 0.0291169 + 0.165130i 0.995899 0.0904719i \(-0.0288375\pi\)
−0.966782 + 0.255602i \(0.917726\pi\)
\(240\) 0 0
\(241\) −12.7419 10.6918i −0.820781 0.688717i 0.132374 0.991200i \(-0.457740\pi\)
−0.953155 + 0.302483i \(0.902185\pi\)
\(242\) 25.4186i 1.63397i
\(243\) 0 0
\(244\) −8.72170 −0.558349
\(245\) 7.37528 + 11.1434i 0.471189 + 0.711925i
\(246\) 0 0
\(247\) −3.53700 + 0.623669i −0.225054 + 0.0396831i
\(248\) −16.4525 + 45.2029i −1.04474 + 2.87039i
\(249\) 0 0
\(250\) 15.3156 + 26.0049i 0.968646 + 1.64469i
\(251\) 6.10066 10.5667i 0.385070 0.666961i −0.606709 0.794924i \(-0.707511\pi\)
0.991779 + 0.127963i \(0.0408439\pi\)
\(252\) 0 0
\(253\) −3.00820 + 1.73679i −0.189124 + 0.109191i
\(254\) 47.1327 17.1549i 2.95737 1.07639i
\(255\) 0 0
\(256\) 16.4481 13.8016i 1.02800 0.862597i
\(257\) 5.47165 + 6.52086i 0.341312 + 0.406760i 0.909209 0.416340i \(-0.136687\pi\)
−0.567897 + 0.823100i \(0.692243\pi\)
\(258\) 0 0
\(259\) 7.07362 2.57459i 0.439533 0.159977i
\(260\) −47.6481 + 11.4381i −2.95501 + 0.709362i
\(261\) 0 0
\(262\) 44.0257 + 25.4182i 2.71992 + 1.57034i
\(263\) 9.08152 + 1.60132i 0.559991 + 0.0987415i 0.446477 0.894795i \(-0.352678\pi\)
0.113514 + 0.993536i \(0.463789\pi\)
\(264\) 0 0
\(265\) 0.645790 0.872693i 0.0396706 0.0536091i
\(266\) 0.410951 + 2.33062i 0.0251970 + 0.142899i
\(267\) 0 0
\(268\) 11.2660 13.4263i 0.688179 0.820140i
\(269\) −7.15347 −0.436155 −0.218078 0.975931i \(-0.569979\pi\)
−0.218078 + 0.975931i \(0.569979\pi\)
\(270\) 0 0
\(271\) 17.3418 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(272\) 33.6233 40.0707i 2.03871 2.42964i
\(273\) 0 0
\(274\) −7.49991 42.5341i −0.453086 2.56958i
\(275\) 3.78632 + 5.02509i 0.228324 + 0.303025i
\(276\) 0 0
\(277\) −10.3831 1.83081i −0.623858 0.110003i −0.147222 0.989104i \(-0.547033\pi\)
−0.476636 + 0.879101i \(0.658144\pi\)
\(278\) −31.3572 18.1041i −1.88068 1.08581i
\(279\) 0 0
\(280\) 4.68555 + 19.5187i 0.280015 + 1.16647i
\(281\) −20.1528 + 7.33501i −1.20221 + 0.437570i −0.863996 0.503498i \(-0.832046\pi\)
−0.338217 + 0.941068i \(0.609824\pi\)
\(282\) 0 0
\(283\) −10.4391 12.4408i −0.620538 0.739528i 0.360625 0.932711i \(-0.382563\pi\)
−0.981163 + 0.193183i \(0.938119\pi\)
\(284\) 40.1545 33.6936i 2.38273 1.99935i
\(285\) 0 0
\(286\) −13.2315 + 4.81588i −0.782396 + 0.284769i
\(287\) −3.13007 + 1.80715i −0.184762 + 0.106673i
\(288\) 0 0
\(289\) −0.852138 + 1.47595i −0.0501257 + 0.0868203i
\(290\) 42.3481 + 21.1152i 2.48677 + 1.23993i
\(291\) 0 0
\(292\) 9.52000 26.1560i 0.557116 1.53066i
\(293\) 23.2745 4.10392i 1.35971 0.239753i 0.554223 0.832368i \(-0.313016\pi\)
0.805486 + 0.592615i \(0.201904\pi\)
\(294\) 0 0
\(295\) −1.94345 2.93638i −0.113152 0.170963i
\(296\) −65.9990 −3.83611
\(297\) 0 0
\(298\) 9.10584i 0.527487i
\(299\) −8.76538 7.35503i −0.506915 0.425352i
\(300\) 0 0
\(301\) −0.749131 4.24853i −0.0431792 0.244881i
\(302\) −21.2999 + 58.5210i −1.22567 + 3.36751i
\(303\) 0 0
\(304\) 2.01229 11.4123i 0.115413 0.654538i
\(305\) −2.67598 + 2.53929i −0.153226 + 0.145399i
\(306\) 0 0
\(307\) −5.34281 + 3.08468i −0.304931 + 0.176052i −0.644656 0.764473i \(-0.722999\pi\)
0.339725 + 0.940525i \(0.389666\pi\)
\(308\) 2.30230 + 6.32553i 0.131186 + 0.360430i
\(309\) 0 0
\(310\) 13.0496 + 30.0139i 0.741168 + 1.70468i
\(311\) 10.4699 8.78527i 0.593692 0.498167i −0.295719 0.955275i \(-0.595559\pi\)
0.889411 + 0.457108i \(0.151115\pi\)
\(312\) 0 0
\(313\) 2.70332 + 7.42730i 0.152800 + 0.419816i 0.992348 0.123470i \(-0.0394022\pi\)
−0.839548 + 0.543286i \(0.817180\pi\)
\(314\) −12.3278 21.3524i −0.695698 1.20498i
\(315\) 0 0
\(316\) 22.1402 38.3480i 1.24549 2.15724i
\(317\) 5.53686 + 0.976298i 0.310981 + 0.0548344i 0.326961 0.945038i \(-0.393976\pi\)
−0.0159795 + 0.999872i \(0.505087\pi\)
\(318\) 0 0
\(319\) 9.27038 + 3.37414i 0.519042 + 0.188916i
\(320\) 5.77535 50.6792i 0.322852 2.83305i
\(321\) 0 0
\(322\) −4.84642 + 5.77574i −0.270080 + 0.321869i
\(323\) 3.38858i 0.188546i
\(324\) 0 0
\(325\) −11.2891 + 17.3820i −0.626208 + 0.964179i
\(326\) 15.1468 + 12.7097i 0.838902 + 0.703923i
\(327\) 0 0
\(328\) 31.2073 5.50270i 1.72314 0.303836i
\(329\) −3.50910 1.27721i −0.193463 0.0704147i
\(330\) 0 0
\(331\) 4.33246 24.5706i 0.238133 1.35052i −0.597780 0.801660i \(-0.703951\pi\)
0.835914 0.548861i \(-0.184938\pi\)
\(332\) 13.2591 + 7.65512i 0.727685 + 0.420129i
\(333\) 0 0
\(334\) 6.78935 + 11.7595i 0.371497 + 0.643451i
\(335\) −0.452400 7.39948i −0.0247173 0.404277i
\(336\) 0 0
\(337\) −6.94135 8.27238i −0.378119 0.450625i 0.543100 0.839668i \(-0.317250\pi\)
−0.921220 + 0.389043i \(0.872806\pi\)
\(338\) −7.25822 8.65001i −0.394795 0.470498i
\(339\) 0 0
\(340\) −2.82135 46.1461i −0.153009 2.50262i
\(341\) 3.41157 + 5.90901i 0.184747 + 0.319991i
\(342\) 0 0
\(343\) 11.3711 + 6.56508i 0.613979 + 0.354481i
\(344\) −6.56810 + 37.2495i −0.354128 + 2.00836i
\(345\) 0 0
\(346\) 48.6186 + 17.6957i 2.61375 + 0.951327i
\(347\) −25.4825 + 4.49326i −1.36797 + 0.241211i −0.808919 0.587920i \(-0.799947\pi\)
−0.559055 + 0.829131i \(0.688836\pi\)
\(348\) 0 0
\(349\) 11.7162 + 9.83109i 0.627156 + 0.526246i 0.900044 0.435799i \(-0.143534\pi\)
−0.272888 + 0.962046i \(0.587979\pi\)
\(350\) 11.4534 + 7.43870i 0.612212 + 0.397615i
\(351\) 0 0
\(352\) 23.1039i 1.23144i
\(353\) −22.2707 + 26.5412i −1.18535 + 1.41265i −0.296142 + 0.955144i \(0.595700\pi\)
−0.889209 + 0.457502i \(0.848744\pi\)
\(354\) 0 0
\(355\) 2.51036 22.0286i 0.133236 1.16916i
\(356\) 79.8203 + 29.0522i 4.23047 + 1.53976i
\(357\) 0 0
\(358\) 36.2071 + 6.38429i 1.91360 + 0.337420i
\(359\) 4.31838 7.47966i 0.227915 0.394761i −0.729275 0.684221i \(-0.760142\pi\)
0.957190 + 0.289460i \(0.0934757\pi\)
\(360\) 0 0
\(361\) 9.12465 + 15.8044i 0.480245 + 0.831808i
\(362\) −7.85494 21.5813i −0.412846 1.13429i
\(363\) 0 0
\(364\) −16.9866 + 14.2534i −0.890338 + 0.747082i
\(365\) −4.69431 10.7969i −0.245711 0.565133i
\(366\) 0 0
\(367\) 9.36923 + 25.7417i 0.489070 + 1.34371i 0.901524 + 0.432729i \(0.142449\pi\)
−0.412454 + 0.910978i \(0.635328\pi\)
\(368\) 31.9731 18.4597i 1.66671 0.962276i
\(369\) 0 0
\(370\) −32.5724 + 30.9086i −1.69336 + 1.60686i
\(371\) 0.0853101 0.483818i 0.00442908 0.0251186i
\(372\) 0 0
\(373\) −8.92883 + 24.5318i −0.462317 + 1.27021i 0.461421 + 0.887181i \(0.347340\pi\)
−0.923738 + 0.383025i \(0.874882\pi\)
\(374\) −2.30689 13.0831i −0.119287 0.676508i
\(375\) 0 0
\(376\) 25.0810 + 21.0455i 1.29346 + 1.08534i
\(377\) 32.4977i 1.67372i
\(378\) 0 0
\(379\) 10.9442 0.562163 0.281082 0.959684i \(-0.409307\pi\)
0.281082 + 0.959684i \(0.409307\pi\)
\(380\) −5.65285 8.54095i −0.289985 0.438141i
\(381\) 0 0
\(382\) −34.0785 + 6.00896i −1.74361 + 0.307445i
\(383\) 0.753724 2.07084i 0.0385135 0.105815i −0.918945 0.394385i \(-0.870958\pi\)
0.957459 + 0.288570i \(0.0931798\pi\)
\(384\) 0 0
\(385\) 2.54804 + 1.27048i 0.129860 + 0.0647497i
\(386\) −13.4515 + 23.2987i −0.684663 + 1.18587i
\(387\) 0 0
\(388\) −14.1433 + 8.16566i −0.718019 + 0.414548i
\(389\) −22.8822 + 8.32844i −1.16017 + 0.422268i −0.849159 0.528137i \(-0.822891\pi\)
−0.311014 + 0.950405i \(0.600669\pi\)
\(390\) 0 0
\(391\) 8.26999 6.93935i 0.418231 0.350938i
\(392\) −34.0795 40.6144i −1.72128 2.05134i
\(393\) 0 0
\(394\) −49.8416 + 18.1409i −2.51098 + 0.913923i
\(395\) −4.37185 18.2119i −0.219972 0.916342i
\(396\) 0 0
\(397\) −9.65983 5.57711i −0.484813 0.279907i 0.237607 0.971361i \(-0.423637\pi\)
−0.722420 + 0.691454i \(0.756970\pi\)
\(398\) −9.61146 1.69476i −0.481779 0.0849506i
\(399\) 0 0
\(400\) −40.2433 53.4098i −2.01217 2.67049i
\(401\) −0.624022 3.53900i −0.0311621 0.176729i 0.965254 0.261312i \(-0.0841553\pi\)
−0.996416 + 0.0845831i \(0.973044\pi\)
\(402\) 0 0
\(403\) −14.4475 + 17.2178i −0.719680 + 0.857682i
\(404\) 45.1238 2.24500
\(405\) 0 0
\(406\) 21.4135 1.06274
\(407\) −6.01739 + 7.17125i −0.298271 + 0.355466i
\(408\) 0 0
\(409\) 1.50204 + 8.51848i 0.0742710 + 0.421212i 0.999160 + 0.0409749i \(0.0130464\pi\)
−0.924889 + 0.380237i \(0.875843\pi\)
\(410\) 12.8247 17.3307i 0.633366 0.855904i
\(411\) 0 0
\(412\) −83.0597 14.6457i −4.09206 0.721540i
\(413\) −1.37997 0.796726i −0.0679039 0.0392043i
\(414\) 0 0
\(415\) 6.29688 1.51159i 0.309102 0.0742013i
\(416\) 71.5175 26.0303i 3.50644 1.27624i
\(417\) 0 0
\(418\) −1.89179 2.25455i −0.0925304 0.110273i
\(419\) −28.1908 + 23.6549i −1.37721 + 1.15562i −0.406977 + 0.913438i \(0.633417\pi\)
−0.970232 + 0.242177i \(0.922139\pi\)
\(420\) 0 0
\(421\) −34.0828 + 12.4051i −1.66109 + 0.604588i −0.990534 0.137269i \(-0.956168\pi\)
−0.670558 + 0.741857i \(0.733945\pi\)
\(422\) 42.8218 24.7232i 2.08453 1.20351i
\(423\) 0 0
\(424\) −2.15368 + 3.73029i −0.104592 + 0.181159i
\(425\) −14.3009 13.3371i −0.693696 0.646942i
\(426\) 0 0
\(427\) −0.570956 + 1.56869i −0.0276305 + 0.0759142i
\(428\) 47.9155 8.44879i 2.31608 0.408388i
\(429\) 0 0
\(430\) 14.2031 + 21.4597i 0.684935 + 1.03488i
\(431\) 19.3566 0.932373 0.466187 0.884686i \(-0.345628\pi\)
0.466187 + 0.884686i \(0.345628\pi\)
\(432\) 0 0
\(433\) 22.8003i 1.09571i −0.836573 0.547855i \(-0.815444\pi\)
0.836573 0.547855i \(-0.184556\pi\)
\(434\) 11.3453 + 9.51981i 0.544591 + 0.456966i
\(435\) 0 0
\(436\) 4.57193 + 25.9287i 0.218956 + 1.24176i
\(437\) 0.817994 2.24742i 0.0391300 0.107509i
\(438\) 0 0
\(439\) −3.36657 + 19.0928i −0.160678 + 0.911248i 0.792732 + 0.609570i \(0.208658\pi\)
−0.953410 + 0.301678i \(0.902453\pi\)
\(440\) −17.1832 18.1082i −0.819177 0.863272i
\(441\) 0 0
\(442\) 37.8991 21.8810i 1.80268 1.04078i
\(443\) 1.33129 + 3.65769i 0.0632516 + 0.173782i 0.967292 0.253664i \(-0.0816356\pi\)
−0.904041 + 0.427446i \(0.859413\pi\)
\(444\) 0 0
\(445\) 32.9488 14.3256i 1.56192 0.679101i
\(446\) −14.4939 + 12.1618i −0.686306 + 0.575879i
\(447\) 0 0
\(448\) −7.89448 21.6899i −0.372979 1.02475i
\(449\) 10.9458 + 18.9586i 0.516562 + 0.894712i 0.999815 + 0.0192309i \(0.00612178\pi\)
−0.483253 + 0.875481i \(0.660545\pi\)
\(450\) 0 0
\(451\) 2.24739 3.89260i 0.105826 0.183295i
\(452\) −41.4328 7.30572i −1.94883 0.343632i
\(453\) 0 0
\(454\) 34.0618 + 12.3975i 1.59860 + 0.581843i
\(455\) −1.06196 + 9.31879i −0.0497854 + 0.436872i
\(456\) 0 0
\(457\) 12.4055 14.7842i 0.580303 0.691578i −0.393409 0.919364i \(-0.628704\pi\)
0.973711 + 0.227786i \(0.0731486\pi\)
\(458\) 25.0768i 1.17176i
\(459\) 0 0
\(460\) 9.26834 31.2867i 0.432138 1.45875i
\(461\) −29.2721 24.5622i −1.36334 1.14398i −0.974936 0.222486i \(-0.928583\pi\)
−0.388402 0.921490i \(-0.626973\pi\)
\(462\) 0 0
\(463\) 21.9614 3.87239i 1.02063 0.179965i 0.361801 0.932255i \(-0.382162\pi\)
0.658832 + 0.752290i \(0.271051\pi\)
\(464\) −98.5314 35.8625i −4.57421 1.66487i
\(465\) 0 0
\(466\) 4.78632 27.1446i 0.221722 1.25745i
\(467\) −26.1204 15.0806i −1.20871 0.697847i −0.246229 0.969212i \(-0.579192\pi\)
−0.962477 + 0.271365i \(0.912525\pi\)
\(468\) 0 0
\(469\) −1.67734 2.90524i −0.0774524 0.134152i
\(470\) 22.2342 1.35939i 1.02559 0.0627038i
\(471\) 0 0
\(472\) 8.98024 + 10.7022i 0.413349 + 0.492610i
\(473\) 3.44858 + 4.10986i 0.158566 + 0.188971i
\(474\) 0 0
\(475\) −4.22106 0.974714i −0.193676 0.0447230i
\(476\) −10.4606 18.1182i −0.479460 0.830448i
\(477\) 0 0
\(478\) −6.05991 3.49869i −0.277174 0.160026i
\(479\) 2.47679 14.0466i 0.113167 0.641804i −0.874474 0.485073i \(-0.838793\pi\)
0.987641 0.156731i \(-0.0500957\pi\)
\(480\) 0 0
\(481\) −28.9779 10.5471i −1.32128 0.480907i
\(482\) 44.2176 7.79676i 2.01406 0.355133i
\(483\) 0 0
\(484\) 38.1345 + 31.9987i 1.73339 + 1.45448i
\(485\) −1.96203 + 6.62315i −0.0890914 + 0.300742i
\(486\) 0 0
\(487\) 20.9938i 0.951318i 0.879630 + 0.475659i \(0.157790\pi\)
−0.879630 + 0.475659i \(0.842210\pi\)
\(488\) 9.40806 11.2121i 0.425883 0.507548i
\(489\) 0 0
\(490\) −35.8397 4.08425i −1.61907 0.184508i
\(491\) 4.84651 + 1.76398i 0.218720 + 0.0796075i 0.449056 0.893504i \(-0.351760\pi\)
−0.230336 + 0.973111i \(0.573983\pi\)
\(492\) 0 0
\(493\) −30.1952 5.32423i −1.35992 0.239791i
\(494\) 4.84748 8.39607i 0.218098 0.377757i
\(495\) 0 0
\(496\) −36.2603 62.8047i −1.62814 2.82001i
\(497\) −3.43148 9.42792i −0.153923 0.422900i
\(498\) 0 0
\(499\) 27.2570 22.8713i 1.22019 1.02386i 0.221376 0.975189i \(-0.428945\pi\)
0.998815 0.0486726i \(-0.0154991\pi\)
\(500\) −58.2945 9.75930i −2.60701 0.436449i
\(501\) 0 0
\(502\) 11.2647 + 30.9496i 0.502769 + 1.38135i
\(503\) 2.96137 1.70975i 0.132041 0.0762338i −0.432525 0.901622i \(-0.642377\pi\)
0.564565 + 0.825388i \(0.309044\pi\)
\(504\) 0 0
\(505\) 13.8448 13.1376i 0.616087 0.584618i
\(506\) 1.62820 9.23400i 0.0723825 0.410501i
\(507\) 0 0
\(508\) −33.5971 + 92.3072i −1.49063 + 4.09547i
\(509\) 3.45809 + 19.6118i 0.153277 + 0.869277i 0.960344 + 0.278817i \(0.0899424\pi\)
−0.807067 + 0.590460i \(0.798946\pi\)
\(510\) 0 0
\(511\) −4.08121 3.42454i −0.180542 0.151493i
\(512\) 8.24859i 0.364540i
\(513\) 0 0
\(514\) −22.9780 −1.01352
\(515\) −29.7483 + 19.6890i −1.31087 + 0.867600i
\(516\) 0 0
\(517\) 4.57348 0.806427i 0.201141 0.0354666i
\(518\) −6.94976 + 19.0943i −0.305355 + 0.838955i
\(519\) 0 0
\(520\) 36.6936 73.5917i 1.60912 3.22721i
\(521\) 10.7424 18.6064i 0.470633 0.815160i −0.528803 0.848744i \(-0.677359\pi\)
0.999436 + 0.0335849i \(0.0106924\pi\)
\(522\) 0 0
\(523\) −28.7457 + 16.5963i −1.25696 + 0.725707i −0.972483 0.232976i \(-0.925154\pi\)
−0.284479 + 0.958682i \(0.591820\pi\)
\(524\) −93.5566 + 34.0518i −4.08704 + 1.48756i
\(525\) 0 0
\(526\) −19.0688 + 16.0006i −0.831439 + 0.697660i
\(527\) −13.6310 16.2447i −0.593774 0.707632i
\(528\) 0 0
\(529\) −14.4529 + 5.26041i −0.628385 + 0.228713i
\(530\) 0.684062 + 2.84961i 0.0297138 + 0.123779i
\(531\) 0 0
\(532\) −4.01387 2.31741i −0.174024 0.100473i
\(533\) 14.5815 + 2.57110i 0.631593 + 0.111367i
\(534\) 0 0
\(535\) 12.2415 16.5427i 0.529247 0.715202i
\(536\) 5.10744 + 28.9657i 0.220608 + 1.25113i
\(537\) 0 0
\(538\) 12.4121 14.7922i 0.535125 0.637737i
\(539\) −7.52020 −0.323918
\(540\) 0 0
\(541\) 2.83444 0.121862 0.0609309 0.998142i \(-0.480593\pi\)
0.0609309 + 0.998142i \(0.480593\pi\)
\(542\) −30.0902 + 35.8601i −1.29248 + 1.54032i
\(543\) 0 0
\(544\) 12.4690 + 70.7151i 0.534603 + 3.03188i
\(545\) 8.95180 + 6.62431i 0.383453 + 0.283754i
\(546\) 0 0
\(547\) 33.2190 + 5.85741i 1.42034 + 0.250445i 0.830475 0.557055i \(-0.188069\pi\)
0.589868 + 0.807500i \(0.299180\pi\)
\(548\) 73.2537 + 42.2930i 3.12924 + 1.80667i
\(549\) 0 0
\(550\) −16.9608 0.889661i −0.723210 0.0379353i
\(551\) −6.38292 + 2.32319i −0.271922 + 0.0989714i
\(552\) 0 0
\(553\) −5.44791 6.49256i −0.231669 0.276092i
\(554\) 21.8017 18.2938i 0.926265 0.777229i
\(555\) 0 0
\(556\) 66.6355 24.2533i 2.82598 1.02857i
\(557\) −14.3572 + 8.28915i −0.608335 + 0.351222i −0.772314 0.635242i \(-0.780901\pi\)
0.163979 + 0.986464i \(0.447567\pi\)
\(558\) 0 0
\(559\) −8.83656 + 15.3054i −0.373747 + 0.647349i
\(560\) −27.0822 13.5035i −1.14443 0.570626i
\(561\) 0 0
\(562\) 19.7999 54.3997i 0.835208 2.29471i
\(563\) −13.2880 + 2.34303i −0.560023 + 0.0987471i −0.446492 0.894787i \(-0.647327\pi\)
−0.113530 + 0.993535i \(0.536216\pi\)
\(564\) 0 0
\(565\) −14.8394 + 9.82148i −0.624297 + 0.413193i
\(566\) 43.8385 1.84267
\(567\) 0 0
\(568\) 87.9653i 3.69094i
\(569\) 14.0395 + 11.7805i 0.588565 + 0.493865i 0.887747 0.460331i \(-0.152269\pi\)
−0.299182 + 0.954196i \(0.596714\pi\)
\(570\) 0 0
\(571\) 1.67291 + 9.48757i 0.0700093 + 0.397043i 0.999596 + 0.0284379i \(0.00905327\pi\)
−0.929586 + 0.368605i \(0.879836\pi\)
\(572\) 9.43167 25.9133i 0.394358 1.08349i
\(573\) 0 0
\(574\) 1.69417 9.60809i 0.0707131 0.401034i
\(575\) −6.26532 12.2978i −0.261282 0.512853i
\(576\) 0 0
\(577\) 16.3731 9.45304i 0.681623 0.393535i −0.118843 0.992913i \(-0.537919\pi\)
0.800466 + 0.599378i \(0.204585\pi\)
\(578\) −1.57345 4.32302i −0.0654470 0.179814i
\(579\) 0 0
\(580\) −84.9892 + 36.9520i −3.52898 + 1.53435i
\(581\) 2.24484 1.88365i 0.0931318 0.0781468i
\(582\) 0 0
\(583\) 0.208962 + 0.574118i 0.00865432 + 0.0237776i
\(584\) 23.3554 + 40.4527i 0.966452 + 1.67394i
\(585\) 0 0
\(586\) −31.8978 + 55.2485i −1.31768 + 2.28230i
\(587\) 38.7578 + 6.83405i 1.59971 + 0.282071i 0.901158 0.433491i \(-0.142718\pi\)
0.698549 + 0.715563i \(0.253830\pi\)
\(588\) 0 0
\(589\) −4.41461 1.60679i −0.181901 0.0662065i
\(590\) 9.44406 + 1.07624i 0.388806 + 0.0443079i
\(591\) 0 0
\(592\) 63.9566 76.2206i 2.62860 3.13265i
\(593\) 1.34012i 0.0550322i 0.999621 + 0.0275161i \(0.00875976\pi\)
−0.999621 + 0.0275161i \(0.991240\pi\)
\(594\) 0 0
\(595\) −8.48456 2.51345i −0.347833 0.103042i
\(596\) 13.6612 + 11.4631i 0.559583 + 0.469546i
\(597\) 0 0
\(598\) 30.4180 5.36351i 1.24388 0.219330i
\(599\) 30.9748 + 11.2739i 1.26559 + 0.460639i 0.885643 0.464367i \(-0.153718\pi\)
0.379952 + 0.925006i \(0.375940\pi\)
\(600\) 0 0
\(601\) 5.62780 31.9168i 0.229563 1.30192i −0.624205 0.781261i \(-0.714577\pi\)
0.853767 0.520655i \(-0.174312\pi\)
\(602\) 10.0851 + 5.82264i 0.411038 + 0.237313i
\(603\) 0 0
\(604\) −60.9831 105.626i −2.48137 4.29785i
\(605\) 21.0167 1.28495i 0.854449 0.0522406i
\(606\) 0 0
\(607\) 13.3034 + 15.8543i 0.539967 + 0.643508i 0.965180 0.261585i \(-0.0842453\pi\)
−0.425213 + 0.905093i \(0.639801\pi\)
\(608\) 10.2253 + 12.1860i 0.414690 + 0.494209i
\(609\) 0 0
\(610\) −0.607693 9.93946i −0.0246048 0.402437i
\(611\) 7.64901 + 13.2485i 0.309446 + 0.535976i
\(612\) 0 0
\(613\) 29.2160 + 16.8679i 1.18002 + 0.681287i 0.956020 0.293301i \(-0.0947538\pi\)
0.224004 + 0.974588i \(0.428087\pi\)
\(614\) 2.89182 16.4003i 0.116704 0.661864i
\(615\) 0 0
\(616\) −10.6152 3.86362i −0.427699 0.155670i
\(617\) 30.2079 5.32646i 1.21612 0.214435i 0.471467 0.881884i \(-0.343725\pi\)
0.744656 + 0.667448i \(0.232614\pi\)
\(618\) 0 0
\(619\) −22.9897 19.2906i −0.924033 0.775356i 0.0507031 0.998714i \(-0.483854\pi\)
−0.974737 + 0.223358i \(0.928298\pi\)
\(620\) −61.4565 18.2058i −2.46815 0.731162i
\(621\) 0 0
\(622\) 36.8935i 1.47929i
\(623\) 10.4507 12.4547i 0.418698 0.498985i
\(624\) 0 0
\(625\) −20.7272 + 13.9779i −0.829089 + 0.559116i
\(626\) −20.0490 7.29725i −0.801320 0.291657i
\(627\) 0 0
\(628\) 47.5532 + 8.38492i 1.89758 + 0.334595i
\(629\) 14.5474 25.1968i 0.580043 1.00466i
\(630\) 0 0
\(631\) 22.1756 + 38.4093i 0.882797 + 1.52905i 0.848218 + 0.529647i \(0.177675\pi\)
0.0345781 + 0.999402i \(0.488991\pi\)
\(632\) 25.4153 + 69.8280i 1.01097 + 2.77761i
\(633\) 0 0
\(634\) −11.6259 + 9.75533i −0.461725 + 0.387433i
\(635\) 16.5667 + 38.1032i 0.657430 + 1.51208i
\(636\) 0 0
\(637\) −8.47270 23.2785i −0.335701 0.922330i
\(638\) −23.0624 + 13.3151i −0.913049 + 0.527149i
\(639\) 0 0
\(640\) 38.2566 + 40.3159i 1.51222 + 1.59362i
\(641\) −5.79316 + 32.8547i −0.228816 + 1.29768i 0.626437 + 0.779472i \(0.284512\pi\)
−0.855254 + 0.518210i \(0.826599\pi\)
\(642\) 0 0
\(643\) 5.56415 15.2874i 0.219429 0.602875i −0.780318 0.625383i \(-0.784943\pi\)
0.999747 + 0.0225078i \(0.00716506\pi\)
\(644\) −2.56411 14.5418i −0.101040 0.573027i
\(645\) 0 0
\(646\) 7.00702 + 5.87959i 0.275688 + 0.231329i
\(647\) 39.9222i 1.56950i −0.619811 0.784751i \(-0.712791\pi\)
0.619811 0.784751i \(-0.287209\pi\)
\(648\) 0 0
\(649\) 1.98164 0.0777861
\(650\) −16.3551 53.5039i −0.641499 2.09860i
\(651\) 0 0
\(652\) −38.1356 + 6.72434i −1.49351 + 0.263345i
\(653\) −1.90591 + 5.23644i −0.0745839 + 0.204918i −0.971382 0.237522i \(-0.923665\pi\)
0.896798 + 0.442440i \(0.145887\pi\)
\(654\) 0 0
\(655\) −18.7908 + 37.6864i −0.734218 + 1.47253i
\(656\) −23.8867 + 41.3730i −0.932619 + 1.61534i
\(657\) 0 0
\(658\) 8.72976 5.04013i 0.340322 0.196485i
\(659\) −6.70045 + 2.43876i −0.261012 + 0.0950007i −0.469212 0.883086i \(-0.655462\pi\)
0.208199 + 0.978086i \(0.433240\pi\)
\(660\) 0 0
\(661\) −11.1617 + 9.36578i −0.434140 + 0.364286i −0.833511 0.552503i \(-0.813673\pi\)
0.399371 + 0.916789i \(0.369228\pi\)
\(662\) 43.2906 + 51.5917i 1.68254 + 2.00517i
\(663\) 0 0
\(664\) −24.1435 + 8.78750i −0.936948 + 0.341021i
\(665\) −1.90624 + 0.457600i −0.0739207 + 0.0177450i
\(666\) 0 0
\(667\) −18.7412 10.8202i −0.725663 0.418962i
\(668\) −26.1892 4.61787i −1.01329 0.178671i
\(669\) 0 0
\(670\) 16.0859 + 11.9035i 0.621451 + 0.459872i
\(671\) −0.360501 2.04450i −0.0139170 0.0789272i
\(672\) 0 0
\(673\) −0.310596 + 0.370154i −0.0119726 + 0.0142684i −0.771998 0.635626i \(-0.780742\pi\)
0.760025 + 0.649894i \(0.225187\pi\)
\(674\) 29.1500 1.12282
\(675\) 0 0
\(676\) 22.1144 0.850555
\(677\) 25.1620 29.9869i 0.967055 1.15249i −0.0212148 0.999775i \(-0.506753\pi\)
0.988270 0.152717i \(-0.0488022\pi\)
\(678\) 0 0
\(679\) 0.542802 + 3.07838i 0.0208308 + 0.118137i
\(680\) 62.3660 + 46.1507i 2.39163 + 1.76980i
\(681\) 0 0
\(682\) −18.1383 3.19828i −0.694553 0.122468i
\(683\) 0.184609 + 0.106584i 0.00706386 + 0.00407832i 0.503528 0.863979i \(-0.332035\pi\)
−0.496464 + 0.868057i \(0.665368\pi\)
\(684\) 0 0
\(685\) 34.7890 8.35126i 1.32922 0.319085i
\(686\) −33.3056 + 12.1223i −1.27162 + 0.462830i
\(687\) 0 0
\(688\) −36.6537 43.6821i −1.39741 1.66537i
\(689\) −1.54174 + 1.29367i −0.0587355 + 0.0492849i
\(690\) 0 0
\(691\) 20.5204 7.46881i 0.780633 0.284127i 0.0791962 0.996859i \(-0.474765\pi\)
0.701436 + 0.712732i \(0.252542\pi\)
\(692\) −87.7526 + 50.6640i −3.33585 + 1.92596i
\(693\) 0 0
\(694\) 34.9239 60.4900i 1.32569 2.29617i
\(695\) 13.3837 26.8421i 0.507674 1.01818i
\(696\) 0 0
\(697\) −4.77788 + 13.1271i −0.180975 + 0.497225i
\(698\) −40.6582 + 7.16913i −1.53893 + 0.271356i
\(699\) 0 0
\(700\) −25.5784 + 7.81880i −0.966772 + 0.295523i
\(701\) 35.4129 1.33753 0.668763 0.743476i \(-0.266824\pi\)
0.668763 + 0.743476i \(0.266824\pi\)
\(702\) 0 0
\(703\) 6.44560i 0.243100i
\(704\) 21.9893 + 18.4512i 0.828752 + 0.695405i
\(705\) 0 0
\(706\) −16.2405 92.1044i −0.611219 3.46639i
\(707\) 2.95398 8.11600i 0.111096 0.305234i
\(708\) 0 0
\(709\) −1.16039 + 6.58093i −0.0435795 + 0.247152i −0.998813 0.0486997i \(-0.984492\pi\)
0.955234 + 0.295852i \(0.0956034\pi\)
\(710\) 41.1958 + 43.4134i 1.54605 + 1.62927i
\(711\) 0 0
\(712\) −123.450 + 71.2737i −4.62647 + 2.67110i
\(713\) −5.11907 14.0645i −0.191711 0.526721i
\(714\) 0 0
\(715\) −4.65075 10.6967i −0.173928 0.400033i
\(716\) −55.1581 + 46.2831i −2.06135 + 1.72968i
\(717\) 0 0
\(718\) 7.97379 + 21.9078i 0.297579 + 0.817592i
\(719\) 1.59977 + 2.77089i 0.0596614 + 0.103337i 0.894313 0.447441i \(-0.147665\pi\)
−0.834652 + 0.550778i \(0.814331\pi\)
\(720\) 0 0
\(721\) −8.07159 + 13.9804i −0.300602 + 0.520657i
\(722\) −48.5132 8.55418i −1.80547 0.318354i
\(723\) 0 0
\(724\) 42.2659 + 15.3835i 1.57080 + 0.571724i
\(725\) −15.3178 + 36.0818i −0.568889 + 1.34005i
\(726\) 0 0
\(727\) 25.4198 30.2941i 0.942768 1.12355i −0.0494182 0.998778i \(-0.515737\pi\)
0.992186 0.124769i \(-0.0398188\pi\)
\(728\) 37.2120i 1.37917i
\(729\) 0 0
\(730\) 30.4713 + 9.02678i 1.12779 + 0.334096i
\(731\) −12.7732 10.7180i −0.472436 0.396421i
\(732\) 0 0
\(733\) −47.0139 + 8.28983i −1.73650 + 0.306192i −0.950197 0.311650i \(-0.899118\pi\)
−0.786302 + 0.617842i \(0.788007\pi\)
\(734\) −69.4864 25.2910i −2.56479 0.933507i
\(735\) 0 0
\(736\) −8.80059 + 49.9106i −0.324394 + 1.83973i
\(737\) 3.61299 + 2.08596i 0.133086 + 0.0768374i
\(738\) 0 0
\(739\) 0.756718 + 1.31067i 0.0278363 + 0.0482139i 0.879608 0.475699i \(-0.157805\pi\)
−0.851772 + 0.523913i \(0.824472\pi\)
\(740\) −5.36664 87.7770i −0.197282 3.22675i
\(741\) 0 0
\(742\) 0.852432 + 1.01589i 0.0312938 + 0.0372945i
\(743\) 12.5490 + 14.9554i 0.460380 + 0.548659i 0.945429 0.325827i \(-0.105643\pi\)
−0.485049 + 0.874487i \(0.661198\pi\)
\(744\) 0 0
\(745\) 7.52892 0.460315i 0.275838 0.0168646i
\(746\) −35.2351 61.0289i −1.29005 2.23443i
\(747\) 0 0
\(748\) 22.5321 + 13.0089i 0.823855 + 0.475653i
\(749\) 1.61713 9.17119i 0.0590886 0.335108i
\(750\) 0 0
\(751\) −20.9890 7.63937i −0.765900 0.278765i −0.0706193 0.997503i \(-0.522498\pi\)
−0.695280 + 0.718739i \(0.744720\pi\)
\(752\) −48.6098 + 8.57121i −1.77262 + 0.312560i
\(753\) 0 0
\(754\) −67.1998 56.3874i −2.44727 2.05351i
\(755\) −49.4633 14.6529i −1.80015 0.533275i
\(756\) 0 0
\(757\) 41.7562i 1.51766i −0.651291 0.758828i \(-0.725772\pi\)
0.651291 0.758828i \(-0.274228\pi\)
\(758\) −18.9894 + 22.6307i −0.689727 + 0.821984i
\(759\) 0 0
\(760\) 17.0774 + 1.94613i 0.619464 + 0.0705934i
\(761\) −31.4550 11.4487i −1.14024 0.415014i −0.298241 0.954490i \(-0.596400\pi\)
−0.842001 + 0.539476i \(0.818622\pi\)
\(762\) 0 0
\(763\) 4.96285 + 0.875084i 0.179667 + 0.0316802i
\(764\) 33.8854 58.6912i 1.22593 2.12337i
\(765\) 0 0
\(766\) 2.97435 + 5.15173i 0.107468 + 0.186140i
\(767\) 2.23263 + 6.13410i 0.0806155 + 0.221489i
\(768\) 0 0
\(769\) 11.6956 9.81375i 0.421753 0.353893i −0.407076 0.913394i \(-0.633452\pi\)
0.828830 + 0.559501i \(0.189007\pi\)
\(770\) −7.04831 + 3.06450i −0.254003 + 0.110437i
\(771\) 0 0
\(772\) −18.0204 49.5107i −0.648570 1.78193i
\(773\) 23.3186 13.4630i 0.838711 0.484230i −0.0181148 0.999836i \(-0.505766\pi\)
0.856826 + 0.515606i \(0.172433\pi\)
\(774\) 0 0
\(775\) −24.1565 + 12.3070i −0.867729 + 0.442079i
\(776\) 4.75908 26.9901i 0.170841 0.968887i
\(777\) 0 0
\(778\) 22.4815 61.7674i 0.806001 2.21447i
\(779\) 0.537404 + 3.04777i 0.0192545 + 0.109198i
\(780\) 0 0
\(781\) 9.55805 + 8.02015i 0.342014 + 0.286984i
\(782\) 29.1416i 1.04210i
\(783\) 0 0
\(784\) 79.9294 2.85462
\(785\) 17.0314 11.2723i 0.607878 0.402326i
\(786\) 0 0
\(787\) 25.7714 4.54419i 0.918650 0.161983i 0.305722 0.952121i \(-0.401102\pi\)
0.612929 + 0.790138i \(0.289991\pi\)
\(788\) 35.5280 97.6124i 1.26563 3.47730i
\(789\) 0 0
\(790\) 45.2450 + 22.5596i 1.60974 + 0.802635i
\(791\) −4.02636 + 6.97386i −0.143161 + 0.247962i
\(792\) 0 0
\(793\) 5.92253 3.41938i 0.210315 0.121426i
\(794\) 28.2935 10.2980i 1.00410 0.365462i
\(795\) 0 0
\(796\) 14.6422 12.2862i 0.518978 0.435474i
\(797\) −22.9122 27.3057i −0.811591 0.967216i 0.188298 0.982112i \(-0.439703\pi\)
−0.999889 + 0.0148959i \(0.995258\pi\)
\(798\) 0 0
\(799\) −13.5630 + 4.93652i −0.479824 + 0.174642i
\(800\) 91.6746 + 4.80870i 3.24119 + 0.170013i
\(801\) 0 0
\(802\) 8.40083 + 4.85022i 0.296643 + 0.171267i
\(803\) 6.52487 + 1.15051i 0.230258 + 0.0406006i
\(804\) 0 0
\(805\) −5.02051 3.71516i −0.176950 0.130942i
\(806\) −10.5355 59.7500i −0.371099 2.10461i
\(807\) 0 0
\(808\) −48.6749 + 58.0085i −1.71238 + 2.04073i
\(809\) −5.37671 −0.189035 −0.0945175 0.995523i \(-0.530131\pi\)
−0.0945175 + 0.995523i \(0.530131\pi\)
\(810\) 0 0
\(811\) 25.4236 0.892744 0.446372 0.894847i \(-0.352716\pi\)
0.446372 + 0.894847i \(0.352716\pi\)
\(812\) −26.9569 + 32.1259i −0.946000 + 1.12740i
\(813\) 0 0
\(814\) −4.38807 24.8860i −0.153802 0.872253i
\(815\) −9.74295 + 13.1662i −0.341281 + 0.461192i
\(816\) 0 0
\(817\) −3.63786 0.641454i −0.127273 0.0224416i
\(818\) −20.2210 11.6746i −0.707012 0.408193i
\(819\) 0 0
\(820\) 9.85604 + 41.0575i 0.344188 + 1.43379i
\(821\) −12.2590 + 4.46192i −0.427843 + 0.155722i −0.546961 0.837158i \(-0.684215\pi\)
0.119118 + 0.992880i \(0.461993\pi\)
\(822\) 0 0
\(823\) −21.8976 26.0965i −0.763302 0.909668i 0.234750 0.972056i \(-0.424573\pi\)
−0.998052 + 0.0623879i \(0.980128\pi\)
\(824\) 108.424 90.9783i 3.77712 3.16938i
\(825\) 0 0
\(826\) 4.04191 1.47114i 0.140636 0.0511874i
\(827\) 27.8760 16.0942i 0.969345 0.559651i 0.0703083 0.997525i \(-0.477602\pi\)
0.899036 + 0.437874i \(0.144268\pi\)
\(828\) 0 0
\(829\) 11.4430 19.8198i 0.397431 0.688371i −0.595977 0.803001i \(-0.703235\pi\)
0.993408 + 0.114630i \(0.0365684\pi\)
\(830\) −7.80012 + 15.6437i −0.270746 + 0.543001i
\(831\) 0 0
\(832\) −32.3407 + 88.8553i −1.12121 + 3.08050i
\(833\) 23.0174 4.05858i 0.797504 0.140622i
\(834\) 0 0
\(835\) −9.37982 + 6.20806i −0.324602 + 0.214839i
\(836\) 5.76392 0.199350
\(837\) 0 0
\(838\) 99.3379i 3.43157i
\(839\) 14.3141 + 12.0109i 0.494176 + 0.414663i 0.855520 0.517769i \(-0.173237\pi\)
−0.361344 + 0.932433i \(0.617682\pi\)
\(840\) 0 0
\(841\) 5.63686 + 31.9682i 0.194375 + 1.10235i
\(842\) 33.4859 92.0019i 1.15400 3.17059i
\(843\) 0 0
\(844\) −16.8158 + 95.3673i −0.578824 + 3.28268i
\(845\) 6.78511 6.43854i 0.233415 0.221492i
\(846\) 0 0
\(847\) 8.25173 4.76414i 0.283533 0.163698i
\(848\) −2.22098 6.10209i −0.0762687 0.209547i
\(849\) 0 0
\(850\) 52.3926 6.43055i 1.79705 0.220566i
\(851\) 15.7308 13.1997i 0.539244 0.452480i
\(852\) 0 0
\(853\) −7.32234 20.1180i −0.250712 0.688826i −0.999657 0.0261934i \(-0.991661\pi\)
0.748945 0.662632i \(-0.230561\pi\)
\(854\) −2.25311 3.90251i −0.0771000 0.133541i
\(855\) 0 0
\(856\) −40.8250 + 70.7109i −1.39537 + 2.41685i
\(857\) 5.92728 + 1.04514i 0.202472 + 0.0357013i 0.273964 0.961740i \(-0.411665\pi\)
−0.0714922 + 0.997441i \(0.522776\pi\)
\(858\) 0 0
\(859\) −21.9131 7.97570i −0.747664 0.272128i −0.0600417 0.998196i \(-0.519123\pi\)
−0.687623 + 0.726068i \(0.741346\pi\)
\(860\) −50.0750 5.70649i −1.70754 0.194590i
\(861\) 0 0
\(862\) −33.5860 + 40.0262i −1.14394 + 1.36330i
\(863\) 19.5769i 0.666405i −0.942855 0.333203i \(-0.891871\pi\)
0.942855 0.333203i \(-0.108129\pi\)
\(864\) 0 0
\(865\) −12.1735 + 41.0935i −0.413911 + 1.39722i
\(866\) 47.1472 + 39.5612i 1.60213 + 1.34434i
\(867\) 0 0
\(868\) −28.5644 + 5.03668i −0.969540 + 0.170956i
\(869\) 9.90452 + 3.60495i 0.335988 + 0.122290i
\(870\) 0 0
\(871\) −2.38642 + 13.5341i −0.0808609 + 0.458585i
\(872\) −38.2641 22.0918i −1.29579 0.748123i
\(873\) 0 0
\(874\) 3.22798 + 5.59102i 0.109188 + 0.189119i
\(875\) −5.57150 + 9.84601i −0.188351 + 0.332856i
\(876\) 0 0
\(877\) 32.2415 + 38.4239i 1.08872 + 1.29748i 0.951739 + 0.306910i \(0.0992949\pi\)
0.136979 + 0.990574i \(0.456261\pi\)
\(878\) −33.6393 40.0898i −1.13527 1.35296i
\(879\) 0 0
\(880\) 37.5641 2.29665i 1.26629 0.0774200i
\(881\) −4.92107 8.52354i −0.165795 0.287165i 0.771142 0.636663i \(-0.219686\pi\)
−0.936937 + 0.349497i \(0.886352\pi\)
\(882\) 0 0
\(883\) 14.0540 + 8.11410i 0.472956 + 0.273061i 0.717476 0.696583i \(-0.245297\pi\)
−0.244520 + 0.969644i \(0.578631\pi\)
\(884\) −14.8827 + 84.4039i −0.500559 + 2.83881i
\(885\) 0 0
\(886\) −9.87346 3.59365i −0.331705 0.120731i
\(887\) 4.57011 0.805833i 0.153449 0.0270572i −0.0963958 0.995343i \(-0.530731\pi\)
0.249845 + 0.968286i \(0.419620\pi\)
\(888\) 0 0
\(889\) 14.4030 + 12.0856i 0.483062 + 0.405337i
\(890\) −27.5470 + 92.9894i −0.923379 + 3.11701i
\(891\) 0 0
\(892\) 37.0548i 1.24069i
\(893\) −2.05534 + 2.44946i −0.0687795 + 0.0819682i
\(894\) 0 0
\(895\) −3.44835 + 30.2596i −0.115266 + 1.01147i
\(896\) 23.6336 + 8.60194i 0.789544 + 0.287371i
\(897\) 0 0
\(898\) −58.1955 10.2614i −1.94201 0.342428i
\(899\) −21.2542 + 36.8134i −0.708867 + 1.22779i
\(900\) 0 0
\(901\) −0.949424 1.64445i −0.0316299 0.0547846i
\(902\) 4.14976 + 11.4014i 0.138172 + 0.379624i
\(903\) 0 0
\(904\) 54.0852 45.3829i 1.79885 1.50941i
\(905\) 17.4468 7.58561i 0.579952 0.252154i
\(906\) 0 0
\(907\) −3.04461 8.36499i −0.101094 0.277755i 0.878826 0.477142i \(-0.158327\pi\)
−0.979921 + 0.199387i \(0.936105\pi\)
\(908\) −61.4789 + 35.4949i −2.04025 + 1.17794i
\(909\) 0 0
\(910\) −17.4271 18.3652i −0.577703 0.608800i
\(911\) −5.06913 + 28.7484i −0.167948 + 0.952478i 0.778025 + 0.628233i \(0.216221\pi\)
−0.945973 + 0.324245i \(0.894890\pi\)
\(912\) 0 0
\(913\) −1.24643 + 3.42455i −0.0412509 + 0.113336i
\(914\) 9.04643 + 51.3049i 0.299229 + 1.69701i
\(915\) 0 0
\(916\) −37.6218 31.5684i −1.24306 1.04305i
\(917\) 19.0563i 0.629295i
\(918\) 0 0
\(919\) −48.7206 −1.60714 −0.803572 0.595208i \(-0.797070\pi\)
−0.803572 + 0.595208i \(0.797070\pi\)
\(920\) 30.2226 + 45.6637i 0.996411 + 1.50549i
\(921\) 0 0
\(922\) 101.581 17.9115i 3.34540 0.589884i
\(923\) −14.0575 + 38.6226i −0.462707 + 1.27128i
\(924\) 0 0
\(925\) −27.2025 25.3691i −0.894414 0.834131i
\(926\) −30.0982 + 52.1316i −0.989088 + 1.71315i
\(927\) 0 0
\(928\) 124.654 71.9692i 4.09198 2.36251i
\(929\) 34.3831 12.5144i 1.12807 0.410585i 0.290480 0.956881i \(-0.406185\pi\)
0.837592 + 0.546296i \(0.183963\pi\)
\(930\) 0 0
\(931\) 3.96648 3.32827i 0.129996 0.109080i
\(932\) 34.6987 + 41.3522i 1.13659 + 1.35454i
\(933\) 0 0
\(934\) 76.5061 27.8460i 2.50336 0.911148i
\(935\) 10.7008 2.56876i 0.349952 0.0840075i
\(936\) 0 0
\(937\) 19.8545 + 11.4630i 0.648618 + 0.374480i 0.787927 0.615769i \(-0.211155\pi\)
−0.139308 + 0.990249i \(0.544488\pi\)
\(938\) 8.91795 + 1.57247i 0.291181 + 0.0513431i
\(939\) 0 0
\(940\) −25.9505 + 35.0684i −0.846412 + 1.14381i
\(941\) −2.11146 11.9747i −0.0688317 0.390364i −0.999688 0.0249784i \(-0.992048\pi\)
0.930856 0.365385i \(-0.119063\pi\)
\(942\) 0 0
\(943\) −6.33770 + 7.55298i −0.206384 + 0.245959i
\(944\) −21.0621 −0.685512
\(945\) 0 0
\(946\) −14.4822 −0.470857
\(947\) 8.24056 9.82072i 0.267782 0.319130i −0.615351 0.788254i \(-0.710986\pi\)
0.883133 + 0.469123i \(0.155430\pi\)
\(948\) 0 0
\(949\) 3.78993 + 21.4938i 0.123026 + 0.697717i
\(950\) 9.33960 7.03722i 0.303017 0.228318i
\(951\) 0 0
\(952\) 34.5755 + 6.09660i 1.12060 + 0.197592i
\(953\) −8.84797 5.10838i −0.286614 0.165477i 0.349800 0.936824i \(-0.386250\pi\)
−0.636414 + 0.771348i \(0.719583\pi\)
\(954\) 0 0
\(955\) −6.69108 27.8732i −0.216518 0.901954i
\(956\) 12.8776 4.68706i 0.416491 0.151590i
\(957\) 0 0
\(958\) 24.7485 + 29.4941i 0.799586 + 0.952910i
\(959\) 12.4023 10.4068i 0.400492 0.336053i
\(960\) 0 0
\(961\) 1.50350 0.547231i 0.0485002 0.0176526i
\(962\) 72.0899 41.6211i 2.32427 1.34192i
\(963\) 0 0
\(964\) −43.9670 + 76.1531i −1.41608 + 2.45273i
\(965\) −19.9439 9.94423i −0.642016 0.320116i
\(966\) 0 0
\(967\) −9.29181 + 25.5290i −0.298804 + 0.820958i 0.695896 + 0.718143i \(0.255007\pi\)
−0.994700 + 0.102816i \(0.967215\pi\)
\(968\) −82.2711 + 14.5066i −2.64429 + 0.466260i
\(969\) 0 0
\(970\) −10.2912 15.5491i −0.330431 0.499252i
\(971\) 7.96515 0.255614 0.127807 0.991799i \(-0.459206\pi\)
0.127807 + 0.991799i \(0.459206\pi\)
\(972\) 0 0
\(973\) 13.5728i 0.435125i
\(974\) −43.4117 36.4267i −1.39100 1.16719i
\(975\) 0 0
\(976\) 3.83163 + 21.7303i 0.122648 + 0.695569i
\(977\) 14.7183 40.4381i 0.470879 1.29373i −0.446168 0.894949i \(-0.647212\pi\)
0.917047 0.398779i \(-0.130566\pi\)
\(978\) 0 0
\(979\) −3.51102 + 19.9120i −0.112213 + 0.636390i
\(980\) 51.2449 48.6274i 1.63696 1.55334i
\(981\) 0 0
\(982\) −12.0569 + 6.96105i −0.384751 + 0.222136i
\(983\) 14.6729 + 40.3135i 0.467993 + 1.28580i 0.919345 + 0.393453i \(0.128720\pi\)
−0.451352 + 0.892346i \(0.649058\pi\)
\(984\) 0 0
\(985\) −17.5189 40.2931i −0.558197 1.28385i
\(986\) 63.4019 53.2005i 2.01913 1.69425i
\(987\) 0 0
\(988\) 6.49397 + 17.8420i 0.206601 + 0.567631i
\(989\) −5.88435 10.1920i −0.187111 0.324086i
\(990\) 0 0
\(991\) 18.5127 32.0649i 0.588075 1.01858i −0.406410 0.913691i \(-0.633219\pi\)
0.994484 0.104884i \(-0.0334473\pi\)
\(992\) 98.0394 + 17.2870i 3.11276 + 0.548863i
\(993\) 0 0
\(994\) 25.4494 + 9.26283i 0.807206 + 0.293799i
\(995\) 0.915393 8.03265i 0.0290199 0.254652i
\(996\) 0 0
\(997\) 16.2659 19.3849i 0.515146 0.613927i −0.444280 0.895888i \(-0.646540\pi\)
0.959426 + 0.281961i \(0.0909849\pi\)
\(998\) 96.0475i 3.04033i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.2.p.a.289.1 96
3.2 odd 2 135.2.p.a.124.16 yes 96
5.4 even 2 inner 405.2.p.a.289.16 96
15.2 even 4 675.2.l.h.151.16 96
15.8 even 4 675.2.l.h.151.1 96
15.14 odd 2 135.2.p.a.124.1 yes 96
27.5 odd 18 135.2.p.a.49.1 96
27.22 even 9 inner 405.2.p.a.199.16 96
135.32 even 36 675.2.l.h.76.16 96
135.49 even 18 inner 405.2.p.a.199.1 96
135.59 odd 18 135.2.p.a.49.16 yes 96
135.113 even 36 675.2.l.h.76.1 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.1 96 27.5 odd 18
135.2.p.a.49.16 yes 96 135.59 odd 18
135.2.p.a.124.1 yes 96 15.14 odd 2
135.2.p.a.124.16 yes 96 3.2 odd 2
405.2.p.a.199.1 96 135.49 even 18 inner
405.2.p.a.199.16 96 27.22 even 9 inner
405.2.p.a.289.1 96 1.1 even 1 trivial
405.2.p.a.289.16 96 5.4 even 2 inner
675.2.l.h.76.1 96 135.113 even 36
675.2.l.h.76.16 96 135.32 even 36
675.2.l.h.151.1 96 15.8 even 4
675.2.l.h.151.16 96 15.2 even 4