Properties

Label 66.2.e
Level $66$
Weight $2$
Character orbit 66.e
Rep. character $\chi_{66}(25,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $8$
Newform subspaces $2$
Sturm bound $24$
Trace bound $2$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 66.e (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(66, [\chi])\).

Total New Old
Modular forms 64 8 56
Cusp forms 32 8 24
Eisenstein series 32 0 32

Trace form

\( 8q - 2q^{4} + 8q^{5} + 2q^{6} - 8q^{7} - 2q^{9} + O(q^{10}) \) \( 8q - 2q^{4} + 8q^{5} + 2q^{6} - 8q^{7} - 2q^{9} - 12q^{10} - 8q^{11} - 4q^{14} + 2q^{15} - 2q^{16} - 16q^{17} + 20q^{19} + 8q^{20} - 16q^{21} + 10q^{22} + 2q^{24} - 14q^{25} + 12q^{26} + 2q^{28} - 12q^{29} + 12q^{30} + 2q^{31} + 10q^{33} - 8q^{34} + 28q^{35} - 2q^{36} + 24q^{37} + 12q^{38} + 8q^{39} - 2q^{40} + 20q^{41} - 2q^{42} - 32q^{43} - 8q^{44} + 8q^{45} + 12q^{46} - 12q^{47} + 14q^{49} - 24q^{50} - 12q^{51} - 12q^{53} - 8q^{54} - 8q^{55} + 16q^{56} - 12q^{57} + 10q^{58} - 12q^{59} - 8q^{60} - 4q^{61} - 12q^{62} - 8q^{63} - 2q^{64} - 8q^{65} - 12q^{66} - 16q^{68} + 8q^{69} - 22q^{70} - 4q^{71} - 6q^{73} - 16q^{74} + 24q^{75} + 8q^{77} - 20q^{79} - 12q^{80} - 2q^{81} + 12q^{82} + 28q^{83} + 4q^{84} - 24q^{85} - 16q^{86} + 20q^{87} - 10q^{88} + 16q^{89} + 8q^{90} + 24q^{91} + 20q^{92} + 12q^{93} + 16q^{94} + 52q^{95} + 2q^{96} + 20q^{97} + 48q^{98} + 12q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(66, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
66.2.e.a \(4\) \(0.527\) \(\Q(\zeta_{10})\) None \(-1\) \(1\) \(8\) \(-6\) \(q-\zeta_{10}q^{2}+\zeta_{10}^{3}q^{3}+\zeta_{10}^{2}q^{4}+(2+\cdots)q^{5}+\cdots\)
66.2.e.b \(4\) \(0.527\) \(\Q(\zeta_{10})\) None \(1\) \(-1\) \(0\) \(-2\) \(q+\zeta_{10}q^{2}-\zeta_{10}^{3}q^{3}+\zeta_{10}^{2}q^{4}+(-2+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(66, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(66, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 2}\)