Properties

Label 672.2.c.b.337.7
Level $672$
Weight $2$
Character 672.337
Analytic conductor $5.366$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [672,2,Mod(337,672)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(672, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("672.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 672.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.386672896.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} - 2x^{5} + 2x^{4} - 4x^{3} - 4x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.7
Root \(-0.835949 + 1.14070i\) of defining polynomial
Character \(\chi\) \(=\) 672.337
Dual form 672.2.c.b.337.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} -0.467138i q^{5} -1.00000 q^{7} -1.00000 q^{9} -4.87666i q^{11} -4.56279i q^{13} +0.467138 q^{15} +6.09565 q^{17} -1.34379i q^{19} -1.00000i q^{21} +4.09565 q^{23} +4.78178 q^{25} -1.00000i q^{27} +7.78178i q^{29} -4.40952 q^{31} +4.87666 q^{33} +0.467138i q^{35} -4.40952i q^{37} +4.56279 q^{39} -6.09565 q^{41} -4.15327i q^{43} +0.467138i q^{45} +6.68759 q^{47} +1.00000 q^{49} +6.09565i q^{51} -1.34379i q^{53} -2.27807 q^{55} +1.34379 q^{57} -4.00000i q^{59} -5.49706i q^{61} +1.00000 q^{63} -2.13145 q^{65} -5.90658i q^{67} +4.09565i q^{69} +4.72339 q^{71} -12.0599 q^{73} +4.78178i q^{75} +4.87666i q^{77} +16.1913 q^{79} +1.00000 q^{81} +13.7533i q^{83} -2.84751i q^{85} -7.78178 q^{87} +7.96420 q^{89} +4.56279i q^{91} -4.40952i q^{93} -0.627737 q^{95} -12.8789 q^{97} +4.87666i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7} - 8 q^{9} + 4 q^{15} + 4 q^{17} - 12 q^{23} - 24 q^{25} - 8 q^{31} + 12 q^{33} - 8 q^{39} - 4 q^{41} + 8 q^{49} + 8 q^{55} - 16 q^{57} + 8 q^{63} - 16 q^{65} + 28 q^{71} - 8 q^{73} + 40 q^{79}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) − 0.467138i − 0.208910i −0.994530 0.104455i \(-0.966690\pi\)
0.994530 0.104455i \(-0.0333099\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) − 4.87666i − 1.47037i −0.677868 0.735184i \(-0.737096\pi\)
0.677868 0.735184i \(-0.262904\pi\)
\(12\) 0 0
\(13\) − 4.56279i − 1.26549i −0.774360 0.632745i \(-0.781928\pi\)
0.774360 0.632745i \(-0.218072\pi\)
\(14\) 0 0
\(15\) 0.467138 0.120614
\(16\) 0 0
\(17\) 6.09565 1.47841 0.739206 0.673479i \(-0.235201\pi\)
0.739206 + 0.673479i \(0.235201\pi\)
\(18\) 0 0
\(19\) − 1.34379i − 0.308288i −0.988048 0.154144i \(-0.950738\pi\)
0.988048 0.154144i \(-0.0492619\pi\)
\(20\) 0 0
\(21\) − 1.00000i − 0.218218i
\(22\) 0 0
\(23\) 4.09565 0.854002 0.427001 0.904251i \(-0.359570\pi\)
0.427001 + 0.904251i \(0.359570\pi\)
\(24\) 0 0
\(25\) 4.78178 0.956357
\(26\) 0 0
\(27\) − 1.00000i − 0.192450i
\(28\) 0 0
\(29\) 7.78178i 1.44504i 0.691350 + 0.722520i \(0.257016\pi\)
−0.691350 + 0.722520i \(0.742984\pi\)
\(30\) 0 0
\(31\) −4.40952 −0.791973 −0.395987 0.918256i \(-0.629597\pi\)
−0.395987 + 0.918256i \(0.629597\pi\)
\(32\) 0 0
\(33\) 4.87666 0.848917
\(34\) 0 0
\(35\) 0.467138i 0.0789607i
\(36\) 0 0
\(37\) − 4.40952i − 0.724921i −0.931999 0.362460i \(-0.881937\pi\)
0.931999 0.362460i \(-0.118063\pi\)
\(38\) 0 0
\(39\) 4.56279 0.730631
\(40\) 0 0
\(41\) −6.09565 −0.951981 −0.475990 0.879450i \(-0.657910\pi\)
−0.475990 + 0.879450i \(0.657910\pi\)
\(42\) 0 0
\(43\) − 4.15327i − 0.633368i −0.948531 0.316684i \(-0.897431\pi\)
0.948531 0.316684i \(-0.102569\pi\)
\(44\) 0 0
\(45\) 0.467138i 0.0696368i
\(46\) 0 0
\(47\) 6.68759 0.975485 0.487743 0.872988i \(-0.337820\pi\)
0.487743 + 0.872988i \(0.337820\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 6.09565i 0.853562i
\(52\) 0 0
\(53\) − 1.34379i − 0.184584i −0.995732 0.0922922i \(-0.970581\pi\)
0.995732 0.0922922i \(-0.0294194\pi\)
\(54\) 0 0
\(55\) −2.27807 −0.307175
\(56\) 0 0
\(57\) 1.34379 0.177990
\(58\) 0 0
\(59\) − 4.00000i − 0.520756i −0.965507 0.260378i \(-0.916153\pi\)
0.965507 0.260378i \(-0.0838471\pi\)
\(60\) 0 0
\(61\) − 5.49706i − 0.703827i −0.936033 0.351913i \(-0.885531\pi\)
0.936033 0.351913i \(-0.114469\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −2.13145 −0.264374
\(66\) 0 0
\(67\) − 5.90658i − 0.721604i −0.932642 0.360802i \(-0.882503\pi\)
0.932642 0.360802i \(-0.117497\pi\)
\(68\) 0 0
\(69\) 4.09565i 0.493058i
\(70\) 0 0
\(71\) 4.72339 0.560563 0.280281 0.959918i \(-0.409572\pi\)
0.280281 + 0.959918i \(0.409572\pi\)
\(72\) 0 0
\(73\) −12.0599 −1.41150 −0.705749 0.708462i \(-0.749390\pi\)
−0.705749 + 0.708462i \(0.749390\pi\)
\(74\) 0 0
\(75\) 4.78178i 0.552153i
\(76\) 0 0
\(77\) 4.87666i 0.555747i
\(78\) 0 0
\(79\) 16.1913 1.82166 0.910832 0.412778i \(-0.135441\pi\)
0.910832 + 0.412778i \(0.135441\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 13.7533i 1.50962i 0.655942 + 0.754811i \(0.272272\pi\)
−0.655942 + 0.754811i \(0.727728\pi\)
\(84\) 0 0
\(85\) − 2.84751i − 0.308856i
\(86\) 0 0
\(87\) −7.78178 −0.834295
\(88\) 0 0
\(89\) 7.96420 0.844204 0.422102 0.906548i \(-0.361292\pi\)
0.422102 + 0.906548i \(0.361292\pi\)
\(90\) 0 0
\(91\) 4.56279i 0.478310i
\(92\) 0 0
\(93\) − 4.40952i − 0.457246i
\(94\) 0 0
\(95\) −0.627737 −0.0644044
\(96\) 0 0
\(97\) −12.8789 −1.30765 −0.653827 0.756644i \(-0.726837\pi\)
−0.653827 + 0.756644i \(0.726837\pi\)
\(98\) 0 0
\(99\) 4.87666i 0.490122i
\(100\) 0 0
\(101\) 2.22045i 0.220943i 0.993879 + 0.110472i \(0.0352361\pi\)
−0.993879 + 0.110472i \(0.964764\pi\)
\(102\) 0 0
\(103\) −11.0971 −1.09343 −0.546715 0.837319i \(-0.684122\pi\)
−0.546715 + 0.837319i \(0.684122\pi\)
\(104\) 0 0
\(105\) −0.467138 −0.0455880
\(106\) 0 0
\(107\) − 3.12334i − 0.301945i −0.988538 0.150972i \(-0.951760\pi\)
0.988538 0.150972i \(-0.0482405\pi\)
\(108\) 0 0
\(109\) − 10.6876i − 1.02369i −0.859079 0.511843i \(-0.828963\pi\)
0.859079 0.511843i \(-0.171037\pi\)
\(110\) 0 0
\(111\) 4.40952 0.418533
\(112\) 0 0
\(113\) −12.0599 −1.13450 −0.567248 0.823547i \(-0.691992\pi\)
−0.567248 + 0.823547i \(0.691992\pi\)
\(114\) 0 0
\(115\) − 1.91323i − 0.178410i
\(116\) 0 0
\(117\) 4.56279i 0.421830i
\(118\) 0 0
\(119\) −6.09565 −0.558787
\(120\) 0 0
\(121\) −12.7818 −1.16198
\(122\) 0 0
\(123\) − 6.09565i − 0.549626i
\(124\) 0 0
\(125\) − 4.56944i − 0.408703i
\(126\) 0 0
\(127\) −18.8789 −1.67523 −0.837615 0.546261i \(-0.816051\pi\)
−0.837615 + 0.546261i \(0.816051\pi\)
\(128\) 0 0
\(129\) 4.15327 0.365675
\(130\) 0 0
\(131\) 4.93428i 0.431110i 0.976492 + 0.215555i \(0.0691560\pi\)
−0.976492 + 0.215555i \(0.930844\pi\)
\(132\) 0 0
\(133\) 1.34379i 0.116522i
\(134\) 0 0
\(135\) −0.467138 −0.0402048
\(136\) 0 0
\(137\) 19.0103 1.62416 0.812082 0.583544i \(-0.198334\pi\)
0.812082 + 0.583544i \(0.198334\pi\)
\(138\) 0 0
\(139\) − 10.4380i − 0.885339i −0.896685 0.442669i \(-0.854032\pi\)
0.896685 0.442669i \(-0.145968\pi\)
\(140\) 0 0
\(141\) 6.68759i 0.563197i
\(142\) 0 0
\(143\) −22.2512 −1.86073
\(144\) 0 0
\(145\) 3.63516 0.301884
\(146\) 0 0
\(147\) 1.00000i 0.0824786i
\(148\) 0 0
\(149\) 6.65621i 0.545298i 0.962114 + 0.272649i \(0.0878997\pi\)
−0.962114 + 0.272649i \(0.912100\pi\)
\(150\) 0 0
\(151\) 2.68759 0.218713 0.109356 0.994003i \(-0.465121\pi\)
0.109356 + 0.994003i \(0.465121\pi\)
\(152\) 0 0
\(153\) −6.09565 −0.492804
\(154\) 0 0
\(155\) 2.05985i 0.165451i
\(156\) 0 0
\(157\) 23.1351i 1.84639i 0.384338 + 0.923193i \(0.374430\pi\)
−0.384338 + 0.923193i \(0.625570\pi\)
\(158\) 0 0
\(159\) 1.34379 0.106570
\(160\) 0 0
\(161\) −4.09565 −0.322783
\(162\) 0 0
\(163\) 12.0380i 0.942891i 0.881895 + 0.471446i \(0.156268\pi\)
−0.881895 + 0.471446i \(0.843732\pi\)
\(164\) 0 0
\(165\) − 2.27807i − 0.177347i
\(166\) 0 0
\(167\) −9.01034 −0.697241 −0.348621 0.937264i \(-0.613350\pi\)
−0.348621 + 0.937264i \(0.613350\pi\)
\(168\) 0 0
\(169\) −7.81904 −0.601465
\(170\) 0 0
\(171\) 1.34379i 0.102763i
\(172\) 0 0
\(173\) 9.59271i 0.729321i 0.931141 + 0.364660i \(0.118815\pi\)
−0.931141 + 0.364660i \(0.881185\pi\)
\(174\) 0 0
\(175\) −4.78178 −0.361469
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 0 0
\(179\) 7.69278i 0.574985i 0.957783 + 0.287493i \(0.0928217\pi\)
−0.957783 + 0.287493i \(0.907178\pi\)
\(180\) 0 0
\(181\) 15.2504i 1.13355i 0.823872 + 0.566776i \(0.191809\pi\)
−0.823872 + 0.566776i \(0.808191\pi\)
\(182\) 0 0
\(183\) 5.49706 0.406355
\(184\) 0 0
\(185\) −2.05985 −0.151443
\(186\) 0 0
\(187\) − 29.7264i − 2.17381i
\(188\) 0 0
\(189\) 1.00000i 0.0727393i
\(190\) 0 0
\(191\) 4.72339 0.341772 0.170886 0.985291i \(-0.445337\pi\)
0.170886 + 0.985291i \(0.445337\pi\)
\(192\) 0 0
\(193\) 22.3379 1.60792 0.803959 0.594684i \(-0.202723\pi\)
0.803959 + 0.594684i \(0.202723\pi\)
\(194\) 0 0
\(195\) − 2.13145i − 0.152636i
\(196\) 0 0
\(197\) 1.53510i 0.109371i 0.998504 + 0.0546855i \(0.0174156\pi\)
−0.998504 + 0.0546855i \(0.982584\pi\)
\(198\) 0 0
\(199\) 14.6876 1.04118 0.520588 0.853808i \(-0.325713\pi\)
0.520588 + 0.853808i \(0.325713\pi\)
\(200\) 0 0
\(201\) 5.90658 0.416618
\(202\) 0 0
\(203\) − 7.78178i − 0.546174i
\(204\) 0 0
\(205\) 2.84751i 0.198879i
\(206\) 0 0
\(207\) −4.09565 −0.284667
\(208\) 0 0
\(209\) −6.55322 −0.453296
\(210\) 0 0
\(211\) 22.8409i 1.57243i 0.617953 + 0.786215i \(0.287962\pi\)
−0.617953 + 0.786215i \(0.712038\pi\)
\(212\) 0 0
\(213\) 4.72339i 0.323641i
\(214\) 0 0
\(215\) −1.94015 −0.132317
\(216\) 0 0
\(217\) 4.40952 0.299338
\(218\) 0 0
\(219\) − 12.0599i − 0.814929i
\(220\) 0 0
\(221\) − 27.8132i − 1.87092i
\(222\) 0 0
\(223\) −21.4321 −1.43520 −0.717600 0.696455i \(-0.754760\pi\)
−0.717600 + 0.696455i \(0.754760\pi\)
\(224\) 0 0
\(225\) −4.78178 −0.318786
\(226\) 0 0
\(227\) 29.3169i 1.94583i 0.231164 + 0.972915i \(0.425747\pi\)
−0.231164 + 0.972915i \(0.574253\pi\)
\(228\) 0 0
\(229\) − 22.5074i − 1.48733i −0.668552 0.743666i \(-0.733086\pi\)
0.668552 0.743666i \(-0.266914\pi\)
\(230\) 0 0
\(231\) −4.87666 −0.320860
\(232\) 0 0
\(233\) −0.687589 −0.0450454 −0.0225227 0.999746i \(-0.507170\pi\)
−0.0225227 + 0.999746i \(0.507170\pi\)
\(234\) 0 0
\(235\) − 3.12402i − 0.203789i
\(236\) 0 0
\(237\) 16.1913i 1.05174i
\(238\) 0 0
\(239\) 9.59936 0.620931 0.310466 0.950585i \(-0.399515\pi\)
0.310466 + 0.950585i \(0.399515\pi\)
\(240\) 0 0
\(241\) 0.496287 0.0319687 0.0159843 0.999872i \(-0.494912\pi\)
0.0159843 + 0.999872i \(0.494912\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) − 0.467138i − 0.0298443i
\(246\) 0 0
\(247\) −6.13145 −0.390135
\(248\) 0 0
\(249\) −13.7533 −0.871581
\(250\) 0 0
\(251\) 22.1359i 1.39721i 0.715509 + 0.698603i \(0.246195\pi\)
−0.715509 + 0.698603i \(0.753805\pi\)
\(252\) 0 0
\(253\) − 19.9731i − 1.25570i
\(254\) 0 0
\(255\) 2.84751 0.178318
\(256\) 0 0
\(257\) 2.28695 0.142656 0.0713281 0.997453i \(-0.477276\pi\)
0.0713281 + 0.997453i \(0.477276\pi\)
\(258\) 0 0
\(259\) 4.40952i 0.273994i
\(260\) 0 0
\(261\) − 7.78178i − 0.481680i
\(262\) 0 0
\(263\) 30.1555 1.85947 0.929734 0.368232i \(-0.120037\pi\)
0.929734 + 0.368232i \(0.120037\pi\)
\(264\) 0 0
\(265\) −0.627737 −0.0385616
\(266\) 0 0
\(267\) 7.96420i 0.487401i
\(268\) 0 0
\(269\) − 9.47748i − 0.577852i −0.957351 0.288926i \(-0.906702\pi\)
0.957351 0.288926i \(-0.0932982\pi\)
\(270\) 0 0
\(271\) 13.2855 0.807036 0.403518 0.914972i \(-0.367787\pi\)
0.403518 + 0.914972i \(0.367787\pi\)
\(272\) 0 0
\(273\) −4.56279 −0.276153
\(274\) 0 0
\(275\) − 23.3191i − 1.40620i
\(276\) 0 0
\(277\) 26.8475i 1.61311i 0.591159 + 0.806555i \(0.298671\pi\)
−0.591159 + 0.806555i \(0.701329\pi\)
\(278\) 0 0
\(279\) 4.40952 0.263991
\(280\) 0 0
\(281\) 11.8686 0.708018 0.354009 0.935242i \(-0.384818\pi\)
0.354009 + 0.935242i \(0.384818\pi\)
\(282\) 0 0
\(283\) 2.46937i 0.146789i 0.997303 + 0.0733944i \(0.0233832\pi\)
−0.997303 + 0.0733944i \(0.976617\pi\)
\(284\) 0 0
\(285\) − 0.627737i − 0.0371839i
\(286\) 0 0
\(287\) 6.09565 0.359815
\(288\) 0 0
\(289\) 20.1570 1.18570
\(290\) 0 0
\(291\) − 12.8789i − 0.754974i
\(292\) 0 0
\(293\) − 22.7899i − 1.33140i −0.746220 0.665700i \(-0.768133\pi\)
0.746220 0.665700i \(-0.231867\pi\)
\(294\) 0 0
\(295\) −1.86855 −0.108791
\(296\) 0 0
\(297\) −4.87666 −0.282972
\(298\) 0 0
\(299\) − 18.6876i − 1.08073i
\(300\) 0 0
\(301\) 4.15327i 0.239390i
\(302\) 0 0
\(303\) −2.22045 −0.127562
\(304\) 0 0
\(305\) −2.56788 −0.147037
\(306\) 0 0
\(307\) 9.34379i 0.533279i 0.963796 + 0.266639i \(0.0859132\pi\)
−0.963796 + 0.266639i \(0.914087\pi\)
\(308\) 0 0
\(309\) − 11.0971i − 0.631292i
\(310\) 0 0
\(311\) −6.68759 −0.379218 −0.189609 0.981860i \(-0.560722\pi\)
−0.189609 + 0.981860i \(0.560722\pi\)
\(312\) 0 0
\(313\) −15.6381 −0.883916 −0.441958 0.897036i \(-0.645716\pi\)
−0.441958 + 0.897036i \(0.645716\pi\)
\(314\) 0 0
\(315\) − 0.467138i − 0.0263202i
\(316\) 0 0
\(317\) − 9.34379i − 0.524800i −0.964959 0.262400i \(-0.915486\pi\)
0.964959 0.262400i \(-0.0845139\pi\)
\(318\) 0 0
\(319\) 37.9491 2.12474
\(320\) 0 0
\(321\) 3.12334 0.174328
\(322\) 0 0
\(323\) − 8.19130i − 0.455776i
\(324\) 0 0
\(325\) − 21.8183i − 1.21026i
\(326\) 0 0
\(327\) 10.6876 0.591025
\(328\) 0 0
\(329\) −6.68759 −0.368699
\(330\) 0 0
\(331\) − 5.40874i − 0.297291i −0.988891 0.148646i \(-0.952509\pi\)
0.988891 0.148646i \(-0.0474914\pi\)
\(332\) 0 0
\(333\) 4.40952i 0.241640i
\(334\) 0 0
\(335\) −2.75919 −0.150750
\(336\) 0 0
\(337\) −6.55614 −0.357136 −0.178568 0.983928i \(-0.557146\pi\)
−0.178568 + 0.983928i \(0.557146\pi\)
\(338\) 0 0
\(339\) − 12.0599i − 0.655001i
\(340\) 0 0
\(341\) 21.5037i 1.16449i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 1.91323 0.103005
\(346\) 0 0
\(347\) − 24.9964i − 1.34187i −0.741514 0.670937i \(-0.765892\pi\)
0.741514 0.670937i \(-0.234108\pi\)
\(348\) 0 0
\(349\) 27.1921i 1.45556i 0.685811 + 0.727779i \(0.259447\pi\)
−0.685811 + 0.727779i \(0.740553\pi\)
\(350\) 0 0
\(351\) −4.56279 −0.243544
\(352\) 0 0
\(353\) −30.2870 −1.61201 −0.806006 0.591907i \(-0.798375\pi\)
−0.806006 + 0.591907i \(0.798375\pi\)
\(354\) 0 0
\(355\) − 2.20647i − 0.117107i
\(356\) 0 0
\(357\) − 6.09565i − 0.322616i
\(358\) 0 0
\(359\) −6.59194 −0.347909 −0.173955 0.984754i \(-0.555655\pi\)
−0.173955 + 0.984754i \(0.555655\pi\)
\(360\) 0 0
\(361\) 17.1942 0.904959
\(362\) 0 0
\(363\) − 12.7818i − 0.670870i
\(364\) 0 0
\(365\) 5.63361i 0.294877i
\(366\) 0 0
\(367\) 6.68759 0.349089 0.174545 0.984649i \(-0.444155\pi\)
0.174545 + 0.984649i \(0.444155\pi\)
\(368\) 0 0
\(369\) 6.09565 0.317327
\(370\) 0 0
\(371\) 1.34379i 0.0697663i
\(372\) 0 0
\(373\) 17.1256i 0.886729i 0.896341 + 0.443364i \(0.146215\pi\)
−0.896341 + 0.443364i \(0.853785\pi\)
\(374\) 0 0
\(375\) 4.56944 0.235965
\(376\) 0 0
\(377\) 35.5066 1.82868
\(378\) 0 0
\(379\) − 16.7094i − 0.858305i −0.903232 0.429152i \(-0.858812\pi\)
0.903232 0.429152i \(-0.141188\pi\)
\(380\) 0 0
\(381\) − 18.8789i − 0.967195i
\(382\) 0 0
\(383\) 9.94015 0.507918 0.253959 0.967215i \(-0.418267\pi\)
0.253959 + 0.967215i \(0.418267\pi\)
\(384\) 0 0
\(385\) 2.27807 0.116101
\(386\) 0 0
\(387\) 4.15327i 0.211123i
\(388\) 0 0
\(389\) − 19.2884i − 0.977961i −0.872295 0.488981i \(-0.837369\pi\)
0.872295 0.488981i \(-0.162631\pi\)
\(390\) 0 0
\(391\) 24.9657 1.26257
\(392\) 0 0
\(393\) −4.93428 −0.248901
\(394\) 0 0
\(395\) − 7.56357i − 0.380564i
\(396\) 0 0
\(397\) − 23.4417i − 1.17650i −0.808678 0.588252i \(-0.799816\pi\)
0.808678 0.588252i \(-0.200184\pi\)
\(398\) 0 0
\(399\) −1.34379 −0.0672739
\(400\) 0 0
\(401\) −16.0029 −0.799147 −0.399574 0.916701i \(-0.630842\pi\)
−0.399574 + 0.916701i \(0.630842\pi\)
\(402\) 0 0
\(403\) 20.1197i 1.00223i
\(404\) 0 0
\(405\) − 0.467138i − 0.0232123i
\(406\) 0 0
\(407\) −21.5037 −1.06590
\(408\) 0 0
\(409\) 15.5665 0.769713 0.384856 0.922976i \(-0.374251\pi\)
0.384856 + 0.922976i \(0.374251\pi\)
\(410\) 0 0
\(411\) 19.0103i 0.937711i
\(412\) 0 0
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 6.42469 0.315376
\(416\) 0 0
\(417\) 10.4380 0.511150
\(418\) 0 0
\(419\) 1.31241i 0.0641155i 0.999486 + 0.0320577i \(0.0102060\pi\)
−0.999486 + 0.0320577i \(0.989794\pi\)
\(420\) 0 0
\(421\) 3.66655i 0.178697i 0.996000 + 0.0893483i \(0.0284784\pi\)
−0.996000 + 0.0893483i \(0.971522\pi\)
\(422\) 0 0
\(423\) −6.68759 −0.325162
\(424\) 0 0
\(425\) 29.1481 1.41389
\(426\) 0 0
\(427\) 5.49706i 0.266022i
\(428\) 0 0
\(429\) − 22.2512i − 1.07430i
\(430\) 0 0
\(431\) −20.0957 −0.967973 −0.483987 0.875075i \(-0.660812\pi\)
−0.483987 + 0.875075i \(0.660812\pi\)
\(432\) 0 0
\(433\) 8.68759 0.417499 0.208749 0.977969i \(-0.433061\pi\)
0.208749 + 0.977969i \(0.433061\pi\)
\(434\) 0 0
\(435\) 3.63516i 0.174293i
\(436\) 0 0
\(437\) − 5.50371i − 0.263278i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) − 4.57012i − 0.217133i −0.994089 0.108566i \(-0.965374\pi\)
0.994089 0.108566i \(-0.0346260\pi\)
\(444\) 0 0
\(445\) − 3.72038i − 0.176363i
\(446\) 0 0
\(447\) −6.65621 −0.314828
\(448\) 0 0
\(449\) −3.94015 −0.185947 −0.0929735 0.995669i \(-0.529637\pi\)
−0.0929735 + 0.995669i \(0.529637\pi\)
\(450\) 0 0
\(451\) 29.7264i 1.39976i
\(452\) 0 0
\(453\) 2.68759i 0.126274i
\(454\) 0 0
\(455\) 2.13145 0.0999239
\(456\) 0 0
\(457\) 40.0207 1.87209 0.936044 0.351882i \(-0.114458\pi\)
0.936044 + 0.351882i \(0.114458\pi\)
\(458\) 0 0
\(459\) − 6.09565i − 0.284521i
\(460\) 0 0
\(461\) 34.6031i 1.61162i 0.592171 + 0.805812i \(0.298271\pi\)
−0.592171 + 0.805812i \(0.701729\pi\)
\(462\) 0 0
\(463\) −0.191302 −0.00889055 −0.00444528 0.999990i \(-0.501415\pi\)
−0.00444528 + 0.999990i \(0.501415\pi\)
\(464\) 0 0
\(465\) −2.05985 −0.0955234
\(466\) 0 0
\(467\) 4.49784i 0.208135i 0.994570 + 0.104068i \(0.0331858\pi\)
−0.994570 + 0.104068i \(0.966814\pi\)
\(468\) 0 0
\(469\) 5.90658i 0.272741i
\(470\) 0 0
\(471\) −23.1351 −1.06601
\(472\) 0 0
\(473\) −20.2541 −0.931283
\(474\) 0 0
\(475\) − 6.42573i − 0.294833i
\(476\) 0 0
\(477\) 1.34379i 0.0615281i
\(478\) 0 0
\(479\) 22.2512 1.01668 0.508341 0.861156i \(-0.330259\pi\)
0.508341 + 0.861156i \(0.330259\pi\)
\(480\) 0 0
\(481\) −20.1197 −0.917380
\(482\) 0 0
\(483\) − 4.09565i − 0.186359i
\(484\) 0 0
\(485\) 6.01621i 0.273182i
\(486\) 0 0
\(487\) 1.86855 0.0846721 0.0423360 0.999103i \(-0.486520\pi\)
0.0423360 + 0.999103i \(0.486520\pi\)
\(488\) 0 0
\(489\) −12.0380 −0.544379
\(490\) 0 0
\(491\) − 17.6374i − 0.795965i −0.917393 0.397982i \(-0.869711\pi\)
0.917393 0.397982i \(-0.130289\pi\)
\(492\) 0 0
\(493\) 47.4350i 2.13637i
\(494\) 0 0
\(495\) 2.27807 0.102392
\(496\) 0 0
\(497\) −4.72339 −0.211873
\(498\) 0 0
\(499\) 21.5854i 0.966295i 0.875539 + 0.483147i \(0.160506\pi\)
−0.875539 + 0.483147i \(0.839494\pi\)
\(500\) 0 0
\(501\) − 9.01034i − 0.402552i
\(502\) 0 0
\(503\) −5.24081 −0.233676 −0.116838 0.993151i \(-0.537276\pi\)
−0.116838 + 0.993151i \(0.537276\pi\)
\(504\) 0 0
\(505\) 1.03726 0.0461573
\(506\) 0 0
\(507\) − 7.81904i − 0.347256i
\(508\) 0 0
\(509\) − 18.3357i − 0.812715i −0.913714 0.406358i \(-0.866799\pi\)
0.913714 0.406358i \(-0.133201\pi\)
\(510\) 0 0
\(511\) 12.0599 0.533496
\(512\) 0 0
\(513\) −1.34379 −0.0593300
\(514\) 0 0
\(515\) 5.18388i 0.228429i
\(516\) 0 0
\(517\) − 32.6131i − 1.43432i
\(518\) 0 0
\(519\) −9.59271 −0.421073
\(520\) 0 0
\(521\) 6.78033 0.297051 0.148526 0.988909i \(-0.452547\pi\)
0.148526 + 0.988909i \(0.452547\pi\)
\(522\) 0 0
\(523\) 23.5066i 1.02787i 0.857828 + 0.513937i \(0.171813\pi\)
−0.857828 + 0.513937i \(0.828187\pi\)
\(524\) 0 0
\(525\) − 4.78178i − 0.208694i
\(526\) 0 0
\(527\) −26.8789 −1.17086
\(528\) 0 0
\(529\) −6.22564 −0.270680
\(530\) 0 0
\(531\) 4.00000i 0.173585i
\(532\) 0 0
\(533\) 27.8132i 1.20472i
\(534\) 0 0
\(535\) −1.45903 −0.0630794
\(536\) 0 0
\(537\) −7.69278 −0.331968
\(538\) 0 0
\(539\) − 4.87666i − 0.210052i
\(540\) 0 0
\(541\) 5.21526i 0.224222i 0.993696 + 0.112111i \(0.0357611\pi\)
−0.993696 + 0.112111i \(0.964239\pi\)
\(542\) 0 0
\(543\) −15.2504 −0.654456
\(544\) 0 0
\(545\) −4.99257 −0.213858
\(546\) 0 0
\(547\) − 27.2951i − 1.16705i −0.812094 0.583526i \(-0.801673\pi\)
0.812094 0.583526i \(-0.198327\pi\)
\(548\) 0 0
\(549\) 5.49706i 0.234609i
\(550\) 0 0
\(551\) 10.4571 0.445488
\(552\) 0 0
\(553\) −16.1913 −0.688524
\(554\) 0 0
\(555\) − 2.05985i − 0.0874359i
\(556\) 0 0
\(557\) − 4.78766i − 0.202859i −0.994843 0.101430i \(-0.967658\pi\)
0.994843 0.101430i \(-0.0323417\pi\)
\(558\) 0 0
\(559\) −18.9505 −0.801520
\(560\) 0 0
\(561\) 29.7264 1.25505
\(562\) 0 0
\(563\) − 18.7445i − 0.789988i −0.918684 0.394994i \(-0.870747\pi\)
0.918684 0.394994i \(-0.129253\pi\)
\(564\) 0 0
\(565\) 5.63361i 0.237008i
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 27.6950 1.16104 0.580518 0.814248i \(-0.302850\pi\)
0.580518 + 0.814248i \(0.302850\pi\)
\(570\) 0 0
\(571\) 17.4132i 0.728720i 0.931258 + 0.364360i \(0.118712\pi\)
−0.931258 + 0.364360i \(0.881288\pi\)
\(572\) 0 0
\(573\) 4.72339i 0.197322i
\(574\) 0 0
\(575\) 19.5845 0.816731
\(576\) 0 0
\(577\) −6.81904 −0.283880 −0.141940 0.989875i \(-0.545334\pi\)
−0.141940 + 0.989875i \(0.545334\pi\)
\(578\) 0 0
\(579\) 22.3379i 0.928332i
\(580\) 0 0
\(581\) − 13.7533i − 0.570584i
\(582\) 0 0
\(583\) −6.55322 −0.271407
\(584\) 0 0
\(585\) 2.13145 0.0881246
\(586\) 0 0
\(587\) 9.81025i 0.404912i 0.979291 + 0.202456i \(0.0648924\pi\)
−0.979291 + 0.202456i \(0.935108\pi\)
\(588\) 0 0
\(589\) 5.92549i 0.244155i
\(590\) 0 0
\(591\) −1.53510 −0.0631454
\(592\) 0 0
\(593\) −39.0913 −1.60529 −0.802644 0.596458i \(-0.796574\pi\)
−0.802644 + 0.596458i \(0.796574\pi\)
\(594\) 0 0
\(595\) 2.84751i 0.116736i
\(596\) 0 0
\(597\) 14.6876i 0.601123i
\(598\) 0 0
\(599\) −22.0270 −0.899998 −0.449999 0.893029i \(-0.648576\pi\)
−0.449999 + 0.893029i \(0.648576\pi\)
\(600\) 0 0
\(601\) −20.2512 −0.826062 −0.413031 0.910717i \(-0.635530\pi\)
−0.413031 + 0.910717i \(0.635530\pi\)
\(602\) 0 0
\(603\) 5.90658i 0.240535i
\(604\) 0 0
\(605\) 5.97085i 0.242750i
\(606\) 0 0
\(607\) −44.4454 −1.80398 −0.901991 0.431755i \(-0.857895\pi\)
−0.901991 + 0.431755i \(0.857895\pi\)
\(608\) 0 0
\(609\) 7.78178 0.315334
\(610\) 0 0
\(611\) − 30.5141i − 1.23447i
\(612\) 0 0
\(613\) 47.6263i 1.92361i 0.273737 + 0.961805i \(0.411740\pi\)
−0.273737 + 0.961805i \(0.588260\pi\)
\(614\) 0 0
\(615\) −2.84751 −0.114823
\(616\) 0 0
\(617\) −3.01034 −0.121192 −0.0605959 0.998162i \(-0.519300\pi\)
−0.0605959 + 0.998162i \(0.519300\pi\)
\(618\) 0 0
\(619\) 18.5141i 0.744143i 0.928204 + 0.372071i \(0.121352\pi\)
−0.928204 + 0.372071i \(0.878648\pi\)
\(620\) 0 0
\(621\) − 4.09565i − 0.164353i
\(622\) 0 0
\(623\) −7.96420 −0.319079
\(624\) 0 0
\(625\) 21.7744 0.870974
\(626\) 0 0
\(627\) − 6.55322i − 0.261711i
\(628\) 0 0
\(629\) − 26.8789i − 1.07173i
\(630\) 0 0
\(631\) −10.2658 −0.408676 −0.204338 0.978900i \(-0.565504\pi\)
−0.204338 + 0.978900i \(0.565504\pi\)
\(632\) 0 0
\(633\) −22.8409 −0.907843
\(634\) 0 0
\(635\) 8.81904i 0.349973i
\(636\) 0 0
\(637\) − 4.56279i − 0.180784i
\(638\) 0 0
\(639\) −4.72339 −0.186854
\(640\) 0 0
\(641\) −16.9358 −0.668925 −0.334462 0.942409i \(-0.608555\pi\)
−0.334462 + 0.942409i \(0.608555\pi\)
\(642\) 0 0
\(643\) − 19.5189i − 0.769750i −0.922969 0.384875i \(-0.874245\pi\)
0.922969 0.384875i \(-0.125755\pi\)
\(644\) 0 0
\(645\) − 1.94015i − 0.0763933i
\(646\) 0 0
\(647\) 23.3723 0.918858 0.459429 0.888214i \(-0.348054\pi\)
0.459429 + 0.888214i \(0.348054\pi\)
\(648\) 0 0
\(649\) −19.5066 −0.765702
\(650\) 0 0
\(651\) 4.40952i 0.172823i
\(652\) 0 0
\(653\) − 1.45903i − 0.0570963i −0.999592 0.0285481i \(-0.990912\pi\)
0.999592 0.0285481i \(-0.00908839\pi\)
\(654\) 0 0
\(655\) 2.30499 0.0900632
\(656\) 0 0
\(657\) 12.0599 0.470500
\(658\) 0 0
\(659\) 10.8929i 0.424326i 0.977234 + 0.212163i \(0.0680508\pi\)
−0.977234 + 0.212163i \(0.931949\pi\)
\(660\) 0 0
\(661\) − 8.69715i − 0.338280i −0.985592 0.169140i \(-0.945901\pi\)
0.985592 0.169140i \(-0.0540990\pi\)
\(662\) 0 0
\(663\) 27.8132 1.08017
\(664\) 0 0
\(665\) 0.627737 0.0243426
\(666\) 0 0
\(667\) 31.8715i 1.23407i
\(668\) 0 0
\(669\) − 21.4321i − 0.828613i
\(670\) 0 0
\(671\) −26.8073 −1.03488
\(672\) 0 0
\(673\) 18.0447 0.695571 0.347786 0.937574i \(-0.386934\pi\)
0.347786 + 0.937574i \(0.386934\pi\)
\(674\) 0 0
\(675\) − 4.78178i − 0.184051i
\(676\) 0 0
\(677\) 28.7781i 1.10603i 0.833170 + 0.553017i \(0.186524\pi\)
−0.833170 + 0.553017i \(0.813476\pi\)
\(678\) 0 0
\(679\) 12.8789 0.494246
\(680\) 0 0
\(681\) −29.3169 −1.12343
\(682\) 0 0
\(683\) 34.4431i 1.31793i 0.752174 + 0.658965i \(0.229005\pi\)
−0.752174 + 0.658965i \(0.770995\pi\)
\(684\) 0 0
\(685\) − 8.88044i − 0.339304i
\(686\) 0 0
\(687\) 22.5074 0.858711
\(688\) 0 0
\(689\) −6.13145 −0.233590
\(690\) 0 0
\(691\) − 41.5651i − 1.58121i −0.612325 0.790606i \(-0.709766\pi\)
0.612325 0.790606i \(-0.290234\pi\)
\(692\) 0 0
\(693\) − 4.87666i − 0.185249i
\(694\) 0 0
\(695\) −4.87598 −0.184956
\(696\) 0 0
\(697\) −37.1570 −1.40742
\(698\) 0 0
\(699\) − 0.687589i − 0.0260070i
\(700\) 0 0
\(701\) 46.7804i 1.76687i 0.468553 + 0.883435i \(0.344775\pi\)
−0.468553 + 0.883435i \(0.655225\pi\)
\(702\) 0 0
\(703\) −5.92549 −0.223484
\(704\) 0 0
\(705\) 3.12402 0.117658
\(706\) 0 0
\(707\) − 2.22045i − 0.0835087i
\(708\) 0 0
\(709\) − 8.43643i − 0.316837i −0.987372 0.158418i \(-0.949360\pi\)
0.987372 0.158418i \(-0.0506395\pi\)
\(710\) 0 0
\(711\) −16.1913 −0.607221
\(712\) 0 0
\(713\) −18.0599 −0.676347
\(714\) 0 0
\(715\) 10.3943i 0.388727i
\(716\) 0 0
\(717\) 9.59936i 0.358495i
\(718\) 0 0
\(719\) 38.4425 1.43366 0.716831 0.697247i \(-0.245592\pi\)
0.716831 + 0.697247i \(0.245592\pi\)
\(720\) 0 0
\(721\) 11.0971 0.413278
\(722\) 0 0
\(723\) 0.496287i 0.0184571i
\(724\) 0 0
\(725\) 37.2108i 1.38197i
\(726\) 0 0
\(727\) 17.5484 0.650834 0.325417 0.945571i \(-0.394495\pi\)
0.325417 + 0.945571i \(0.394495\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) − 25.3169i − 0.936379i
\(732\) 0 0
\(733\) − 38.8272i − 1.43412i −0.697013 0.717058i \(-0.745488\pi\)
0.697013 0.717058i \(-0.254512\pi\)
\(734\) 0 0
\(735\) 0.467138 0.0172306
\(736\) 0 0
\(737\) −28.8044 −1.06102
\(738\) 0 0
\(739\) 13.9066i 0.511562i 0.966735 + 0.255781i \(0.0823326\pi\)
−0.966735 + 0.255781i \(0.917667\pi\)
\(740\) 0 0
\(741\) − 6.13145i − 0.225244i
\(742\) 0 0
\(743\) −40.2300 −1.47590 −0.737948 0.674858i \(-0.764205\pi\)
−0.737948 + 0.674858i \(0.764205\pi\)
\(744\) 0 0
\(745\) 3.10936 0.113918
\(746\) 0 0
\(747\) − 13.7533i − 0.503207i
\(748\) 0 0
\(749\) 3.12334i 0.114124i
\(750\) 0 0
\(751\) −16.9957 −0.620181 −0.310091 0.950707i \(-0.600359\pi\)
−0.310091 + 0.950707i \(0.600359\pi\)
\(752\) 0 0
\(753\) −22.1359 −0.806678
\(754\) 0 0
\(755\) − 1.25547i − 0.0456914i
\(756\) 0 0
\(757\) − 9.43212i − 0.342816i −0.985200 0.171408i \(-0.945168\pi\)
0.985200 0.171408i \(-0.0548316\pi\)
\(758\) 0 0
\(759\) 19.9731 0.724977
\(760\) 0 0
\(761\) −9.41098 −0.341148 −0.170574 0.985345i \(-0.554562\pi\)
−0.170574 + 0.985345i \(0.554562\pi\)
\(762\) 0 0
\(763\) 10.6876i 0.386917i
\(764\) 0 0
\(765\) 2.84751i 0.102952i
\(766\) 0 0
\(767\) −18.2512 −0.659011
\(768\) 0 0
\(769\) 27.6950 0.998708 0.499354 0.866398i \(-0.333571\pi\)
0.499354 + 0.866398i \(0.333571\pi\)
\(770\) 0 0
\(771\) 2.28695i 0.0823626i
\(772\) 0 0
\(773\) − 33.8993i − 1.21927i −0.792682 0.609636i \(-0.791316\pi\)
0.792682 0.609636i \(-0.208684\pi\)
\(774\) 0 0
\(775\) −21.0854 −0.757409
\(776\) 0 0
\(777\) −4.40952 −0.158191
\(778\) 0 0
\(779\) 8.19130i 0.293484i
\(780\) 0 0
\(781\) − 23.0343i − 0.824234i
\(782\) 0 0
\(783\) 7.78178 0.278098
\(784\) 0 0
\(785\) 10.8073 0.385729
\(786\) 0 0
\(787\) − 31.2001i − 1.11216i −0.831128 0.556082i \(-0.812304\pi\)
0.831128 0.556082i \(-0.187696\pi\)
\(788\) 0 0
\(789\) 30.1555i 1.07356i
\(790\) 0 0
\(791\) 12.0599 0.428799
\(792\) 0 0
\(793\) −25.0819 −0.890686
\(794\) 0 0
\(795\) − 0.627737i − 0.0222635i
\(796\) 0 0
\(797\) − 32.2848i − 1.14359i −0.820398 0.571793i \(-0.806248\pi\)
0.820398 0.571793i \(-0.193752\pi\)
\(798\) 0 0
\(799\) 40.7652 1.44217
\(800\) 0 0
\(801\) −7.96420 −0.281401
\(802\) 0 0
\(803\) 58.8118i 2.07542i
\(804\) 0 0
\(805\) 1.91323i 0.0674326i
\(806\) 0 0
\(807\) 9.47748 0.333623
\(808\) 0 0
\(809\) 8.49629 0.298714 0.149357 0.988783i \(-0.452280\pi\)
0.149357 + 0.988783i \(0.452280\pi\)
\(810\) 0 0
\(811\) − 12.3826i − 0.434812i −0.976081 0.217406i \(-0.930240\pi\)
0.976081 0.217406i \(-0.0697596\pi\)
\(812\) 0 0
\(813\) 13.2855i 0.465943i
\(814\) 0 0
\(815\) 5.62342 0.196980
\(816\) 0 0
\(817\) −5.58114 −0.195259
\(818\) 0 0
\(819\) − 4.56279i − 0.159437i
\(820\) 0 0
\(821\) 21.8999i 0.764313i 0.924098 + 0.382156i \(0.124818\pi\)
−0.924098 + 0.382156i \(0.875182\pi\)
\(822\) 0 0
\(823\) 1.88321 0.0656446 0.0328223 0.999461i \(-0.489550\pi\)
0.0328223 + 0.999461i \(0.489550\pi\)
\(824\) 0 0
\(825\) 23.3191 0.811867
\(826\) 0 0
\(827\) 32.8051i 1.14074i 0.821387 + 0.570372i \(0.193201\pi\)
−0.821387 + 0.570372i \(0.806799\pi\)
\(828\) 0 0
\(829\) − 9.63143i − 0.334513i −0.985913 0.167257i \(-0.946509\pi\)
0.985913 0.167257i \(-0.0534909\pi\)
\(830\) 0 0
\(831\) −26.8475 −0.931330
\(832\) 0 0
\(833\) 6.09565 0.211202
\(834\) 0 0
\(835\) 4.20907i 0.145661i
\(836\) 0 0
\(837\) 4.40952i 0.152415i
\(838\) 0 0
\(839\) 48.0481 1.65880 0.829402 0.558652i \(-0.188681\pi\)
0.829402 + 0.558652i \(0.188681\pi\)
\(840\) 0 0
\(841\) −31.5561 −1.08814
\(842\) 0 0
\(843\) 11.8686i 0.408775i
\(844\) 0 0
\(845\) 3.65257i 0.125652i
\(846\) 0 0
\(847\) 12.7818 0.439187
\(848\) 0 0
\(849\) −2.46937 −0.0847486
\(850\) 0 0
\(851\) − 18.0599i − 0.619084i
\(852\) 0 0
\(853\) − 1.44013i − 0.0493090i −0.999696 0.0246545i \(-0.992151\pi\)
0.999696 0.0246545i \(-0.00784856\pi\)
\(854\) 0 0
\(855\) 0.627737 0.0214681
\(856\) 0 0
\(857\) 34.9775 1.19481 0.597404 0.801941i \(-0.296199\pi\)
0.597404 + 0.801941i \(0.296199\pi\)
\(858\) 0 0
\(859\) 6.45024i 0.220079i 0.993927 + 0.110040i \(0.0350978\pi\)
−0.993927 + 0.110040i \(0.964902\pi\)
\(860\) 0 0
\(861\) 6.09565i 0.207739i
\(862\) 0 0
\(863\) 34.4037 1.17112 0.585559 0.810630i \(-0.300875\pi\)
0.585559 + 0.810630i \(0.300875\pi\)
\(864\) 0 0
\(865\) 4.48112 0.152363
\(866\) 0 0
\(867\) 20.1570i 0.684566i
\(868\) 0 0
\(869\) − 78.9594i − 2.67852i
\(870\) 0 0
\(871\) −26.9505 −0.913182
\(872\) 0 0
\(873\) 12.8789 0.435884
\(874\) 0 0
\(875\) 4.56944i 0.154475i
\(876\) 0 0
\(877\) 40.3826i 1.36362i 0.731528 + 0.681812i \(0.238808\pi\)
−0.731528 + 0.681812i \(0.761192\pi\)
\(878\) 0 0
\(879\) 22.7899 0.768684
\(880\) 0 0
\(881\) 15.8926 0.535435 0.267718 0.963497i \(-0.413731\pi\)
0.267718 + 0.963497i \(0.413731\pi\)
\(882\) 0 0
\(883\) − 25.3113i − 0.851792i −0.904772 0.425896i \(-0.859959\pi\)
0.904772 0.425896i \(-0.140041\pi\)
\(884\) 0 0
\(885\) − 1.86855i − 0.0628106i
\(886\) 0 0
\(887\) −19.6352 −0.659284 −0.329642 0.944106i \(-0.606928\pi\)
−0.329642 + 0.944106i \(0.606928\pi\)
\(888\) 0 0
\(889\) 18.8789 0.633178
\(890\) 0 0
\(891\) − 4.87666i − 0.163374i
\(892\) 0 0
\(893\) − 8.98674i − 0.300730i
\(894\) 0 0
\(895\) 3.59359 0.120120
\(896\) 0 0
\(897\) 18.6876 0.623960
\(898\) 0 0
\(899\) − 34.3139i − 1.14443i
\(900\) 0 0
\(901\) − 8.19130i − 0.272892i
\(902\) 0 0
\(903\) −4.15327 −0.138212
\(904\) 0 0
\(905\) 7.12402 0.236811
\(906\) 0 0
\(907\) − 4.84241i − 0.160790i −0.996763 0.0803948i \(-0.974382\pi\)
0.996763 0.0803948i \(-0.0256181\pi\)
\(908\) 0 0
\(909\) − 2.22045i − 0.0736477i
\(910\) 0 0
\(911\) 18.9176 0.626768 0.313384 0.949626i \(-0.398537\pi\)
0.313384 + 0.949626i \(0.398537\pi\)
\(912\) 0 0
\(913\) 67.0702 2.21970
\(914\) 0 0
\(915\) − 2.56788i − 0.0848917i
\(916\) 0 0
\(917\) − 4.93428i − 0.162944i
\(918\) 0 0
\(919\) 9.11228 0.300586 0.150293 0.988641i \(-0.451978\pi\)
0.150293 + 0.988641i \(0.451978\pi\)
\(920\) 0 0
\(921\) −9.34379 −0.307888
\(922\) 0 0
\(923\) − 21.5518i − 0.709387i
\(924\) 0 0
\(925\) − 21.0854i − 0.693282i
\(926\) 0 0
\(927\) 11.0971 0.364477
\(928\) 0 0
\(929\) 32.7294 1.07382 0.536909 0.843640i \(-0.319592\pi\)
0.536909 + 0.843640i \(0.319592\pi\)
\(930\) 0 0
\(931\) − 1.34379i − 0.0440411i
\(932\) 0 0
\(933\) − 6.68759i − 0.218942i
\(934\) 0 0
\(935\) −13.8863 −0.454131
\(936\) 0 0
\(937\) −21.5066 −0.702591 −0.351295 0.936265i \(-0.614259\pi\)
−0.351295 + 0.936265i \(0.614259\pi\)
\(938\) 0 0
\(939\) − 15.6381i − 0.510329i
\(940\) 0 0
\(941\) 1.85115i 0.0603456i 0.999545 + 0.0301728i \(0.00960577\pi\)
−0.999545 + 0.0301728i \(0.990394\pi\)
\(942\) 0 0
\(943\) −24.9657 −0.812994
\(944\) 0 0
\(945\) 0.467138 0.0151960
\(946\) 0 0
\(947\) 45.3353i 1.47320i 0.676329 + 0.736600i \(0.263570\pi\)
−0.676329 + 0.736600i \(0.736430\pi\)
\(948\) 0 0
\(949\) 55.0266i 1.78624i
\(950\) 0 0
\(951\) 9.34379 0.302993
\(952\) 0 0
\(953\) 40.5768 1.31441 0.657206 0.753711i \(-0.271738\pi\)
0.657206 + 0.753711i \(0.271738\pi\)
\(954\) 0 0
\(955\) − 2.20647i − 0.0713997i
\(956\) 0 0
\(957\) 37.9491i 1.22672i
\(958\) 0 0
\(959\) −19.0103 −0.613876
\(960\) 0 0
\(961\) −11.5561 −0.372779
\(962\) 0 0
\(963\) 3.12334i 0.100648i
\(964\) 0 0
\(965\) − 10.4349i − 0.335911i
\(966\) 0 0
\(967\) −15.8715 −0.510392 −0.255196 0.966889i \(-0.582140\pi\)
−0.255196 + 0.966889i \(0.582140\pi\)
\(968\) 0 0
\(969\) 8.19130 0.263143
\(970\) 0 0
\(971\) 14.6876i 0.471347i 0.971832 + 0.235674i \(0.0757296\pi\)
−0.971832 + 0.235674i \(0.924270\pi\)
\(972\) 0 0
\(973\) 10.4380i 0.334627i
\(974\) 0 0
\(975\) 21.8183 0.698744
\(976\) 0 0
\(977\) −21.2437 −0.679647 −0.339824 0.940489i \(-0.610367\pi\)
−0.339824 + 0.940489i \(0.610367\pi\)
\(978\) 0 0
\(979\) − 38.8387i − 1.24129i
\(980\) 0 0
\(981\) 10.6876i 0.341228i
\(982\) 0 0
\(983\) −11.8265 −0.377206 −0.188603 0.982053i \(-0.560396\pi\)
−0.188603 + 0.982053i \(0.560396\pi\)
\(984\) 0 0
\(985\) 0.717101 0.0228487
\(986\) 0 0
\(987\) − 6.68759i − 0.212868i
\(988\) 0 0
\(989\) − 17.0103i − 0.540897i
\(990\) 0 0
\(991\) −28.9387 −0.919269 −0.459635 0.888108i \(-0.652020\pi\)
−0.459635 + 0.888108i \(0.652020\pi\)
\(992\) 0 0
\(993\) 5.40874 0.171641
\(994\) 0 0
\(995\) − 6.86112i − 0.217512i
\(996\) 0 0
\(997\) − 56.0548i − 1.77527i −0.460546 0.887636i \(-0.652346\pi\)
0.460546 0.887636i \(-0.347654\pi\)
\(998\) 0 0
\(999\) −4.40952 −0.139511
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 672.2.c.b.337.7 8
3.2 odd 2 2016.2.c.e.1009.5 8
4.3 odd 2 168.2.c.b.85.5 8
7.6 odd 2 4704.2.c.c.2353.2 8
8.3 odd 2 168.2.c.b.85.6 yes 8
8.5 even 2 inner 672.2.c.b.337.2 8
12.11 even 2 504.2.c.f.253.4 8
16.3 odd 4 5376.2.a.bp.1.3 4
16.5 even 4 5376.2.a.bq.1.2 4
16.11 odd 4 5376.2.a.bm.1.2 4
16.13 even 4 5376.2.a.bl.1.3 4
24.5 odd 2 2016.2.c.e.1009.4 8
24.11 even 2 504.2.c.f.253.3 8
28.27 even 2 1176.2.c.c.589.5 8
56.13 odd 2 4704.2.c.c.2353.7 8
56.27 even 2 1176.2.c.c.589.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.2.c.b.85.5 8 4.3 odd 2
168.2.c.b.85.6 yes 8 8.3 odd 2
504.2.c.f.253.3 8 24.11 even 2
504.2.c.f.253.4 8 12.11 even 2
672.2.c.b.337.2 8 8.5 even 2 inner
672.2.c.b.337.7 8 1.1 even 1 trivial
1176.2.c.c.589.5 8 28.27 even 2
1176.2.c.c.589.6 8 56.27 even 2
2016.2.c.e.1009.4 8 24.5 odd 2
2016.2.c.e.1009.5 8 3.2 odd 2
4704.2.c.c.2353.2 8 7.6 odd 2
4704.2.c.c.2353.7 8 56.13 odd 2
5376.2.a.bl.1.3 4 16.13 even 4
5376.2.a.bm.1.2 4 16.11 odd 4
5376.2.a.bp.1.3 4 16.3 odd 4
5376.2.a.bq.1.2 4 16.5 even 4