Properties

Label 672.2.c.b
Level 672
Weight 2
Character orbit 672.c
Analytic conductor 5.366
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 672 = 2^{5} \cdot 3 \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 672.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(5.36594701583\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.386672896.3
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + \beta_{1} q^{5} - q^{7} - q^{9} +O(q^{10})\) \( q + \beta_{2} q^{3} + \beta_{1} q^{5} - q^{7} - q^{9} + ( -2 \beta_{2} - \beta_{7} ) q^{11} + ( \beta_{2} - \beta_{6} ) q^{13} + \beta_{5} q^{15} + ( 1 + \beta_{3} - \beta_{5} ) q^{17} + ( \beta_{1} + 2 \beta_{2} - \beta_{7} ) q^{19} -\beta_{2} q^{21} + ( -1 + \beta_{3} - \beta_{5} ) q^{23} + ( -3 + 2 \beta_{3} + \beta_{4} - \beta_{5} ) q^{25} -\beta_{2} q^{27} + ( \beta_{1} + 2 \beta_{6} - \beta_{7} ) q^{29} + ( -2 + \beta_{4} + \beta_{5} ) q^{31} + ( 2 - \beta_{4} ) q^{33} -\beta_{1} q^{35} + ( -\beta_{1} - 2 \beta_{2} - \beta_{7} ) q^{37} + ( -1 + \beta_{3} ) q^{39} + ( -1 - \beta_{3} + \beta_{5} ) q^{41} + ( \beta_{1} - \beta_{2} - \beta_{6} + \beta_{7} ) q^{43} -\beta_{1} q^{45} + ( -2 \beta_{4} + 2 \beta_{5} ) q^{47} + q^{49} + ( \beta_{1} + \beta_{2} + \beta_{6} ) q^{51} + ( \beta_{1} + 2 \beta_{2} - \beta_{7} ) q^{53} + ( 2 + \beta_{4} - 3 \beta_{5} ) q^{55} + ( -2 - \beta_{4} + \beta_{5} ) q^{57} -4 \beta_{2} q^{59} + ( 2 \beta_{1} + \beta_{2} - \beta_{6} ) q^{61} + q^{63} + ( -4 + 4 \beta_{5} ) q^{65} + ( \beta_{1} + 3 \beta_{2} - \beta_{6} - \beta_{7} ) q^{67} + ( \beta_{1} - \beta_{2} + \beta_{6} ) q^{69} + ( 5 - \beta_{3} - 2 \beta_{4} - \beta_{5} ) q^{71} + ( -2 \beta_{3} - 2 \beta_{5} ) q^{73} + ( \beta_{1} - 3 \beta_{2} + 2 \beta_{6} - \beta_{7} ) q^{75} + ( 2 \beta_{2} + \beta_{7} ) q^{77} + ( 6 + 2 \beta_{3} - 2 \beta_{5} ) q^{79} + q^{81} + ( 8 \beta_{2} + 2 \beta_{7} ) q^{83} + ( -3 \beta_{1} + 4 \beta_{2} - 2 \beta_{6} + \beta_{7} ) q^{85} + ( -2 \beta_{3} - \beta_{4} + \beta_{5} ) q^{87} + ( 1 + \beta_{3} + 3 \beta_{5} ) q^{89} + ( -\beta_{2} + \beta_{6} ) q^{91} + ( -\beta_{1} - 2 \beta_{2} - \beta_{7} ) q^{93} + ( -6 + 2 \beta_{3} + 2 \beta_{4} ) q^{95} + ( 4 - 2 \beta_{3} + 2 \beta_{4} ) q^{97} + ( 2 \beta_{2} + \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 8q^{7} - 8q^{9} + O(q^{10}) \) \( 8q - 8q^{7} - 8q^{9} + 4q^{15} + 4q^{17} - 12q^{23} - 24q^{25} - 8q^{31} + 12q^{33} - 8q^{39} - 4q^{41} + 8q^{49} + 8q^{55} - 16q^{57} + 8q^{63} - 16q^{65} + 28q^{71} - 8q^{73} + 40q^{79} + 8q^{81} + 20q^{89} - 40q^{95} + 40q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - x^{6} - 2 x^{5} + 2 x^{4} - 4 x^{3} - 4 x^{2} + 16\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{5} + \nu^{3} - 2 \nu^{2} - 4 \)\()/2\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{7} - 2 \nu^{6} - 3 \nu^{5} + 4 \nu^{4} - 2 \nu^{3} + 4 \nu + 24 \)\()/16\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{7} + 2 \nu^{6} - 3 \nu^{5} + 6 \nu^{3} + 8 \nu^{2} - 12 \nu \)\()/8\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{7} - 2 \nu^{6} + \nu^{5} + 4 \nu^{4} + 2 \nu^{3} + 8 \nu^{2} + 20 \nu + 8 \)\()/8\)
\(\beta_{5}\)\(=\)\((\)\( \nu^{7} - 2 \nu^{6} - \nu^{5} + 6 \nu^{3} - 4 \nu + 8 \)\()/8\)
\(\beta_{6}\)\(=\)\((\)\( 3 \nu^{7} - 2 \nu^{6} - 7 \nu^{5} - 4 \nu^{4} + 6 \nu^{3} - 16 \nu^{2} + 20 \nu + 24 \)\()/16\)
\(\beta_{7}\)\(=\)\((\)\( 5 \nu^{7} + 6 \nu^{6} + 3 \nu^{5} + 6 \nu^{3} - 16 \nu^{2} - 36 \nu - 40 \)\()/8\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{6} - \beta_{5} + \beta_{4} - \beta_{2}\)\()/4\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{6} + \beta_{5} + \beta_{4} - 3 \beta_{2} - 2 \beta_{1}\)\()/4\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{6} + \beta_{5} + \beta_{4} + 2 \beta_{3} - \beta_{2} + 2 \beta_{1} + 2\)\()/4\)
\(\nu^{4}\)\(=\)\((\)\(2 \beta_{7} - \beta_{6} - \beta_{5} + 3 \beta_{4} + 9 \beta_{2} - 4\)\()/4\)
\(\nu^{5}\)\(=\)\((\)\(-3 \beta_{6} + \beta_{5} + \beta_{4} - 2 \beta_{3} - 5 \beta_{2} + 2 \beta_{1} + 14\)\()/4\)
\(\nu^{6}\)\(=\)\((\)\(2 \beta_{7} + 3 \beta_{6} - 9 \beta_{5} + 3 \beta_{4} + 4 \beta_{3} - 3 \beta_{2} + 16\)\()/4\)
\(\nu^{7}\)\(=\)\((\)\(4 \beta_{7} + \beta_{6} + 5 \beta_{5} + 5 \beta_{4} - 6 \beta_{3} - 9 \beta_{2} - 10 \beta_{1} + 2\)\()/4\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/672\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(421\) \(449\) \(577\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
0.621372 + 1.27039i
−0.835949 1.14070i
1.40961 + 0.114062i
−1.19503 + 0.756243i
−1.19503 0.756243i
1.40961 0.114062i
−0.835949 + 1.14070i
0.621372 1.27039i
0 1.00000i 0 3.69833i 0 −1.00000 0 −1.00000 0
337.2 0 1.00000i 0 0.467138i 0 −1.00000 0 −1.00000 0
337.3 0 1.00000i 0 1.12875i 0 −1.00000 0 −1.00000 0
337.4 0 1.00000i 0 4.10245i 0 −1.00000 0 −1.00000 0
337.5 0 1.00000i 0 4.10245i 0 −1.00000 0 −1.00000 0
337.6 0 1.00000i 0 1.12875i 0 −1.00000 0 −1.00000 0
337.7 0 1.00000i 0 0.467138i 0 −1.00000 0 −1.00000 0
337.8 0 1.00000i 0 3.69833i 0 −1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 672.2.c.b 8
3.b odd 2 1 2016.2.c.e 8
4.b odd 2 1 168.2.c.b 8
7.b odd 2 1 4704.2.c.c 8
8.b even 2 1 inner 672.2.c.b 8
8.d odd 2 1 168.2.c.b 8
12.b even 2 1 504.2.c.f 8
16.e even 4 1 5376.2.a.bl 4
16.e even 4 1 5376.2.a.bq 4
16.f odd 4 1 5376.2.a.bm 4
16.f odd 4 1 5376.2.a.bp 4
24.f even 2 1 504.2.c.f 8
24.h odd 2 1 2016.2.c.e 8
28.d even 2 1 1176.2.c.c 8
56.e even 2 1 1176.2.c.c 8
56.h odd 2 1 4704.2.c.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.c.b 8 4.b odd 2 1
168.2.c.b 8 8.d odd 2 1
504.2.c.f 8 12.b even 2 1
504.2.c.f 8 24.f even 2 1
672.2.c.b 8 1.a even 1 1 trivial
672.2.c.b 8 8.b even 2 1 inner
1176.2.c.c 8 28.d even 2 1
1176.2.c.c 8 56.e even 2 1
2016.2.c.e 8 3.b odd 2 1
2016.2.c.e 8 24.h odd 2 1
4704.2.c.c 8 7.b odd 2 1
4704.2.c.c 8 56.h odd 2 1
5376.2.a.bl 4 16.e even 4 1
5376.2.a.bm 4 16.f odd 4 1
5376.2.a.bp 4 16.f odd 4 1
5376.2.a.bq 4 16.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 32 T_{5}^{6} + 276 T_{5}^{4} + 352 T_{5}^{2} + 64 \) acting on \(S_{2}^{\mathrm{new}}(672, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( ( 1 + T^{2} )^{4} \)
$5$ \( 1 - 8 T^{2} + 16 T^{4} - 168 T^{6} + 1694 T^{8} - 4200 T^{10} + 10000 T^{12} - 125000 T^{14} + 390625 T^{16} \)
$7$ \( ( 1 + T )^{8} \)
$11$ \( 1 - 24 T^{2} + 592 T^{4} - 8312 T^{6} + 114206 T^{8} - 1005752 T^{10} + 8667472 T^{12} - 42517464 T^{14} + 214358881 T^{16} \)
$13$ \( 1 - 48 T^{2} + 1340 T^{4} - 26704 T^{6} + 396198 T^{8} - 4512976 T^{10} + 38271740 T^{12} - 231686832 T^{14} + 815730721 T^{16} \)
$17$ \( ( 1 - 2 T + 38 T^{2} - 70 T^{3} + 706 T^{4} - 1190 T^{5} + 10982 T^{6} - 9826 T^{7} + 83521 T^{8} )^{2} \)
$19$ \( 1 - 64 T^{2} + 2012 T^{4} - 42432 T^{6} + 793446 T^{8} - 15317952 T^{10} + 262205852 T^{12} - 3010936384 T^{14} + 16983563041 T^{16} \)
$23$ \( ( 1 + 6 T + 74 T^{2} + 334 T^{3} + 2282 T^{4} + 7682 T^{5} + 39146 T^{6} + 73002 T^{7} + 279841 T^{8} )^{2} \)
$29$ \( 1 - 16 T^{2} + 2876 T^{4} - 34928 T^{6} + 3439654 T^{8} - 29374448 T^{10} + 2034140156 T^{12} - 9517173136 T^{14} + 500246412961 T^{16} \)
$31$ \( ( 1 + 4 T + 80 T^{2} + 244 T^{3} + 3294 T^{4} + 7564 T^{5} + 76880 T^{6} + 119164 T^{7} + 923521 T^{8} )^{2} \)
$37$ \( 1 - 192 T^{2} + 18716 T^{4} - 1175872 T^{6} + 51538086 T^{8} - 1609768768 T^{10} + 35076797276 T^{12} - 492619470528 T^{14} + 3512479453921 T^{16} \)
$41$ \( ( 1 + 2 T + 134 T^{2} + 214 T^{3} + 7618 T^{4} + 8774 T^{5} + 225254 T^{6} + 137842 T^{7} + 2825761 T^{8} )^{2} \)
$43$ \( 1 - 168 T^{2} + 15676 T^{4} - 1026520 T^{6} + 50753126 T^{8} - 1898035480 T^{10} + 53593124476 T^{12} - 1061988992232 T^{14} + 11688200277601 T^{16} \)
$47$ \( ( 1 + 44 T^{2} + 128 T^{3} + 3302 T^{4} + 6016 T^{5} + 97196 T^{6} + 4879681 T^{8} )^{2} \)
$53$ \( 1 - 336 T^{2} + 52604 T^{4} - 5027376 T^{6} + 321653350 T^{8} - 14121899184 T^{10} + 415070862524 T^{12} - 7447225339344 T^{14} + 62259690411361 T^{16} \)
$59$ \( ( 1 - 102 T^{2} + 3481 T^{4} )^{4} \)
$61$ \( 1 - 272 T^{2} + 35516 T^{4} - 3030896 T^{6} + 201654822 T^{8} - 11277964016 T^{10} + 491748888956 T^{12} - 14013541826192 T^{14} + 191707312997281 T^{16} \)
$67$ \( 1 - 344 T^{2} + 59996 T^{4} - 6783272 T^{6} + 536949606 T^{8} - 30450108008 T^{10} + 1208986655516 T^{12} - 31117683466136 T^{14} + 406067677556641 T^{16} \)
$71$ \( ( 1 - 14 T + 194 T^{2} - 1686 T^{3} + 14330 T^{4} - 119706 T^{5} + 977954 T^{6} - 5010754 T^{7} + 25411681 T^{8} )^{2} \)
$73$ \( ( 1 + 4 T + 92 T^{2} - 580 T^{3} + 166 T^{4} - 42340 T^{5} + 490268 T^{6} + 1556068 T^{7} + 28398241 T^{8} )^{2} \)
$79$ \( ( 1 - 20 T + 340 T^{2} - 3972 T^{3} + 38678 T^{4} - 313788 T^{5} + 2121940 T^{6} - 9860780 T^{7} + 38950081 T^{8} )^{2} \)
$83$ \( 1 - 248 T^{2} + 44156 T^{4} - 5204488 T^{6} + 499369126 T^{8} - 35853717832 T^{10} + 2095569622076 T^{12} - 81081212595512 T^{14} + 2252292232139041 T^{16} \)
$89$ \( ( 1 - 10 T + 198 T^{2} - 494 T^{3} + 13122 T^{4} - 43966 T^{5} + 1568358 T^{6} - 7049690 T^{7} + 62742241 T^{8} )^{2} \)
$97$ \( ( 1 - 20 T + 300 T^{2} - 2572 T^{3} + 25574 T^{4} - 249484 T^{5} + 2822700 T^{6} - 18253460 T^{7} + 88529281 T^{8} )^{2} \)
show more
show less