Properties

Label 672.3
Level 672
Weight 3
Dimension 9836
Nonzero newspaces 24
Sturm bound 73728
Trace bound 14

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(73728\)
Trace bound: \(14\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(672))\).

Total New Old
Modular forms 25344 10036 15308
Cusp forms 23808 9836 13972
Eisenstein series 1536 200 1336

Trace form

\( 9836 q - 10 q^{3} - 32 q^{4} + 16 q^{5} - 16 q^{6} - 32 q^{7} - 40 q^{9} - 192 q^{10} - 64 q^{11} - 112 q^{12} - 144 q^{13} - 32 q^{14} - 76 q^{15} + 48 q^{16} + 64 q^{17} + 32 q^{18} + 44 q^{19} + 320 q^{20}+ \cdots - 444 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(672))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
672.3.d \(\chi_{672}(449, \cdot)\) 672.3.d.a 4 1
672.3.d.b 8
672.3.d.c 12
672.3.d.d 24
672.3.e \(\chi_{672}(335, \cdot)\) 672.3.e.a 1 1
672.3.e.b 1
672.3.e.c 1
672.3.e.d 1
672.3.e.e 8
672.3.e.f 48
672.3.f \(\chi_{672}(97, \cdot)\) 672.3.f.a 16 1
672.3.f.b 16
672.3.g \(\chi_{672}(463, \cdot)\) 672.3.g.a 24 1
672.3.l \(\chi_{672}(433, \cdot)\) 672.3.l.a 32 1
672.3.m \(\chi_{672}(127, \cdot)\) 672.3.m.a 8 1
672.3.m.b 16
672.3.n \(\chi_{672}(113, \cdot)\) 672.3.n.a 48 1
672.3.o \(\chi_{672}(671, \cdot)\) 672.3.o.a 32 1
672.3.o.b 32
672.3.r \(\chi_{672}(265, \cdot)\) None 0 2
672.3.t \(\chi_{672}(281, \cdot)\) None 0 2
672.3.v \(\chi_{672}(167, \cdot)\) None 0 2
672.3.x \(\chi_{672}(295, \cdot)\) None 0 2
672.3.z \(\chi_{672}(383, \cdot)\) n/a 128 2
672.3.ba \(\chi_{672}(305, \cdot)\) n/a 120 2
672.3.be \(\chi_{672}(319, \cdot)\) 672.3.be.a 16 2
672.3.be.b 16
672.3.be.c 16
672.3.be.d 16
672.3.bf \(\chi_{672}(145, \cdot)\) 672.3.bf.a 4 2
672.3.bf.b 60
672.3.bg \(\chi_{672}(79, \cdot)\) 672.3.bg.a 64 2
672.3.bh \(\chi_{672}(481, \cdot)\) 672.3.bh.a 16 2
672.3.bh.b 16
672.3.bh.c 16
672.3.bh.d 16
672.3.bm \(\chi_{672}(47, \cdot)\) n/a 120 2
672.3.bn \(\chi_{672}(65, \cdot)\) n/a 128 2
672.3.bp \(\chi_{672}(43, \cdot)\) n/a 384 4
672.3.br \(\chi_{672}(83, \cdot)\) n/a 1008 4
672.3.bt \(\chi_{672}(13, \cdot)\) n/a 512 4
672.3.bv \(\chi_{672}(29, \cdot)\) n/a 768 4
672.3.bx \(\chi_{672}(151, \cdot)\) None 0 4
672.3.bz \(\chi_{672}(215, \cdot)\) None 0 4
672.3.cb \(\chi_{672}(137, \cdot)\) None 0 4
672.3.cd \(\chi_{672}(73, \cdot)\) None 0 4
672.3.ce \(\chi_{672}(53, \cdot)\) n/a 2016 8
672.3.cg \(\chi_{672}(61, \cdot)\) n/a 1024 8
672.3.ci \(\chi_{672}(59, \cdot)\) n/a 2016 8
672.3.ck \(\chi_{672}(67, \cdot)\) n/a 1024 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(672))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(672)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 20}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 10}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(42))\)\(^{\oplus 5}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(84))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(96))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(168))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(224))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(336))\)\(^{\oplus 2}\)