Properties

Label 672.3.f.b
Level $672$
Weight $3$
Character orbit 672.f
Analytic conductor $18.311$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,3,Mod(97,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 672.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-48,0,0,0,0,0,0,0,0,0,0,0,24,0,0,0,-64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3106737650\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 2 x^{14} - 8 x^{13} - 57 x^{12} + 32 x^{11} + 466 x^{10} + 304 x^{9} + 3000 x^{8} + \cdots + 790321 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{30} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{6} q^{3} + \beta_{8} q^{5} + ( - \beta_{9} + \beta_{5} + \beta_1) q^{7} - 3 q^{9} + (\beta_{7} + \beta_{5}) q^{11} + ( - \beta_{11} + \beta_{8} + \beta_{3}) q^{13} + ( - \beta_{7} - \beta_1) q^{15}+ \cdots + ( - 3 \beta_{7} - 3 \beta_{5}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{9} + 24 q^{21} - 64 q^{25} - 128 q^{29} + 48 q^{37} - 256 q^{49} - 160 q^{53} - 144 q^{57} - 288 q^{65} + 128 q^{77} + 144 q^{81} - 16 q^{85} + 96 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 2 x^{14} - 8 x^{13} - 57 x^{12} + 32 x^{11} + 466 x^{10} + 304 x^{9} + 3000 x^{8} + \cdots + 790321 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 12827995238497 \nu^{15} - 581190265302438 \nu^{14} + \cdots - 18\!\cdots\!83 ) / 66\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 225970139316022 \nu^{15} + 821037119788618 \nu^{14} + \cdots - 56\!\cdots\!10 ) / 66\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 9811311006132 \nu^{15} - 118323800991498 \nu^{14} + 132224363315824 \nu^{13} + \cdots + 25\!\cdots\!96 ) / 16\!\cdots\!91 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 44676200 \nu^{15} - 21022868 \nu^{14} + 318002448 \nu^{13} - 553890524 \nu^{12} + \cdots - 23181159999060 ) / 4949080935799 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 604553143311409 \nu^{15} + 718443434274215 \nu^{14} - 125615462650595 \nu^{13} + \cdots - 17\!\cdots\!36 ) / 66\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 24794175248 \nu^{15} + 3163594257 \nu^{14} + 128697406654 \nu^{13} - 149540944872 \nu^{12} + \cdots - 41\!\cdots\!61 ) / 26\!\cdots\!47 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 696083283744488 \nu^{15} + 278090520238218 \nu^{14} + \cdots - 23\!\cdots\!16 ) / 66\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 17573995501919 \nu^{15} + 48573480362878 \nu^{14} - 79297748171381 \nu^{13} + \cdots - 78\!\cdots\!05 ) / 16\!\cdots\!91 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 119982199828042 \nu^{15} - 16910266735533 \nu^{14} - 935287779711267 \nu^{13} + \cdots - 26\!\cdots\!49 ) / 94\!\cdots\!33 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 14\!\cdots\!36 \nu^{15} + \cdots - 22\!\cdots\!64 ) / 66\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 39630693572965 \nu^{15} - 1229380371689 \nu^{14} + 159532410095435 \nu^{13} + \cdots - 62\!\cdots\!72 ) / 16\!\cdots\!91 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 59705755476645 \nu^{15} + 34669631358846 \nu^{14} - 391910400736742 \nu^{13} + \cdots + 56\!\cdots\!02 ) / 16\!\cdots\!91 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 109029470992678 \nu^{15} - 128461943289595 \nu^{14} - 599997526477754 \nu^{13} + \cdots + 37\!\cdots\!33 ) / 16\!\cdots\!91 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 45\!\cdots\!50 \nu^{15} + \cdots + 28\!\cdots\!70 ) / 66\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 17074128036347 \nu^{15} + 5538404533786 \nu^{14} + 69973947646466 \nu^{13} + \cdots - 96\!\cdots\!44 ) / 23\!\cdots\!13 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{14} + 4 \beta_{11} - \beta_{9} - 4 \beta_{8} + 4 \beta_{7} + \beta_{6} - 4 \beta_{5} + \cdots - 4 \beta_1 ) / 32 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - \beta_{14} + 7 \beta_{13} - 8 \beta_{12} - \beta_{11} - 7 \beta_{9} + 3 \beta_{8} - \beta_{7} + \cdots - 2 \beta_1 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 3 \beta_{14} - 16 \beta_{13} - 12 \beta_{11} - 24 \beta_{10} - 21 \beta_{9} + 44 \beta_{8} + \cdots + 48 ) / 32 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2 \beta_{15} + 3 \beta_{14} + 11 \beta_{13} + 10 \beta_{12} - \beta_{11} + 2 \beta_{10} - 13 \beta_{9} + \cdots + 112 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 10 \beta_{15} + 73 \beta_{14} + 11 \beta_{13} - 30 \beta_{12} + 67 \beta_{11} + 10 \beta_{10} + \cdots - 220 ) / 16 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 38 \beta_{14} + 51 \beta_{13} - 193 \beta_{11} - 104 \beta_{10} - 466 \beta_{9} + 91 \beta_{8} + \cdots - 3304 ) / 16 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 784 \beta_{15} - 559 \beta_{14} - 910 \beta_{13} + 1680 \beta_{12} - 1074 \beta_{11} - 784 \beta_{10} + \cdots + 3024 ) / 32 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 35 \beta_{15} + 264 \beta_{14} - 567 \beta_{13} + 789 \beta_{12} + 565 \beta_{11} + 35 \beta_{10} + \cdots - 1568 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 459 \beta_{14} + 7082 \beta_{13} + 2606 \beta_{11} + 8040 \beta_{10} - 1155 \beta_{9} - 16770 \beta_{8} + \cdots - 146112 ) / 32 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 5316 \beta_{15} - 7547 \beta_{14} - 20810 \beta_{13} + 3828 \beta_{12} - 12042 \beta_{11} + \cdots - 146160 ) / 16 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 15158 \beta_{15} - 22159 \beta_{14} - 47799 \beta_{13} + 75878 \beta_{12} - 10699 \beta_{11} + \cdots + 10252 ) / 16 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( 9675 \beta_{14} - 12547 \beta_{13} + 44757 \beta_{11} + 27988 \beta_{10} + 117137 \beta_{9} + \cdots + 122192 ) / 4 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 374920 \beta_{15} - 212239 \beta_{14} + 122612 \beta_{13} - 782600 \beta_{12} - 16264 \beta_{11} + \cdots - 6119568 ) / 32 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( - 162568 \beta_{15} - 974947 \beta_{14} - 20713 \beta_{13} - 620880 \beta_{12} - 1328377 \beta_{11} + \cdots + 9626736 ) / 16 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 1233271 \beta_{14} - 4287824 \beta_{13} + 5841516 \beta_{11} + 1288536 \beta_{10} + 17210529 \beta_{9} + \cdots + 90847728 ) / 32 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1
0.0550989 + 2.76316i
2.79294 1.11885i
−0.427517 2.97818i
1.71341 0.109119i
−2.42052 + 1.33386i
1.13462 + 1.75343i
−2.08583 0.105897i
−0.762206 1.53842i
−0.762206 + 1.53842i
−2.08583 + 0.105897i
1.13462 1.75343i
−2.42052 1.33386i
1.71341 + 0.109119i
−0.427517 + 2.97818i
2.79294 + 1.11885i
0.0550989 2.76316i
0 1.73205i 0 8.94195i 0 1.52790 + 6.83122i 0 −3.00000 0
97.2 0 1.73205i 0 5.15119i 0 −2.53356 6.52542i 0 −3.00000 0
97.3 0 1.73205i 0 2.97285i 0 3.90735 + 5.80798i 0 −3.00000 0
97.4 0 1.73205i 0 0.817910i 0 −6.47914 2.64968i 0 −3.00000 0
97.5 0 1.73205i 0 0.817910i 0 6.47914 2.64968i 0 −3.00000 0
97.6 0 1.73205i 0 2.97285i 0 −3.90735 + 5.80798i 0 −3.00000 0
97.7 0 1.73205i 0 5.15119i 0 2.53356 6.52542i 0 −3.00000 0
97.8 0 1.73205i 0 8.94195i 0 −1.52790 + 6.83122i 0 −3.00000 0
97.9 0 1.73205i 0 8.94195i 0 −1.52790 6.83122i 0 −3.00000 0
97.10 0 1.73205i 0 5.15119i 0 2.53356 + 6.52542i 0 −3.00000 0
97.11 0 1.73205i 0 2.97285i 0 −3.90735 5.80798i 0 −3.00000 0
97.12 0 1.73205i 0 0.817910i 0 6.47914 + 2.64968i 0 −3.00000 0
97.13 0 1.73205i 0 0.817910i 0 −6.47914 + 2.64968i 0 −3.00000 0
97.14 0 1.73205i 0 2.97285i 0 3.90735 5.80798i 0 −3.00000 0
97.15 0 1.73205i 0 5.15119i 0 −2.53356 + 6.52542i 0 −3.00000 0
97.16 0 1.73205i 0 8.94195i 0 1.52790 6.83122i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 97.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 672.3.f.b 16
3.b odd 2 1 2016.3.f.g 16
4.b odd 2 1 inner 672.3.f.b 16
7.b odd 2 1 inner 672.3.f.b 16
8.b even 2 1 1344.3.f.j 16
8.d odd 2 1 1344.3.f.j 16
12.b even 2 1 2016.3.f.g 16
21.c even 2 1 2016.3.f.g 16
28.d even 2 1 inner 672.3.f.b 16
56.e even 2 1 1344.3.f.j 16
56.h odd 2 1 1344.3.f.j 16
84.h odd 2 1 2016.3.f.g 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.3.f.b 16 1.a even 1 1 trivial
672.3.f.b 16 4.b odd 2 1 inner
672.3.f.b 16 7.b odd 2 1 inner
672.3.f.b 16 28.d even 2 1 inner
1344.3.f.j 16 8.b even 2 1
1344.3.f.j 16 8.d odd 2 1
1344.3.f.j 16 56.e even 2 1
1344.3.f.j 16 56.h odd 2 1
2016.3.f.g 16 3.b odd 2 1
2016.3.f.g 16 12.b even 2 1
2016.3.f.g 16 21.c even 2 1
2016.3.f.g 16 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 116T_{5}^{6} + 3140T_{5}^{4} + 20800T_{5}^{2} + 12544 \) acting on \(S_{3}^{\mathrm{new}}(672, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{8} \) Copy content Toggle raw display
$5$ \( (T^{8} + 116 T^{6} + \cdots + 12544)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} + \cdots + 33232930569601 \) Copy content Toggle raw display
$11$ \( (T^{8} - 308 T^{6} + \cdots + 18496)^{2} \) Copy content Toggle raw display
$13$ \( (T^{8} + 704 T^{6} + \cdots + 58003456)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + 1300 T^{6} + \cdots + 2755830016)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + 1208 T^{6} + \cdots + 200704)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} - 2788 T^{6} + \cdots + 25515589696)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} + 32 T^{3} + \cdots + 400624)^{4} \) Copy content Toggle raw display
$31$ \( (T^{8} + 2192 T^{6} + \cdots + 802816)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 12 T^{3} + \cdots - 184256)^{4} \) Copy content Toggle raw display
$41$ \( (T^{8} + 7348 T^{6} + \cdots + 39980802304)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots + 1854215996416)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 6368 T^{6} + \cdots + 554696704)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 40 T^{3} + \cdots + 97648)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} + 6272 T^{6} + \cdots + 5398134784)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + \cdots + 81649874305024)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 815571244171264)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + \cdots + 492277878776896)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + \cdots + 13\!\cdots\!04)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + \cdots + 511254788571136)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 242039913447424)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots + 11\!\cdots\!24)^{2} \) Copy content Toggle raw display
$97$ \( (T^{8} + \cdots + 7895290740736)^{2} \) Copy content Toggle raw display
show more
show less