Properties

Label 2-672-7.6-c2-0-16
Degree $2$
Conductor $672$
Sign $0.829 + 0.558i$
Analytic cond. $18.3106$
Root an. cond. $4.27909$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·3-s + 2.97i·5-s + (−3.90 + 5.80i)7-s − 2.99·9-s − 5.79·11-s − 18.9i·13-s + 5.14·15-s − 18.0i·17-s − 0.0874i·19-s + (10.0 + 6.76i)21-s + 42.6·23-s + 16.1·25-s + 5.19i·27-s + 17.9·29-s + 38.0i·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + 0.594i·5-s + (−0.558 + 0.829i)7-s − 0.333·9-s − 0.527·11-s − 1.45i·13-s + 0.343·15-s − 1.06i·17-s − 0.00460i·19-s + (0.479 + 0.322i)21-s + 1.85·23-s + 0.646·25-s + 0.192i·27-s + 0.619·29-s + 1.22i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.558i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 672 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.829 + 0.558i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(672\)    =    \(2^{5} \cdot 3 \cdot 7\)
Sign: $0.829 + 0.558i$
Analytic conductor: \(18.3106\)
Root analytic conductor: \(4.27909\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{672} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 672,\ (\ :1),\ 0.829 + 0.558i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.586537403\)
\(L(\frac12)\) \(\approx\) \(1.586537403\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73iT \)
7 \( 1 + (3.90 - 5.80i)T \)
good5 \( 1 - 2.97iT - 25T^{2} \)
11 \( 1 + 5.79T + 121T^{2} \)
13 \( 1 + 18.9iT - 169T^{2} \)
17 \( 1 + 18.0iT - 289T^{2} \)
19 \( 1 + 0.0874iT - 361T^{2} \)
23 \( 1 - 42.6T + 529T^{2} \)
29 \( 1 - 17.9T + 841T^{2} \)
31 \( 1 - 38.0iT - 961T^{2} \)
37 \( 1 - 68.7T + 1.36e3T^{2} \)
41 \( 1 - 3.58iT - 1.68e3T^{2} \)
43 \( 1 - 50.5T + 1.84e3T^{2} \)
47 \( 1 + 19.4iT - 2.20e3T^{2} \)
53 \( 1 - 61.5T + 2.80e3T^{2} \)
59 \( 1 + 10.3iT - 3.48e3T^{2} \)
61 \( 1 + 79.8iT - 3.72e3T^{2} \)
67 \( 1 + 52.9T + 4.48e3T^{2} \)
71 \( 1 + 102.T + 5.04e3T^{2} \)
73 \( 1 - 104. iT - 5.32e3T^{2} \)
79 \( 1 - 25.0T + 6.24e3T^{2} \)
83 \( 1 + 84.2iT - 6.88e3T^{2} \)
89 \( 1 + 29.4iT - 7.92e3T^{2} \)
97 \( 1 - 8.26iT - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.32637888209767407583743118040, −9.288403673101187913240307997967, −8.473836854306582386538337241584, −7.46417154478340901843444631941, −6.76738542130010723380848376869, −5.74606695083816164036702355604, −4.96956277111859379729956337614, −2.92997290448861114274912895777, −2.81891771732194271608955191863, −0.75151984669332498782456963310, 0.999646797080205455257704479619, 2.72941157588963025105952438461, 4.08617521919709340498410865462, 4.60057214979665674316103024609, 5.87063919074858865209780992040, 6.82457608179535702664996505850, 7.79197399486092451951049704011, 8.936387303300351169873557288348, 9.392923253241025462409975414637, 10.44482920200117614124009396185

Graph of the $Z$-function along the critical line