L(s) = 1 | + (−2.06 − 1.73i)2-s + (0.239 − 1.71i)3-s + (0.918 + 5.20i)4-s + (−3.47 + 3.13i)6-s + (−0.175 + 0.996i)7-s + (4.43 − 7.68i)8-s + (−2.88 − 0.820i)9-s + (−1.18 + 0.430i)11-s + (9.15 − 0.329i)12-s + (−3.17 + 2.66i)13-s + (2.09 − 1.75i)14-s + (−12.5 + 4.57i)16-s + (−1.95 − 3.38i)17-s + (4.54 + 6.70i)18-s + (0.433 − 0.750i)19-s + ⋯ |
L(s) = 1 | + (−1.46 − 1.22i)2-s + (0.138 − 0.990i)3-s + (0.459 + 2.60i)4-s + (−1.41 + 1.27i)6-s + (−0.0664 + 0.376i)7-s + (1.56 − 2.71i)8-s + (−0.961 − 0.273i)9-s + (−0.356 + 0.129i)11-s + (2.64 − 0.0952i)12-s + (−0.880 + 0.739i)13-s + (0.559 − 0.469i)14-s + (−3.14 + 1.14i)16-s + (−0.474 − 0.821i)17-s + (1.07 + 1.58i)18-s + (0.0993 − 0.172i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0498i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 675 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0498i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.368350 + 0.00919563i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.368350 + 0.00919563i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.239 + 1.71i)T \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (2.06 + 1.73i)T + (0.347 + 1.96i)T^{2} \) |
| 7 | \( 1 + (0.175 - 0.996i)T + (-6.57 - 2.39i)T^{2} \) |
| 11 | \( 1 + (1.18 - 0.430i)T + (8.42 - 7.07i)T^{2} \) |
| 13 | \( 1 + (3.17 - 2.66i)T + (2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (1.95 + 3.38i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.433 + 0.750i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.479 - 2.71i)T + (-21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (-6.00 - 5.03i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (-0.941 - 5.33i)T + (-29.1 + 10.6i)T^{2} \) |
| 37 | \( 1 + (-3.71 - 6.44i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.73 - 2.29i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (4.00 - 1.45i)T + (32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (0.640 - 3.63i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 - 0.485T + 53T^{2} \) |
| 59 | \( 1 + (-1.47 - 0.538i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.286 + 1.62i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (-2.53 + 2.13i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (4.95 + 8.58i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.63 - 4.55i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (6.41 + 5.38i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (-2.21 - 1.86i)T + (14.4 + 81.7i)T^{2} \) |
| 89 | \( 1 + (8.03 - 13.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.90 - 1.05i)T + (74.3 - 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45613084547006875915563796485, −9.538826123883989794354210057534, −8.910527035391282083615866360824, −8.144952095988018313366750412236, −7.27140389974357544329965241114, −6.65102844666516911178581314378, −4.83588270903993844938924320554, −3.11087147476655214349235171464, −2.43511901441789221221902415681, −1.28892364398724743873092196962,
0.32783079882755944033679010685, 2.44324025691426192861637850401, 4.29004792827401180241815629284, 5.36249353829220273861680560211, 6.11946600105320931461711854403, 7.21477718374793172774331505496, 8.105106367574262627473061740368, 8.620939554280528928116063416757, 9.621697524038911002325025713101, 10.24169001091875558164164541425