Properties

Label 672.3.f.b.97.12
Level $672$
Weight $3$
Character 672.97
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(97,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,0,0,0,0,0,0,0,0,24,0,0,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2 x^{14} - 8 x^{13} - 57 x^{12} + 32 x^{11} + 466 x^{10} + 304 x^{9} + 3000 x^{8} + \cdots + 790321 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 97.12
Root \(-2.42052 - 1.33386i\) of defining polynomial
Character \(\chi\) \(=\) 672.97
Dual form 672.3.f.b.97.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} -0.817910i q^{5} +(6.47914 + 2.64968i) q^{7} -3.00000 q^{9} +7.22005 q^{11} +5.77193i q^{13} +1.41666 q^{15} +15.3528i q^{17} -17.6927i q^{19} +(-4.58937 + 11.2222i) q^{21} -8.69922 q^{23} +24.3310 q^{25} -5.19615i q^{27} +19.4660 q^{29} +0.274321i q^{31} +12.5055i q^{33} +(2.16720 - 5.29935i) q^{35} -4.34017 q^{37} -9.99728 q^{39} +72.6342i q^{41} +29.3599 q^{43} +2.45373i q^{45} +15.7896i q^{47} +(34.9584 + 34.3352i) q^{49} -26.5917 q^{51} -18.2052 q^{53} -5.90535i q^{55} +30.6447 q^{57} +51.3109i q^{59} +21.5071i q^{61} +(-19.4374 - 7.94903i) q^{63} +4.72092 q^{65} +45.5308 q^{67} -15.0675i q^{69} -100.378 q^{71} +117.366i q^{73} +42.1426i q^{75} +(46.7797 + 19.1308i) q^{77} +61.7155 q^{79} +9.00000 q^{81} -65.3843i q^{83} +12.5572 q^{85} +33.7161i q^{87} +105.785i q^{89} +(-15.2937 + 37.3971i) q^{91} -0.475139 q^{93} -14.4711 q^{95} +59.9300i q^{97} -21.6602 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} + 24 q^{21} - 64 q^{25} - 128 q^{29} + 48 q^{37} - 256 q^{49} - 160 q^{53} - 144 q^{57} - 288 q^{65} + 128 q^{77} + 144 q^{81} - 16 q^{85} + 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) 0.817910i 0.163582i −0.996650 0.0817910i \(-0.973936\pi\)
0.996650 0.0817910i \(-0.0260640\pi\)
\(6\) 0 0
\(7\) 6.47914 + 2.64968i 0.925591 + 0.378525i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) 7.22005 0.656368 0.328184 0.944614i \(-0.393563\pi\)
0.328184 + 0.944614i \(0.393563\pi\)
\(12\) 0 0
\(13\) 5.77193i 0.443995i 0.975047 + 0.221997i \(0.0712577\pi\)
−0.975047 + 0.221997i \(0.928742\pi\)
\(14\) 0 0
\(15\) 1.41666 0.0944441
\(16\) 0 0
\(17\) 15.3528i 0.903103i 0.892245 + 0.451552i \(0.149129\pi\)
−0.892245 + 0.451552i \(0.850871\pi\)
\(18\) 0 0
\(19\) 17.6927i 0.931197i −0.884996 0.465599i \(-0.845839\pi\)
0.884996 0.465599i \(-0.154161\pi\)
\(20\) 0 0
\(21\) −4.58937 + 11.2222i −0.218542 + 0.534390i
\(22\) 0 0
\(23\) −8.69922 −0.378227 −0.189113 0.981955i \(-0.560561\pi\)
−0.189113 + 0.981955i \(0.560561\pi\)
\(24\) 0 0
\(25\) 24.3310 0.973241
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) 19.4660 0.671241 0.335620 0.941997i \(-0.391054\pi\)
0.335620 + 0.941997i \(0.391054\pi\)
\(30\) 0 0
\(31\) 0.274321i 0.00884908i 0.999990 + 0.00442454i \(0.00140838\pi\)
−0.999990 + 0.00442454i \(0.998592\pi\)
\(32\) 0 0
\(33\) 12.5055i 0.378954i
\(34\) 0 0
\(35\) 2.16720 5.29935i 0.0619199 0.151410i
\(36\) 0 0
\(37\) −4.34017 −0.117302 −0.0586510 0.998279i \(-0.518680\pi\)
−0.0586510 + 0.998279i \(0.518680\pi\)
\(38\) 0 0
\(39\) −9.99728 −0.256341
\(40\) 0 0
\(41\) 72.6342i 1.77156i 0.464101 + 0.885782i \(0.346378\pi\)
−0.464101 + 0.885782i \(0.653622\pi\)
\(42\) 0 0
\(43\) 29.3599 0.682789 0.341394 0.939920i \(-0.389101\pi\)
0.341394 + 0.939920i \(0.389101\pi\)
\(44\) 0 0
\(45\) 2.45373i 0.0545273i
\(46\) 0 0
\(47\) 15.7896i 0.335948i 0.985791 + 0.167974i \(0.0537225\pi\)
−0.985791 + 0.167974i \(0.946277\pi\)
\(48\) 0 0
\(49\) 34.9584 + 34.3352i 0.713438 + 0.700719i
\(50\) 0 0
\(51\) −26.5917 −0.521407
\(52\) 0 0
\(53\) −18.2052 −0.343495 −0.171747 0.985141i \(-0.554941\pi\)
−0.171747 + 0.985141i \(0.554941\pi\)
\(54\) 0 0
\(55\) 5.90535i 0.107370i
\(56\) 0 0
\(57\) 30.6447 0.537627
\(58\) 0 0
\(59\) 51.3109i 0.869676i 0.900509 + 0.434838i \(0.143194\pi\)
−0.900509 + 0.434838i \(0.856806\pi\)
\(60\) 0 0
\(61\) 21.5071i 0.352575i 0.984339 + 0.176288i \(0.0564089\pi\)
−0.984339 + 0.176288i \(0.943591\pi\)
\(62\) 0 0
\(63\) −19.4374 7.94903i −0.308530 0.126175i
\(64\) 0 0
\(65\) 4.72092 0.0726296
\(66\) 0 0
\(67\) 45.5308 0.679564 0.339782 0.940504i \(-0.389647\pi\)
0.339782 + 0.940504i \(0.389647\pi\)
\(68\) 0 0
\(69\) 15.0675i 0.218369i
\(70\) 0 0
\(71\) −100.378 −1.41378 −0.706889 0.707324i \(-0.749902\pi\)
−0.706889 + 0.707324i \(0.749902\pi\)
\(72\) 0 0
\(73\) 117.366i 1.60776i 0.594794 + 0.803878i \(0.297234\pi\)
−0.594794 + 0.803878i \(0.702766\pi\)
\(74\) 0 0
\(75\) 42.1426i 0.561901i
\(76\) 0 0
\(77\) 46.7797 + 19.1308i 0.607529 + 0.248452i
\(78\) 0 0
\(79\) 61.7155 0.781209 0.390605 0.920559i \(-0.372266\pi\)
0.390605 + 0.920559i \(0.372266\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) 65.3843i 0.787762i −0.919161 0.393881i \(-0.871132\pi\)
0.919161 0.393881i \(-0.128868\pi\)
\(84\) 0 0
\(85\) 12.5572 0.147731
\(86\) 0 0
\(87\) 33.7161i 0.387541i
\(88\) 0 0
\(89\) 105.785i 1.18859i 0.804246 + 0.594296i \(0.202569\pi\)
−0.804246 + 0.594296i \(0.797431\pi\)
\(90\) 0 0
\(91\) −15.2937 + 37.3971i −0.168063 + 0.410958i
\(92\) 0 0
\(93\) −0.475139 −0.00510902
\(94\) 0 0
\(95\) −14.4711 −0.152327
\(96\) 0 0
\(97\) 59.9300i 0.617835i 0.951089 + 0.308918i \(0.0999667\pi\)
−0.951089 + 0.308918i \(0.900033\pi\)
\(98\) 0 0
\(99\) −21.6602 −0.218789
\(100\) 0 0
\(101\) 90.0958i 0.892038i −0.895023 0.446019i \(-0.852841\pi\)
0.895023 0.446019i \(-0.147159\pi\)
\(102\) 0 0
\(103\) 122.996i 1.19414i −0.802190 0.597069i \(-0.796332\pi\)
0.802190 0.597069i \(-0.203668\pi\)
\(104\) 0 0
\(105\) 9.17874 + 3.75369i 0.0874166 + 0.0357495i
\(106\) 0 0
\(107\) −31.6537 −0.295829 −0.147914 0.989000i \(-0.547256\pi\)
−0.147914 + 0.989000i \(0.547256\pi\)
\(108\) 0 0
\(109\) −101.612 −0.932223 −0.466112 0.884726i \(-0.654345\pi\)
−0.466112 + 0.884726i \(0.654345\pi\)
\(110\) 0 0
\(111\) 7.51740i 0.0677244i
\(112\) 0 0
\(113\) 84.9260 0.751558 0.375779 0.926709i \(-0.377375\pi\)
0.375779 + 0.926709i \(0.377375\pi\)
\(114\) 0 0
\(115\) 7.11518i 0.0618711i
\(116\) 0 0
\(117\) 17.3158i 0.147998i
\(118\) 0 0
\(119\) −40.6798 + 99.4726i −0.341847 + 0.835904i
\(120\) 0 0
\(121\) −68.8709 −0.569181
\(122\) 0 0
\(123\) −125.806 −1.02281
\(124\) 0 0
\(125\) 40.3483i 0.322787i
\(126\) 0 0
\(127\) 215.993 1.70073 0.850364 0.526194i \(-0.176382\pi\)
0.850364 + 0.526194i \(0.176382\pi\)
\(128\) 0 0
\(129\) 50.8529i 0.394208i
\(130\) 0 0
\(131\) 16.7510i 0.127870i −0.997954 0.0639351i \(-0.979635\pi\)
0.997954 0.0639351i \(-0.0203651\pi\)
\(132\) 0 0
\(133\) 46.8800 114.634i 0.352481 0.861908i
\(134\) 0 0
\(135\) −4.24998 −0.0314814
\(136\) 0 0
\(137\) 105.072 0.766952 0.383476 0.923551i \(-0.374727\pi\)
0.383476 + 0.923551i \(0.374727\pi\)
\(138\) 0 0
\(139\) 218.687i 1.57329i −0.617406 0.786645i \(-0.711816\pi\)
0.617406 0.786645i \(-0.288184\pi\)
\(140\) 0 0
\(141\) −27.3483 −0.193960
\(142\) 0 0
\(143\) 41.6736i 0.291424i
\(144\) 0 0
\(145\) 15.9214i 0.109803i
\(146\) 0 0
\(147\) −59.4703 + 60.5498i −0.404560 + 0.411903i
\(148\) 0 0
\(149\) −195.024 −1.30889 −0.654443 0.756112i \(-0.727097\pi\)
−0.654443 + 0.756112i \(0.727097\pi\)
\(150\) 0 0
\(151\) 169.415 1.12195 0.560976 0.827832i \(-0.310426\pi\)
0.560976 + 0.827832i \(0.310426\pi\)
\(152\) 0 0
\(153\) 46.0583i 0.301034i
\(154\) 0 0
\(155\) 0.224370 0.00144755
\(156\) 0 0
\(157\) 59.7200i 0.380382i −0.981747 0.190191i \(-0.939089\pi\)
0.981747 0.190191i \(-0.0609108\pi\)
\(158\) 0 0
\(159\) 31.5324i 0.198317i
\(160\) 0 0
\(161\) −56.3634 23.0501i −0.350083 0.143168i
\(162\) 0 0
\(163\) 187.453 1.15002 0.575010 0.818147i \(-0.304998\pi\)
0.575010 + 0.818147i \(0.304998\pi\)
\(164\) 0 0
\(165\) 10.2284 0.0619901
\(166\) 0 0
\(167\) 56.2378i 0.336754i −0.985723 0.168377i \(-0.946147\pi\)
0.985723 0.168377i \(-0.0538525\pi\)
\(168\) 0 0
\(169\) 135.685 0.802869
\(170\) 0 0
\(171\) 53.0782i 0.310399i
\(172\) 0 0
\(173\) 168.162i 0.972033i −0.873950 0.486016i \(-0.838449\pi\)
0.873950 0.486016i \(-0.161551\pi\)
\(174\) 0 0
\(175\) 157.644 + 64.4693i 0.900823 + 0.368396i
\(176\) 0 0
\(177\) −88.8731 −0.502108
\(178\) 0 0
\(179\) 1.56092 0.00872022 0.00436011 0.999990i \(-0.498612\pi\)
0.00436011 + 0.999990i \(0.498612\pi\)
\(180\) 0 0
\(181\) 258.547i 1.42844i −0.699923 0.714219i \(-0.746782\pi\)
0.699923 0.714219i \(-0.253218\pi\)
\(182\) 0 0
\(183\) −37.2514 −0.203560
\(184\) 0 0
\(185\) 3.54987i 0.0191885i
\(186\) 0 0
\(187\) 110.848i 0.592768i
\(188\) 0 0
\(189\) 13.7681 33.6666i 0.0728472 0.178130i
\(190\) 0 0
\(191\) −264.128 −1.38287 −0.691433 0.722440i \(-0.743020\pi\)
−0.691433 + 0.722440i \(0.743020\pi\)
\(192\) 0 0
\(193\) −85.7046 −0.444065 −0.222033 0.975039i \(-0.571269\pi\)
−0.222033 + 0.975039i \(0.571269\pi\)
\(194\) 0 0
\(195\) 8.17688i 0.0419327i
\(196\) 0 0
\(197\) −113.893 −0.578136 −0.289068 0.957309i \(-0.593345\pi\)
−0.289068 + 0.957309i \(0.593345\pi\)
\(198\) 0 0
\(199\) 52.6525i 0.264586i 0.991211 + 0.132293i \(0.0422339\pi\)
−0.991211 + 0.132293i \(0.957766\pi\)
\(200\) 0 0
\(201\) 78.8616i 0.392346i
\(202\) 0 0
\(203\) 126.123 + 51.5785i 0.621295 + 0.254082i
\(204\) 0 0
\(205\) 59.4082 0.289796
\(206\) 0 0
\(207\) 26.0977 0.126076
\(208\) 0 0
\(209\) 127.742i 0.611208i
\(210\) 0 0
\(211\) 55.9752 0.265285 0.132643 0.991164i \(-0.457654\pi\)
0.132643 + 0.991164i \(0.457654\pi\)
\(212\) 0 0
\(213\) 173.860i 0.816245i
\(214\) 0 0
\(215\) 24.0138i 0.111692i
\(216\) 0 0
\(217\) −0.726863 + 1.77737i −0.00334960 + 0.00819063i
\(218\) 0 0
\(219\) −203.284 −0.928239
\(220\) 0 0
\(221\) −88.6151 −0.400973
\(222\) 0 0
\(223\) 372.002i 1.66817i −0.551635 0.834086i \(-0.685996\pi\)
0.551635 0.834086i \(-0.314004\pi\)
\(224\) 0 0
\(225\) −72.9931 −0.324414
\(226\) 0 0
\(227\) 233.756i 1.02976i 0.857262 + 0.514880i \(0.172164\pi\)
−0.857262 + 0.514880i \(0.827836\pi\)
\(228\) 0 0
\(229\) 157.225i 0.686573i −0.939231 0.343286i \(-0.888460\pi\)
0.939231 0.343286i \(-0.111540\pi\)
\(230\) 0 0
\(231\) −33.1355 + 81.0248i −0.143444 + 0.350757i
\(232\) 0 0
\(233\) −213.395 −0.915857 −0.457928 0.888989i \(-0.651408\pi\)
−0.457928 + 0.888989i \(0.651408\pi\)
\(234\) 0 0
\(235\) 12.9144 0.0549551
\(236\) 0 0
\(237\) 106.894i 0.451031i
\(238\) 0 0
\(239\) −242.428 −1.01434 −0.507171 0.861845i \(-0.669309\pi\)
−0.507171 + 0.861845i \(0.669309\pi\)
\(240\) 0 0
\(241\) 402.031i 1.66818i −0.551629 0.834090i \(-0.685993\pi\)
0.551629 0.834090i \(-0.314007\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 28.0831 28.5929i 0.114625 0.116706i
\(246\) 0 0
\(247\) 102.121 0.413447
\(248\) 0 0
\(249\) 113.249 0.454815
\(250\) 0 0
\(251\) 392.502i 1.56375i −0.623435 0.781875i \(-0.714263\pi\)
0.623435 0.781875i \(-0.285737\pi\)
\(252\) 0 0
\(253\) −62.8088 −0.248256
\(254\) 0 0
\(255\) 21.7497i 0.0852928i
\(256\) 0 0
\(257\) 323.742i 1.25970i −0.776718 0.629848i \(-0.783117\pi\)
0.776718 0.629848i \(-0.216883\pi\)
\(258\) 0 0
\(259\) −28.1206 11.5001i −0.108574 0.0444018i
\(260\) 0 0
\(261\) −58.3980 −0.223747
\(262\) 0 0
\(263\) −319.503 −1.21484 −0.607421 0.794380i \(-0.707796\pi\)
−0.607421 + 0.794380i \(0.707796\pi\)
\(264\) 0 0
\(265\) 14.8902i 0.0561895i
\(266\) 0 0
\(267\) −183.225 −0.686234
\(268\) 0 0
\(269\) 167.751i 0.623609i 0.950146 + 0.311805i \(0.100933\pi\)
−0.950146 + 0.311805i \(0.899067\pi\)
\(270\) 0 0
\(271\) 217.222i 0.801557i −0.916175 0.400779i \(-0.868740\pi\)
0.916175 0.400779i \(-0.131260\pi\)
\(272\) 0 0
\(273\) −64.7738 26.4895i −0.237266 0.0970313i
\(274\) 0 0
\(275\) 175.671 0.638804
\(276\) 0 0
\(277\) −381.699 −1.37797 −0.688987 0.724774i \(-0.741944\pi\)
−0.688987 + 0.724774i \(0.741944\pi\)
\(278\) 0 0
\(279\) 0.822964i 0.00294969i
\(280\) 0 0
\(281\) 45.0923 0.160471 0.0802354 0.996776i \(-0.474433\pi\)
0.0802354 + 0.996776i \(0.474433\pi\)
\(282\) 0 0
\(283\) 316.321i 1.11774i 0.829254 + 0.558871i \(0.188765\pi\)
−0.829254 + 0.558871i \(0.811235\pi\)
\(284\) 0 0
\(285\) 25.0646i 0.0879461i
\(286\) 0 0
\(287\) −192.457 + 470.607i −0.670582 + 1.63974i
\(288\) 0 0
\(289\) 53.2930 0.184405
\(290\) 0 0
\(291\) −103.802 −0.356707
\(292\) 0 0
\(293\) 139.994i 0.477795i −0.971045 0.238897i \(-0.923214\pi\)
0.971045 0.238897i \(-0.0767860\pi\)
\(294\) 0 0
\(295\) 41.9677 0.142263
\(296\) 0 0
\(297\) 37.5165i 0.126318i
\(298\) 0 0
\(299\) 50.2113i 0.167931i
\(300\) 0 0
\(301\) 190.227 + 77.7942i 0.631983 + 0.258453i
\(302\) 0 0
\(303\) 156.051 0.515018
\(304\) 0 0
\(305\) 17.5909 0.0576750
\(306\) 0 0
\(307\) 436.775i 1.42272i −0.702827 0.711360i \(-0.748079\pi\)
0.702827 0.711360i \(-0.251921\pi\)
\(308\) 0 0
\(309\) 213.036 0.689436
\(310\) 0 0
\(311\) 410.856i 1.32108i 0.750790 + 0.660540i \(0.229673\pi\)
−0.750790 + 0.660540i \(0.770327\pi\)
\(312\) 0 0
\(313\) 64.2583i 0.205298i 0.994718 + 0.102649i \(0.0327318\pi\)
−0.994718 + 0.102649i \(0.967268\pi\)
\(314\) 0 0
\(315\) −6.50159 + 15.8981i −0.0206400 + 0.0504700i
\(316\) 0 0
\(317\) 419.268 1.32261 0.661306 0.750116i \(-0.270002\pi\)
0.661306 + 0.750116i \(0.270002\pi\)
\(318\) 0 0
\(319\) 140.545 0.440581
\(320\) 0 0
\(321\) 54.8258i 0.170797i
\(322\) 0 0
\(323\) 271.632 0.840967
\(324\) 0 0
\(325\) 140.437i 0.432114i
\(326\) 0 0
\(327\) 175.998i 0.538219i
\(328\) 0 0
\(329\) −41.8372 + 102.303i −0.127165 + 0.310951i
\(330\) 0 0
\(331\) 61.9410 0.187133 0.0935665 0.995613i \(-0.470173\pi\)
0.0935665 + 0.995613i \(0.470173\pi\)
\(332\) 0 0
\(333\) 13.0205 0.0391007
\(334\) 0 0
\(335\) 37.2401i 0.111164i
\(336\) 0 0
\(337\) −421.374 −1.25037 −0.625184 0.780477i \(-0.714976\pi\)
−0.625184 + 0.780477i \(0.714976\pi\)
\(338\) 0 0
\(339\) 147.096i 0.433912i
\(340\) 0 0
\(341\) 1.98061i 0.00580825i
\(342\) 0 0
\(343\) 135.523 + 315.091i 0.395112 + 0.918633i
\(344\) 0 0
\(345\) −12.3238 −0.0357213
\(346\) 0 0
\(347\) 323.940 0.933544 0.466772 0.884378i \(-0.345417\pi\)
0.466772 + 0.884378i \(0.345417\pi\)
\(348\) 0 0
\(349\) 579.214i 1.65964i 0.558031 + 0.829820i \(0.311557\pi\)
−0.558031 + 0.829820i \(0.688443\pi\)
\(350\) 0 0
\(351\) 29.9918 0.0854468
\(352\) 0 0
\(353\) 149.339i 0.423056i −0.977372 0.211528i \(-0.932156\pi\)
0.977372 0.211528i \(-0.0678439\pi\)
\(354\) 0 0
\(355\) 82.1004i 0.231269i
\(356\) 0 0
\(357\) −172.292 70.4595i −0.482609 0.197366i
\(358\) 0 0
\(359\) 54.2908 0.151228 0.0756140 0.997137i \(-0.475908\pi\)
0.0756140 + 0.997137i \(0.475908\pi\)
\(360\) 0 0
\(361\) 47.9668 0.132872
\(362\) 0 0
\(363\) 119.288i 0.328617i
\(364\) 0 0
\(365\) 95.9950 0.263000
\(366\) 0 0
\(367\) 203.623i 0.554830i 0.960750 + 0.277415i \(0.0894777\pi\)
−0.960750 + 0.277415i \(0.910522\pi\)
\(368\) 0 0
\(369\) 217.902i 0.590522i
\(370\) 0 0
\(371\) −117.954 48.2379i −0.317935 0.130021i
\(372\) 0 0
\(373\) 280.696 0.752537 0.376268 0.926511i \(-0.377207\pi\)
0.376268 + 0.926511i \(0.377207\pi\)
\(374\) 0 0
\(375\) 69.8854 0.186361
\(376\) 0 0
\(377\) 112.356i 0.298027i
\(378\) 0 0
\(379\) −300.782 −0.793620 −0.396810 0.917901i \(-0.629883\pi\)
−0.396810 + 0.917901i \(0.629883\pi\)
\(380\) 0 0
\(381\) 374.110i 0.981916i
\(382\) 0 0
\(383\) 582.741i 1.52152i −0.649035 0.760759i \(-0.724827\pi\)
0.649035 0.760759i \(-0.275173\pi\)
\(384\) 0 0
\(385\) 15.6473 38.2616i 0.0406422 0.0993807i
\(386\) 0 0
\(387\) −88.0797 −0.227596
\(388\) 0 0
\(389\) 300.061 0.771365 0.385683 0.922632i \(-0.373966\pi\)
0.385683 + 0.922632i \(0.373966\pi\)
\(390\) 0 0
\(391\) 133.557i 0.341578i
\(392\) 0 0
\(393\) 29.0136 0.0738259
\(394\) 0 0
\(395\) 50.4778i 0.127792i
\(396\) 0 0
\(397\) 487.010i 1.22673i 0.789801 + 0.613363i \(0.210184\pi\)
−0.789801 + 0.613363i \(0.789816\pi\)
\(398\) 0 0
\(399\) 198.551 + 81.1986i 0.497623 + 0.203505i
\(400\) 0 0
\(401\) −156.647 −0.390642 −0.195321 0.980739i \(-0.562575\pi\)
−0.195321 + 0.980739i \(0.562575\pi\)
\(402\) 0 0
\(403\) −1.58336 −0.00392894
\(404\) 0 0
\(405\) 7.36119i 0.0181758i
\(406\) 0 0
\(407\) −31.3363 −0.0769933
\(408\) 0 0
\(409\) 278.826i 0.681726i 0.940113 + 0.340863i \(0.110719\pi\)
−0.940113 + 0.340863i \(0.889281\pi\)
\(410\) 0 0
\(411\) 181.991i 0.442800i
\(412\) 0 0
\(413\) −135.957 + 332.450i −0.329194 + 0.804965i
\(414\) 0 0
\(415\) −53.4785 −0.128864
\(416\) 0 0
\(417\) 378.777 0.908339
\(418\) 0 0
\(419\) 793.949i 1.89487i −0.319953 0.947434i \(-0.603667\pi\)
0.319953 0.947434i \(-0.396333\pi\)
\(420\) 0 0
\(421\) −24.9026 −0.0591510 −0.0295755 0.999563i \(-0.509416\pi\)
−0.0295755 + 0.999563i \(0.509416\pi\)
\(422\) 0 0
\(423\) 47.3687i 0.111983i
\(424\) 0 0
\(425\) 373.548i 0.878937i
\(426\) 0 0
\(427\) −56.9868 + 139.347i −0.133459 + 0.326341i
\(428\) 0 0
\(429\) −72.1809 −0.168254
\(430\) 0 0
\(431\) −426.634 −0.989871 −0.494935 0.868930i \(-0.664808\pi\)
−0.494935 + 0.868930i \(0.664808\pi\)
\(432\) 0 0
\(433\) 475.197i 1.09745i −0.836002 0.548727i \(-0.815113\pi\)
0.836002 0.548727i \(-0.184887\pi\)
\(434\) 0 0
\(435\) 27.5767 0.0633947
\(436\) 0 0
\(437\) 153.913i 0.352204i
\(438\) 0 0
\(439\) 563.733i 1.28413i −0.766650 0.642065i \(-0.778078\pi\)
0.766650 0.642065i \(-0.221922\pi\)
\(440\) 0 0
\(441\) −104.875 103.006i −0.237813 0.233573i
\(442\) 0 0
\(443\) 295.801 0.667722 0.333861 0.942622i \(-0.391648\pi\)
0.333861 + 0.942622i \(0.391648\pi\)
\(444\) 0 0
\(445\) 86.5224 0.194432
\(446\) 0 0
\(447\) 337.791i 0.755685i
\(448\) 0 0
\(449\) 137.863 0.307046 0.153523 0.988145i \(-0.450938\pi\)
0.153523 + 0.988145i \(0.450938\pi\)
\(450\) 0 0
\(451\) 524.422i 1.16280i
\(452\) 0 0
\(453\) 293.435i 0.647759i
\(454\) 0 0
\(455\) 30.5875 + 12.5089i 0.0672253 + 0.0274921i
\(456\) 0 0
\(457\) 449.162 0.982849 0.491424 0.870920i \(-0.336476\pi\)
0.491424 + 0.870920i \(0.336476\pi\)
\(458\) 0 0
\(459\) 79.7752 0.173802
\(460\) 0 0
\(461\) 605.343i 1.31311i 0.754279 + 0.656554i \(0.227987\pi\)
−0.754279 + 0.656554i \(0.772013\pi\)
\(462\) 0 0
\(463\) 248.016 0.535672 0.267836 0.963465i \(-0.413691\pi\)
0.267836 + 0.963465i \(0.413691\pi\)
\(464\) 0 0
\(465\) 0.388621i 0.000835743i
\(466\) 0 0
\(467\) 681.140i 1.45854i 0.684224 + 0.729272i \(0.260141\pi\)
−0.684224 + 0.729272i \(0.739859\pi\)
\(468\) 0 0
\(469\) 295.000 + 120.642i 0.628998 + 0.257232i
\(470\) 0 0
\(471\) 103.438 0.219614
\(472\) 0 0
\(473\) 211.980 0.448161
\(474\) 0 0
\(475\) 430.483i 0.906279i
\(476\) 0 0
\(477\) 54.6156 0.114498
\(478\) 0 0
\(479\) 534.681i 1.11624i 0.829759 + 0.558122i \(0.188478\pi\)
−0.829759 + 0.558122i \(0.811522\pi\)
\(480\) 0 0
\(481\) 25.0512i 0.0520815i
\(482\) 0 0
\(483\) 39.9240 97.6243i 0.0826583 0.202121i
\(484\) 0 0
\(485\) 49.0174 0.101067
\(486\) 0 0
\(487\) −206.304 −0.423621 −0.211811 0.977311i \(-0.567936\pi\)
−0.211811 + 0.977311i \(0.567936\pi\)
\(488\) 0 0
\(489\) 324.678i 0.663964i
\(490\) 0 0
\(491\) 800.160 1.62965 0.814827 0.579705i \(-0.196832\pi\)
0.814827 + 0.579705i \(0.196832\pi\)
\(492\) 0 0
\(493\) 298.856i 0.606200i
\(494\) 0 0
\(495\) 17.7161i 0.0357900i
\(496\) 0 0
\(497\) −650.365 265.970i −1.30858 0.535151i
\(498\) 0 0
\(499\) −823.805 −1.65091 −0.825456 0.564467i \(-0.809082\pi\)
−0.825456 + 0.564467i \(0.809082\pi\)
\(500\) 0 0
\(501\) 97.4068 0.194425
\(502\) 0 0
\(503\) 282.441i 0.561512i −0.959779 0.280756i \(-0.909415\pi\)
0.959779 0.280756i \(-0.0905852\pi\)
\(504\) 0 0
\(505\) −73.6903 −0.145921
\(506\) 0 0
\(507\) 235.013i 0.463536i
\(508\) 0 0
\(509\) 929.121i 1.82539i 0.408646 + 0.912693i \(0.366001\pi\)
−0.408646 + 0.912693i \(0.633999\pi\)
\(510\) 0 0
\(511\) −310.982 + 760.432i −0.608576 + 1.48813i
\(512\) 0 0
\(513\) −91.9342 −0.179209
\(514\) 0 0
\(515\) −100.600 −0.195340
\(516\) 0 0
\(517\) 114.001i 0.220506i
\(518\) 0 0
\(519\) 291.265 0.561203
\(520\) 0 0
\(521\) 176.308i 0.338403i 0.985581 + 0.169202i \(0.0541189\pi\)
−0.985581 + 0.169202i \(0.945881\pi\)
\(522\) 0 0
\(523\) 380.732i 0.727977i 0.931403 + 0.363988i \(0.118585\pi\)
−0.931403 + 0.363988i \(0.881415\pi\)
\(524\) 0 0
\(525\) −111.664 + 273.047i −0.212694 + 0.520090i
\(526\) 0 0
\(527\) −4.21159 −0.00799163
\(528\) 0 0
\(529\) −453.324 −0.856944
\(530\) 0 0
\(531\) 153.933i 0.289892i
\(532\) 0 0
\(533\) −419.239 −0.786566
\(534\) 0 0
\(535\) 25.8899i 0.0483923i
\(536\) 0 0
\(537\) 2.70359i 0.00503462i
\(538\) 0 0
\(539\) 252.402 + 247.902i 0.468278 + 0.459930i
\(540\) 0 0
\(541\) 966.632 1.78675 0.893375 0.449312i \(-0.148331\pi\)
0.893375 + 0.449312i \(0.148331\pi\)
\(542\) 0 0
\(543\) 447.817 0.824709
\(544\) 0 0
\(545\) 83.1097i 0.152495i
\(546\) 0 0
\(547\) −556.676 −1.01769 −0.508844 0.860858i \(-0.669927\pi\)
−0.508844 + 0.860858i \(0.669927\pi\)
\(548\) 0 0
\(549\) 64.5213i 0.117525i
\(550\) 0 0
\(551\) 344.407i 0.625058i
\(552\) 0 0
\(553\) 399.863 + 163.526i 0.723080 + 0.295707i
\(554\) 0 0
\(555\) −6.14856 −0.0110785
\(556\) 0 0
\(557\) 744.405 1.33645 0.668227 0.743957i \(-0.267053\pi\)
0.668227 + 0.743957i \(0.267053\pi\)
\(558\) 0 0
\(559\) 169.463i 0.303155i
\(560\) 0 0
\(561\) −191.994 −0.342235
\(562\) 0 0
\(563\) 226.176i 0.401733i 0.979619 + 0.200867i \(0.0643758\pi\)
−0.979619 + 0.200867i \(0.935624\pi\)
\(564\) 0 0
\(565\) 69.4618i 0.122941i
\(566\) 0 0
\(567\) 58.3122 + 23.8471i 0.102843 + 0.0420583i
\(568\) 0 0
\(569\) 147.081 0.258490 0.129245 0.991613i \(-0.458745\pi\)
0.129245 + 0.991613i \(0.458745\pi\)
\(570\) 0 0
\(571\) −864.521 −1.51405 −0.757023 0.653388i \(-0.773347\pi\)
−0.757023 + 0.653388i \(0.773347\pi\)
\(572\) 0 0
\(573\) 457.482i 0.798398i
\(574\) 0 0
\(575\) −211.661 −0.368106
\(576\) 0 0
\(577\) 90.5504i 0.156933i −0.996917 0.0784666i \(-0.974998\pi\)
0.996917 0.0784666i \(-0.0250024\pi\)
\(578\) 0 0
\(579\) 148.445i 0.256381i
\(580\) 0 0
\(581\) 173.247 423.634i 0.298188 0.729146i
\(582\) 0 0
\(583\) −131.443 −0.225459
\(584\) 0 0
\(585\) −14.1628 −0.0242099
\(586\) 0 0
\(587\) 942.714i 1.60599i −0.595988 0.802993i \(-0.703240\pi\)
0.595988 0.802993i \(-0.296760\pi\)
\(588\) 0 0
\(589\) 4.85350 0.00824023
\(590\) 0 0
\(591\) 197.268i 0.333787i
\(592\) 0 0
\(593\) 706.976i 1.19220i −0.802910 0.596101i \(-0.796716\pi\)
0.802910 0.596101i \(-0.203284\pi\)
\(594\) 0 0
\(595\) 81.3596 + 33.2724i 0.136739 + 0.0559200i
\(596\) 0 0
\(597\) −91.1968 −0.152759
\(598\) 0 0
\(599\) 787.489 1.31467 0.657337 0.753597i \(-0.271683\pi\)
0.657337 + 0.753597i \(0.271683\pi\)
\(600\) 0 0
\(601\) 170.509i 0.283709i −0.989887 0.141855i \(-0.954693\pi\)
0.989887 0.141855i \(-0.0453066\pi\)
\(602\) 0 0
\(603\) −136.592 −0.226521
\(604\) 0 0
\(605\) 56.3302i 0.0931077i
\(606\) 0 0
\(607\) 459.907i 0.757673i −0.925464 0.378836i \(-0.876324\pi\)
0.925464 0.378836i \(-0.123676\pi\)
\(608\) 0 0
\(609\) −89.3367 + 218.451i −0.146694 + 0.358705i
\(610\) 0 0
\(611\) −91.1363 −0.149159
\(612\) 0 0
\(613\) −1203.58 −1.96343 −0.981716 0.190353i \(-0.939037\pi\)
−0.981716 + 0.190353i \(0.939037\pi\)
\(614\) 0 0
\(615\) 102.898i 0.167314i
\(616\) 0 0
\(617\) 453.296 0.734677 0.367339 0.930087i \(-0.380269\pi\)
0.367339 + 0.930087i \(0.380269\pi\)
\(618\) 0 0
\(619\) 538.168i 0.869415i 0.900572 + 0.434708i \(0.143148\pi\)
−0.900572 + 0.434708i \(0.856852\pi\)
\(620\) 0 0
\(621\) 45.2025i 0.0727898i
\(622\) 0 0
\(623\) −280.295 + 685.394i −0.449912 + 1.10015i
\(624\) 0 0
\(625\) 575.274 0.920439
\(626\) 0 0
\(627\) 221.256 0.352881
\(628\) 0 0
\(629\) 66.6336i 0.105936i
\(630\) 0 0
\(631\) −962.673 −1.52563 −0.762815 0.646617i \(-0.776183\pi\)
−0.762815 + 0.646617i \(0.776183\pi\)
\(632\) 0 0
\(633\) 96.9519i 0.153163i
\(634\) 0 0
\(635\) 176.662i 0.278209i
\(636\) 0 0
\(637\) −198.181 + 201.778i −0.311116 + 0.316763i
\(638\) 0 0
\(639\) 301.135 0.471260
\(640\) 0 0
\(641\) 18.4674 0.0288103 0.0144051 0.999896i \(-0.495415\pi\)
0.0144051 + 0.999896i \(0.495415\pi\)
\(642\) 0 0
\(643\) 301.527i 0.468938i −0.972124 0.234469i \(-0.924665\pi\)
0.972124 0.234469i \(-0.0753352\pi\)
\(644\) 0 0
\(645\) 41.5931 0.0644854
\(646\) 0 0
\(647\) 488.736i 0.755388i −0.925930 0.377694i \(-0.876717\pi\)
0.925930 0.377694i \(-0.123283\pi\)
\(648\) 0 0
\(649\) 370.467i 0.570828i
\(650\) 0 0
\(651\) −3.07849 1.25896i −0.00472886 0.00193389i
\(652\) 0 0
\(653\) −575.838 −0.881835 −0.440918 0.897548i \(-0.645347\pi\)
−0.440918 + 0.897548i \(0.645347\pi\)
\(654\) 0 0
\(655\) −13.7008 −0.0209173
\(656\) 0 0
\(657\) 352.099i 0.535919i
\(658\) 0 0
\(659\) −664.692 −1.00864 −0.504318 0.863518i \(-0.668256\pi\)
−0.504318 + 0.863518i \(0.668256\pi\)
\(660\) 0 0
\(661\) 374.795i 0.567012i −0.958970 0.283506i \(-0.908502\pi\)
0.958970 0.283506i \(-0.0914976\pi\)
\(662\) 0 0
\(663\) 153.486i 0.231502i
\(664\) 0 0
\(665\) −93.7601 38.3436i −0.140993 0.0576596i
\(666\) 0 0
\(667\) −169.339 −0.253881
\(668\) 0 0
\(669\) 644.327 0.963119
\(670\) 0 0
\(671\) 155.282i 0.231419i
\(672\) 0 0
\(673\) −485.975 −0.722103 −0.361052 0.932546i \(-0.617582\pi\)
−0.361052 + 0.932546i \(0.617582\pi\)
\(674\) 0 0
\(675\) 126.428i 0.187300i
\(676\) 0 0
\(677\) 542.126i 0.800778i −0.916345 0.400389i \(-0.868875\pi\)
0.916345 0.400389i \(-0.131125\pi\)
\(678\) 0 0
\(679\) −158.795 + 388.295i −0.233866 + 0.571863i
\(680\) 0 0
\(681\) −404.877 −0.594533
\(682\) 0 0
\(683\) 749.854 1.09788 0.548942 0.835861i \(-0.315031\pi\)
0.548942 + 0.835861i \(0.315031\pi\)
\(684\) 0 0
\(685\) 85.9398i 0.125460i
\(686\) 0 0
\(687\) 272.322 0.396393
\(688\) 0 0
\(689\) 105.079i 0.152510i
\(690\) 0 0
\(691\) 577.762i 0.836125i 0.908418 + 0.418063i \(0.137291\pi\)
−0.908418 + 0.418063i \(0.862709\pi\)
\(692\) 0 0
\(693\) −140.339 57.3924i −0.202510 0.0828173i
\(694\) 0 0
\(695\) −178.866 −0.257362
\(696\) 0 0
\(697\) −1115.13 −1.59991
\(698\) 0 0
\(699\) 369.610i 0.528770i
\(700\) 0 0
\(701\) −652.079 −0.930212 −0.465106 0.885255i \(-0.653984\pi\)
−0.465106 + 0.885255i \(0.653984\pi\)
\(702\) 0 0
\(703\) 76.7896i 0.109231i
\(704\) 0 0
\(705\) 22.3685i 0.0317283i
\(706\) 0 0
\(707\) 238.725 583.743i 0.337659 0.825662i
\(708\) 0 0
\(709\) 131.335 0.185240 0.0926202 0.995702i \(-0.470476\pi\)
0.0926202 + 0.995702i \(0.470476\pi\)
\(710\) 0 0
\(711\) −185.147 −0.260403
\(712\) 0 0
\(713\) 2.38638i 0.00334696i
\(714\) 0 0
\(715\) 34.0853 0.0476717
\(716\) 0 0
\(717\) 419.897i 0.585631i
\(718\) 0 0
\(719\) 533.056i 0.741385i −0.928756 0.370692i \(-0.879120\pi\)
0.928756 0.370692i \(-0.120880\pi\)
\(720\) 0 0
\(721\) 325.900 796.910i 0.452011 1.10528i
\(722\) 0 0
\(723\) 696.339 0.963124
\(724\) 0 0
\(725\) 473.627 0.653279
\(726\) 0 0
\(727\) 555.602i 0.764239i 0.924113 + 0.382120i \(0.124806\pi\)
−0.924113 + 0.382120i \(0.875194\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 450.755i 0.616628i
\(732\) 0 0
\(733\) 1274.96i 1.73938i −0.493600 0.869689i \(-0.664319\pi\)
0.493600 0.869689i \(-0.335681\pi\)
\(734\) 0 0
\(735\) 49.5243 + 48.6414i 0.0673800 + 0.0661788i
\(736\) 0 0
\(737\) 328.734 0.446044
\(738\) 0 0
\(739\) 168.110 0.227482 0.113741 0.993510i \(-0.463717\pi\)
0.113741 + 0.993510i \(0.463717\pi\)
\(740\) 0 0
\(741\) 176.879i 0.238704i
\(742\) 0 0
\(743\) 1386.00 1.86541 0.932703 0.360645i \(-0.117443\pi\)
0.932703 + 0.360645i \(0.117443\pi\)
\(744\) 0 0
\(745\) 159.512i 0.214110i
\(746\) 0 0
\(747\) 196.153i 0.262587i
\(748\) 0 0
\(749\) −205.088 83.8720i −0.273816 0.111979i
\(750\) 0 0
\(751\) −107.911 −0.143690 −0.0718448 0.997416i \(-0.522889\pi\)
−0.0718448 + 0.997416i \(0.522889\pi\)
\(752\) 0 0
\(753\) 679.833 0.902832
\(754\) 0 0
\(755\) 138.566i 0.183531i
\(756\) 0 0
\(757\) 94.3323 0.124613 0.0623067 0.998057i \(-0.480154\pi\)
0.0623067 + 0.998057i \(0.480154\pi\)
\(758\) 0 0
\(759\) 108.788i 0.143331i
\(760\) 0 0
\(761\) 238.161i 0.312958i −0.987681 0.156479i \(-0.949986\pi\)
0.987681 0.156479i \(-0.0500143\pi\)
\(762\) 0 0
\(763\) −658.360 269.240i −0.862857 0.352870i
\(764\) 0 0
\(765\) −37.6715 −0.0492438
\(766\) 0 0
\(767\) −296.163 −0.386132
\(768\) 0 0
\(769\) 751.525i 0.977276i 0.872487 + 0.488638i \(0.162506\pi\)
−0.872487 + 0.488638i \(0.837494\pi\)
\(770\) 0 0
\(771\) 560.738 0.727286
\(772\) 0 0
\(773\) 1198.57i 1.55054i −0.631628 0.775272i \(-0.717613\pi\)
0.631628 0.775272i \(-0.282387\pi\)
\(774\) 0 0
\(775\) 6.67452i 0.00861228i
\(776\) 0 0
\(777\) 19.9187 48.7063i 0.0256354 0.0626851i
\(778\) 0 0
\(779\) 1285.10 1.64968
\(780\) 0 0
\(781\) −724.736 −0.927959
\(782\) 0 0
\(783\) 101.148i 0.129180i
\(784\) 0 0
\(785\) −48.8456 −0.0622237
\(786\) 0 0
\(787\) 66.4238i 0.0844012i 0.999109 + 0.0422006i \(0.0134369\pi\)
−0.999109 + 0.0422006i \(0.986563\pi\)
\(788\) 0 0
\(789\) 553.396i 0.701389i
\(790\) 0 0
\(791\) 550.247 + 225.026i 0.695635 + 0.284483i
\(792\) 0 0
\(793\) −124.138 −0.156542
\(794\) 0 0
\(795\) −25.7906 −0.0324410
\(796\) 0 0
\(797\) 705.174i 0.884785i −0.896821 0.442393i \(-0.854130\pi\)
0.896821 0.442393i \(-0.145870\pi\)
\(798\) 0 0
\(799\) −242.413 −0.303396
\(800\) 0 0
\(801\) 317.354i 0.396198i
\(802\) 0 0
\(803\) 847.390i 1.05528i
\(804\) 0 0
\(805\) −18.8529 + 46.1002i −0.0234198 + 0.0572673i
\(806\) 0 0
\(807\) −290.553 −0.360041
\(808\) 0 0
\(809\) 84.1821 0.104057 0.0520285 0.998646i \(-0.483431\pi\)
0.0520285 + 0.998646i \(0.483431\pi\)
\(810\) 0 0
\(811\) 1225.17i 1.51069i −0.655324 0.755347i \(-0.727468\pi\)
0.655324 0.755347i \(-0.272532\pi\)
\(812\) 0 0
\(813\) 376.240 0.462779
\(814\) 0 0
\(815\) 153.320i 0.188122i
\(816\) 0 0
\(817\) 519.457i 0.635811i
\(818\) 0 0
\(819\) 45.8812 112.191i 0.0560211 0.136986i
\(820\) 0 0
\(821\) −1545.37 −1.88231 −0.941153 0.337979i \(-0.890257\pi\)
−0.941153 + 0.337979i \(0.890257\pi\)
\(822\) 0 0
\(823\) −537.199 −0.652732 −0.326366 0.945243i \(-0.605824\pi\)
−0.326366 + 0.945243i \(0.605824\pi\)
\(824\) 0 0
\(825\) 304.271i 0.368814i
\(826\) 0 0
\(827\) −382.318 −0.462295 −0.231147 0.972919i \(-0.574248\pi\)
−0.231147 + 0.972919i \(0.574248\pi\)
\(828\) 0 0
\(829\) 200.589i 0.241965i 0.992655 + 0.120983i \(0.0386045\pi\)
−0.992655 + 0.120983i \(0.961395\pi\)
\(830\) 0 0
\(831\) 661.122i 0.795573i
\(832\) 0 0
\(833\) −527.140 + 536.708i −0.632821 + 0.644308i
\(834\) 0 0
\(835\) −45.9975 −0.0550868
\(836\) 0 0
\(837\) 1.42542 0.00170301
\(838\) 0 0
\(839\) 902.324i 1.07548i 0.843112 + 0.537738i \(0.180721\pi\)
−0.843112 + 0.537738i \(0.819279\pi\)
\(840\) 0 0
\(841\) −462.075 −0.549436
\(842\) 0 0
\(843\) 78.1021i 0.0926478i
\(844\) 0 0
\(845\) 110.978i 0.131335i
\(846\) 0 0
\(847\) −446.224 182.485i −0.526829 0.215449i
\(848\) 0 0
\(849\) −547.884 −0.645329
\(850\) 0 0
\(851\) 37.7561 0.0443668
\(852\) 0 0
\(853\) 1549.79i 1.81687i −0.418030 0.908433i \(-0.637279\pi\)
0.418030 0.908433i \(-0.362721\pi\)
\(854\) 0 0
\(855\) 43.4132 0.0507757
\(856\) 0 0
\(857\) 295.304i 0.344579i −0.985046 0.172290i \(-0.944884\pi\)
0.985046 0.172290i \(-0.0551165\pi\)
\(858\) 0 0
\(859\) 1170.26i 1.36236i 0.732118 + 0.681178i \(0.238532\pi\)
−0.732118 + 0.681178i \(0.761468\pi\)
\(860\) 0 0
\(861\) −815.115 333.345i −0.946707 0.387161i
\(862\) 0 0
\(863\) −386.789 −0.448192 −0.224096 0.974567i \(-0.571943\pi\)
−0.224096 + 0.974567i \(0.571943\pi\)
\(864\) 0 0
\(865\) −137.541 −0.159007
\(866\) 0 0
\(867\) 92.3062i 0.106466i
\(868\) 0 0
\(869\) 445.589 0.512761
\(870\) 0 0
\(871\) 262.800i 0.301723i
\(872\) 0 0
\(873\) 179.790i 0.205945i
\(874\) 0 0
\(875\) 106.910 261.422i 0.122183 0.298768i
\(876\) 0 0
\(877\) 179.268 0.204411 0.102205 0.994763i \(-0.467410\pi\)
0.102205 + 0.994763i \(0.467410\pi\)
\(878\) 0 0
\(879\) 242.477 0.275855
\(880\) 0 0
\(881\) 1049.76i 1.19155i −0.803150 0.595777i \(-0.796844\pi\)
0.803150 0.595777i \(-0.203156\pi\)
\(882\) 0 0
\(883\) 711.891 0.806219 0.403109 0.915152i \(-0.367929\pi\)
0.403109 + 0.915152i \(0.367929\pi\)
\(884\) 0 0
\(885\) 72.6902i 0.0821358i
\(886\) 0 0
\(887\) 1182.66i 1.33333i −0.745359 0.666663i \(-0.767722\pi\)
0.745359 0.666663i \(-0.232278\pi\)
\(888\) 0 0
\(889\) 1399.45 + 572.310i 1.57418 + 0.643768i
\(890\) 0 0
\(891\) 64.9805 0.0729298
\(892\) 0 0
\(893\) 279.361 0.312834
\(894\) 0 0
\(895\) 1.27669i 0.00142647i
\(896\) 0 0
\(897\) 86.9685 0.0969549
\(898\) 0 0
\(899\) 5.33994i 0.00593986i
\(900\) 0 0
\(901\) 279.500i 0.310211i
\(902\) 0 0
\(903\) −134.744 + 329.483i −0.149218 + 0.364876i
\(904\) 0 0
\(905\) −211.468 −0.233667
\(906\) 0 0
\(907\) −77.4195 −0.0853578 −0.0426789 0.999089i \(-0.513589\pi\)
−0.0426789 + 0.999089i \(0.513589\pi\)
\(908\) 0 0
\(909\) 270.288i 0.297346i
\(910\) 0 0
\(911\) −1122.02 −1.23164 −0.615818 0.787888i \(-0.711174\pi\)
−0.615818 + 0.787888i \(0.711174\pi\)
\(912\) 0 0
\(913\) 472.078i 0.517062i
\(914\) 0 0
\(915\) 30.4683i 0.0332987i
\(916\) 0 0
\(917\) 44.3847 108.532i 0.0484021 0.118356i
\(918\) 0 0
\(919\) −531.689 −0.578551 −0.289276 0.957246i \(-0.593414\pi\)
−0.289276 + 0.957246i \(0.593414\pi\)
\(920\) 0 0
\(921\) 756.517 0.821408
\(922\) 0 0
\(923\) 579.377i 0.627710i
\(924\) 0 0
\(925\) −105.601 −0.114163
\(926\) 0 0
\(927\) 368.989i 0.398046i
\(928\) 0 0
\(929\) 1563.00i 1.68245i 0.540684 + 0.841226i \(0.318166\pi\)
−0.540684 + 0.841226i \(0.681834\pi\)
\(930\) 0 0
\(931\) 607.484 618.511i 0.652507 0.664351i
\(932\) 0 0
\(933\) −711.624 −0.762726
\(934\) 0 0
\(935\) 90.6634 0.0969662
\(936\) 0 0
\(937\) 690.326i 0.736741i 0.929679 + 0.368371i \(0.120084\pi\)
−0.929679 + 0.368371i \(0.879916\pi\)
\(938\) 0 0
\(939\) −111.299 −0.118529
\(940\) 0 0
\(941\) 405.493i 0.430918i −0.976513 0.215459i \(-0.930875\pi\)
0.976513 0.215459i \(-0.0691247\pi\)
\(942\) 0 0
\(943\) 631.860i 0.670053i
\(944\) 0 0
\(945\) −27.5362 11.2611i −0.0291389 0.0119165i
\(946\) 0 0
\(947\) −1844.51 −1.94774 −0.973868 0.227116i \(-0.927070\pi\)
−0.973868 + 0.227116i \(0.927070\pi\)
\(948\) 0 0
\(949\) −677.430 −0.713836
\(950\) 0 0
\(951\) 726.194i 0.763611i
\(952\) 0 0
\(953\) 1146.31 1.20285 0.601423 0.798931i \(-0.294601\pi\)
0.601423 + 0.798931i \(0.294601\pi\)
\(954\) 0 0
\(955\) 216.033i 0.226212i
\(956\) 0 0
\(957\) 243.432i 0.254370i
\(958\) 0 0
\(959\) 680.779 + 278.408i 0.709884 + 0.290311i
\(960\) 0 0
\(961\) 960.925 0.999922
\(962\) 0 0
\(963\) 94.9610 0.0986096
\(964\) 0 0
\(965\) 70.0987i 0.0726411i
\(966\) 0 0
\(967\) 368.569 0.381147 0.190573 0.981673i \(-0.438965\pi\)
0.190573 + 0.981673i \(0.438965\pi\)
\(968\) 0 0
\(969\) 470.481i 0.485532i
\(970\) 0 0
\(971\) 364.243i 0.375121i 0.982253 + 0.187561i \(0.0600581\pi\)
−0.982253 + 0.187561i \(0.939942\pi\)
\(972\) 0 0
\(973\) 579.450 1416.90i 0.595530 1.45622i
\(974\) 0 0
\(975\) −243.244 −0.249481
\(976\) 0 0
\(977\) −681.020 −0.697052 −0.348526 0.937299i \(-0.613318\pi\)
−0.348526 + 0.937299i \(0.613318\pi\)
\(978\) 0 0
\(979\) 763.771i 0.780155i
\(980\) 0 0
\(981\) 304.837 0.310741
\(982\) 0 0
\(983\) 837.334i 0.851815i −0.904767 0.425907i \(-0.859955\pi\)
0.904767 0.425907i \(-0.140045\pi\)
\(984\) 0 0
\(985\) 93.1540i 0.0945726i
\(986\) 0 0
\(987\) −177.194 72.4642i −0.179527 0.0734187i
\(988\) 0 0
\(989\) −255.408 −0.258249
\(990\) 0 0
\(991\) −775.019 −0.782057 −0.391029 0.920379i \(-0.627881\pi\)
−0.391029 + 0.920379i \(0.627881\pi\)
\(992\) 0 0
\(993\) 107.285i 0.108041i
\(994\) 0 0
\(995\) 43.0650 0.0432814
\(996\) 0 0
\(997\) 333.556i 0.334560i −0.985909 0.167280i \(-0.946502\pi\)
0.985909 0.167280i \(-0.0534984\pi\)
\(998\) 0 0
\(999\) 22.5522i 0.0225748i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.3.f.b.97.12 yes 16
3.2 odd 2 2016.3.f.g.1441.10 16
4.3 odd 2 inner 672.3.f.b.97.4 16
7.6 odd 2 inner 672.3.f.b.97.5 yes 16
8.3 odd 2 1344.3.f.j.769.13 16
8.5 even 2 1344.3.f.j.769.5 16
12.11 even 2 2016.3.f.g.1441.9 16
21.20 even 2 2016.3.f.g.1441.8 16
28.27 even 2 inner 672.3.f.b.97.13 yes 16
56.13 odd 2 1344.3.f.j.769.12 16
56.27 even 2 1344.3.f.j.769.4 16
84.83 odd 2 2016.3.f.g.1441.7 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
672.3.f.b.97.4 16 4.3 odd 2 inner
672.3.f.b.97.5 yes 16 7.6 odd 2 inner
672.3.f.b.97.12 yes 16 1.1 even 1 trivial
672.3.f.b.97.13 yes 16 28.27 even 2 inner
1344.3.f.j.769.4 16 56.27 even 2
1344.3.f.j.769.5 16 8.5 even 2
1344.3.f.j.769.12 16 56.13 odd 2
1344.3.f.j.769.13 16 8.3 odd 2
2016.3.f.g.1441.7 16 84.83 odd 2
2016.3.f.g.1441.8 16 21.20 even 2
2016.3.f.g.1441.9 16 12.11 even 2
2016.3.f.g.1441.10 16 3.2 odd 2