L(s) = 1 | + 1.73i·3-s − 0.817i·5-s + (6.47 + 2.64i)7-s − 2.99·9-s + 7.22·11-s + 5.77i·13-s + 1.41·15-s + 15.3i·17-s − 17.6i·19-s + (−4.58 + 11.2i)21-s − 8.69·23-s + 24.3·25-s − 5.19i·27-s + 19.4·29-s + 0.274i·31-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 0.163i·5-s + (0.925 + 0.378i)7-s − 0.333·9-s + 0.656·11-s + 0.443i·13-s + 0.0944·15-s + 0.903i·17-s − 0.931i·19-s + (−0.218 + 0.534i)21-s − 0.378·23-s + 0.973·25-s − 0.192i·27-s + 0.671·29-s + 0.00884i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.378 - 0.925i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.378 - 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.026274383\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.026274383\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - 1.73iT \) |
| 7 | \( 1 + (-6.47 - 2.64i)T \) |
good | 5 | \( 1 + 0.817iT - 25T^{2} \) |
| 11 | \( 1 - 7.22T + 121T^{2} \) |
| 13 | \( 1 - 5.77iT - 169T^{2} \) |
| 17 | \( 1 - 15.3iT - 289T^{2} \) |
| 19 | \( 1 + 17.6iT - 361T^{2} \) |
| 23 | \( 1 + 8.69T + 529T^{2} \) |
| 29 | \( 1 - 19.4T + 841T^{2} \) |
| 31 | \( 1 - 0.274iT - 961T^{2} \) |
| 37 | \( 1 + 4.34T + 1.36e3T^{2} \) |
| 41 | \( 1 - 72.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 29.3T + 1.84e3T^{2} \) |
| 47 | \( 1 - 15.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 18.2T + 2.80e3T^{2} \) |
| 59 | \( 1 - 51.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 21.5iT - 3.72e3T^{2} \) |
| 67 | \( 1 - 45.5T + 4.48e3T^{2} \) |
| 71 | \( 1 + 100.T + 5.04e3T^{2} \) |
| 73 | \( 1 - 117. iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 61.7T + 6.24e3T^{2} \) |
| 83 | \( 1 + 65.3iT - 6.88e3T^{2} \) |
| 89 | \( 1 - 105. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 59.9iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55251615085540800919151901524, −9.498491400349084559612526773525, −8.767238102069740859780626080071, −8.105929574553171488437638855752, −6.86785639917364204499858869027, −5.89401299849216754976514607791, −4.80165687107467878056603306590, −4.16359652633601274640681364727, −2.74114403591550903008453276895, −1.33919739151121474248956027436,
0.837048550105250535117897982409, 2.06360824099539904051374171649, 3.44216603881005648238258218049, 4.64584612014847873856378039841, 5.64820254596566695295997124726, 6.72850131661735661180955823610, 7.50566580814986572185004993253, 8.281726929638799049345003613001, 9.156699748379115239197137266213, 10.29970642309128060004929630968