Properties

Label 66.2.e.b
Level $66$
Weight $2$
Character orbit 66.e
Analytic conductor $0.527$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [66,2,Mod(25,66)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(66, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("66.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 66 = 2 \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 66.e (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.527012653340\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{10} q^{2} - \zeta_{10}^{3} q^{3} + \zeta_{10}^{2} q^{4} + (2 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + 3 \zeta_{10} - 2) q^{5} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{6} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{7} + \zeta_{10}^{3} q^{8} - \zeta_{10} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \zeta_{10} q^{2} - \zeta_{10}^{3} q^{3} + \zeta_{10}^{2} q^{4} + (2 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + 3 \zeta_{10} - 2) q^{5} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{6} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{7} + \zeta_{10}^{3} q^{8} - \zeta_{10} q^{9} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - 2) q^{10} + (2 \zeta_{10}^{3} - 2 \zeta_{10} - 1) q^{11} + q^{12} + (2 \zeta_{10}^{2} - 2 \zeta_{10} + 2) q^{13} + ( - \zeta_{10}^{3} - \zeta_{10} + 1) q^{14} + ( - \zeta_{10}^{3} + 3 \zeta_{10}^{2} - \zeta_{10}) q^{15} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10} - 1) q^{16} + (4 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + 4 \zeta_{10} - 4) q^{17} - \zeta_{10}^{2} q^{18} + ( - 4 \zeta_{10}^{3} - 6 \zeta_{10} + 6) q^{19} + (\zeta_{10}^{2} - 3 \zeta_{10} + 1) q^{20} + (\zeta_{10}^{3} - \zeta_{10}^{2} - 1) q^{21} + (2 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + \zeta_{10} - 2) q^{22} + ( - 6 \zeta_{10}^{3} + 6 \zeta_{10}^{2} + 4) q^{23} + \zeta_{10} q^{24} + (5 \zeta_{10} - 5) q^{25} + (2 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + 2 \zeta_{10}) q^{26} + (\zeta_{10}^{3} - \zeta_{10}^{2} + \zeta_{10} - 1) q^{27} + ( - \zeta_{10}^{3} + 1) q^{28} + ( - 3 \zeta_{10}^{3} + 5 \zeta_{10}^{2} - 3 \zeta_{10}) q^{29} + (2 \zeta_{10}^{3} - \zeta_{10} + 1) q^{30} + (\zeta_{10}^{2} + 4 \zeta_{10} + 1) q^{31} - q^{32} + (3 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + 4 \zeta_{10} - 2) q^{33} - 4 q^{34} + (2 \zeta_{10}^{2} - \zeta_{10} + 2) q^{35} - \zeta_{10}^{3} q^{36} + (8 \zeta_{10}^{3} - 4 \zeta_{10}^{2} + 8 \zeta_{10}) q^{37} + ( - 4 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + 2 \zeta_{10} + 4) q^{38} + ( - 2 \zeta_{10}^{2} + 2 \zeta_{10}) q^{39} + (\zeta_{10}^{3} - 3 \zeta_{10}^{2} + \zeta_{10}) q^{40} + ( - 4 \zeta_{10}^{3} - 6 \zeta_{10} + 6) q^{41} + ( - \zeta_{10}^{2} - 1) q^{42} + (2 \zeta_{10}^{3} - 2 \zeta_{10}^{2} - 8) q^{43} + ( - 2 \zeta_{10}^{3} - \zeta_{10}^{2} - 2) q^{44} + (\zeta_{10}^{3} - \zeta_{10}^{2} + 2) q^{45} + (6 \zeta_{10}^{2} - 2 \zeta_{10} + 6) q^{46} - 4 \zeta_{10}^{3} q^{47} + \zeta_{10}^{2} q^{48} + ( - 5 \zeta_{10}^{3} + 6 \zeta_{10}^{2} - 6 \zeta_{10} + 5) q^{49} + (5 \zeta_{10}^{2} - 5 \zeta_{10}) q^{50} + 4 \zeta_{10}^{2} q^{51} + (2 \zeta_{10} - 2) q^{52} + ( - \zeta_{10}^{2} - 2 \zeta_{10} - 1) q^{53} - q^{54} + (2 \zeta_{10}^{3} - 5 \zeta_{10}^{2} - \zeta_{10} + 6) q^{55} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} + 1) q^{56} + ( - 6 \zeta_{10}^{2} + 2 \zeta_{10} - 6) q^{57} + (2 \zeta_{10}^{3} - 3 \zeta_{10} + 3) q^{58} + ( - 7 \zeta_{10}^{3} + 6 \zeta_{10}^{2} - 7 \zeta_{10}) q^{59} + (2 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + 3 \zeta_{10} - 2) q^{60} + (6 \zeta_{10}^{3} - 6) q^{61} + (\zeta_{10}^{3} + 4 \zeta_{10}^{2} + \zeta_{10}) q^{62} + (\zeta_{10}^{3} + \zeta_{10} - 1) q^{63} - \zeta_{10} q^{64} + (6 \zeta_{10}^{3} - 6 \zeta_{10}^{2} + 2) q^{65} + (\zeta_{10}^{3} + \zeta_{10}^{2} + \zeta_{10} - 3) q^{66} + (8 \zeta_{10}^{3} - 8 \zeta_{10}^{2} - 8) q^{67} - 4 \zeta_{10} q^{68} + ( - 4 \zeta_{10}^{3} - 6 \zeta_{10} + 6) q^{69} + (2 \zeta_{10}^{3} - \zeta_{10}^{2} + 2 \zeta_{10}) q^{70} + (6 \zeta_{10}^{3} - 6 \zeta_{10}^{2} + 6 \zeta_{10} - 6) q^{71} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - \zeta_{10} + 1) q^{72} + ( - 9 \zeta_{10}^{3} + 9 \zeta_{10}^{2} - 9 \zeta_{10}) q^{73} + (4 \zeta_{10}^{3} + 8 \zeta_{10} - 8) q^{74} + (5 \zeta_{10}^{2} - 5 \zeta_{10} + 5) q^{75} + ( - 6 \zeta_{10}^{3} + 6 \zeta_{10}^{2} + 4) q^{76} + (\zeta_{10}^{3} + 2 \zeta_{10}^{2} + 3 \zeta_{10}) q^{77} + ( - 2 \zeta_{10}^{3} + 2 \zeta_{10}^{2}) q^{78} + ( - 3 \zeta_{10}^{2} + 5 \zeta_{10} - 3) q^{79} + ( - 2 \zeta_{10}^{3} + \zeta_{10} - 1) q^{80} + \zeta_{10}^{2} q^{81} + ( - 4 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + 2 \zeta_{10} + 4) q^{82} + ( - \zeta_{10}^{2} + \zeta_{10}) q^{83} + ( - \zeta_{10}^{3} - \zeta_{10}) q^{84} + ( - 8 \zeta_{10}^{3} + 4 \zeta_{10} - 4) q^{85} + ( - 2 \zeta_{10}^{2} - 6 \zeta_{10} - 2) q^{86} + (3 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + 2) q^{87} + ( - 3 \zeta_{10}^{3} + 2 \zeta_{10}^{2} - 4 \zeta_{10} + 2) q^{88} + ( - 2 \zeta_{10}^{3} + 2 \zeta_{10}^{2} + 10) q^{89} + ( - \zeta_{10}^{2} + 3 \zeta_{10} - 1) q^{90} - 2 \zeta_{10}^{3} q^{91} + (6 \zeta_{10}^{3} - 2 \zeta_{10}^{2} + 6 \zeta_{10}) q^{92} + ( - 5 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 4 \zeta_{10} + 5) q^{93} + ( - 4 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - 4 \zeta_{10} + 4) q^{94} + (14 \zeta_{10}^{3} - 12 \zeta_{10}^{2} + 14 \zeta_{10}) q^{95} + \zeta_{10}^{3} q^{96} + ( - \zeta_{10}^{2} + 9 \zeta_{10} - 1) q^{97} + (\zeta_{10}^{3} - \zeta_{10}^{2} + 5) q^{98} + ( - 2 \zeta_{10}^{3} + 4 \zeta_{10}^{2} - \zeta_{10} + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{3} - q^{4} + q^{6} - 2 q^{7} + q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + q^{2} - q^{3} - q^{4} + q^{6} - 2 q^{7} + q^{8} - q^{9} - 10 q^{10} - 4 q^{11} + 4 q^{12} + 4 q^{13} + 2 q^{14} - 5 q^{15} - q^{16} - 4 q^{17} + q^{18} + 14 q^{19} - 2 q^{21} - q^{22} + 4 q^{23} + q^{24} - 15 q^{25} + 6 q^{26} - q^{27} + 3 q^{28} - 11 q^{29} + 5 q^{30} + 7 q^{31} - 4 q^{32} + q^{33} - 16 q^{34} + 5 q^{35} - q^{36} + 20 q^{37} + 16 q^{38} + 4 q^{39} + 5 q^{40} + 14 q^{41} - 3 q^{42} - 28 q^{43} - 9 q^{44} + 10 q^{45} + 16 q^{46} - 4 q^{47} - q^{48} + 3 q^{49} - 10 q^{50} - 4 q^{51} - 6 q^{52} - 5 q^{53} - 4 q^{54} + 30 q^{55} + 2 q^{56} - 16 q^{57} + 11 q^{58} - 20 q^{59} - 18 q^{61} - 2 q^{62} - 2 q^{63} - q^{64} + 20 q^{65} - 11 q^{66} - 16 q^{67} - 4 q^{68} + 14 q^{69} + 5 q^{70} - 6 q^{71} + q^{72} - 27 q^{73} - 20 q^{74} + 10 q^{75} + 4 q^{76} + 2 q^{77} - 4 q^{78} - 4 q^{79} - 5 q^{80} - q^{81} + 16 q^{82} + 2 q^{83} - 2 q^{84} - 20 q^{85} - 12 q^{86} + 14 q^{87} - q^{88} + 36 q^{89} - 2 q^{91} + 14 q^{92} + 7 q^{93} + 4 q^{94} + 40 q^{95} + q^{96} + 6 q^{97} + 22 q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/66\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(\zeta_{10}^{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.809017 0.587785i
−0.309017 + 0.951057i
0.809017 + 0.587785i
−0.309017 0.951057i
0.809017 0.587785i 0.309017 + 0.951057i 0.309017 0.951057i −1.11803 0.812299i 0.809017 + 0.587785i −0.500000 + 1.53884i −0.309017 0.951057i −0.809017 + 0.587785i −1.38197
31.1 −0.309017 + 0.951057i −0.809017 + 0.587785i −0.809017 0.587785i 1.11803 + 3.44095i −0.309017 0.951057i −0.500000 0.363271i 0.809017 0.587785i 0.309017 0.951057i −3.61803
37.1 0.809017 + 0.587785i 0.309017 0.951057i 0.309017 + 0.951057i −1.11803 + 0.812299i 0.809017 0.587785i −0.500000 1.53884i −0.309017 + 0.951057i −0.809017 0.587785i −1.38197
49.1 −0.309017 0.951057i −0.809017 0.587785i −0.809017 + 0.587785i 1.11803 3.44095i −0.309017 + 0.951057i −0.500000 + 0.363271i 0.809017 + 0.587785i 0.309017 + 0.951057i −3.61803
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.c even 5 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 66.2.e.b 4
3.b odd 2 1 198.2.f.a 4
4.b odd 2 1 528.2.y.g 4
11.b odd 2 1 726.2.e.c 4
11.c even 5 1 inner 66.2.e.b 4
11.c even 5 1 726.2.a.k 2
11.c even 5 2 726.2.e.j 4
11.d odd 10 1 726.2.a.m 2
11.d odd 10 2 726.2.e.a 4
11.d odd 10 1 726.2.e.c 4
33.f even 10 1 2178.2.a.o 2
33.h odd 10 1 198.2.f.a 4
33.h odd 10 1 2178.2.a.v 2
44.g even 10 1 5808.2.a.by 2
44.h odd 10 1 528.2.y.g 4
44.h odd 10 1 5808.2.a.bz 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
66.2.e.b 4 1.a even 1 1 trivial
66.2.e.b 4 11.c even 5 1 inner
198.2.f.a 4 3.b odd 2 1
198.2.f.a 4 33.h odd 10 1
528.2.y.g 4 4.b odd 2 1
528.2.y.g 4 44.h odd 10 1
726.2.a.k 2 11.c even 5 1
726.2.a.m 2 11.d odd 10 1
726.2.e.a 4 11.d odd 10 2
726.2.e.c 4 11.b odd 2 1
726.2.e.c 4 11.d odd 10 1
726.2.e.j 4 11.c even 5 2
2178.2.a.o 2 33.f even 10 1
2178.2.a.v 2 33.h odd 10 1
5808.2.a.by 2 44.g even 10 1
5808.2.a.bz 2 44.h odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 10T_{5}^{2} + 25T_{5} + 25 \) acting on \(S_{2}^{\mathrm{new}}(66, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{3} + T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + T^{3} + T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{4} + 10 T^{2} + 25 T + 25 \) Copy content Toggle raw display
$7$ \( T^{4} + 2 T^{3} + 4 T^{2} + 3 T + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 4 T^{3} + 6 T^{2} + 44 T + 121 \) Copy content Toggle raw display
$13$ \( T^{4} - 4 T^{3} + 16 T^{2} - 24 T + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 4 T^{3} + 16 T^{2} + 64 T + 256 \) Copy content Toggle raw display
$19$ \( T^{4} - 14 T^{3} + 136 T^{2} + \cdots + 1936 \) Copy content Toggle raw display
$23$ \( (T^{2} - 2 T - 44)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 11 T^{3} + 46 T^{2} - 4 T + 1 \) Copy content Toggle raw display
$31$ \( T^{4} - 7 T^{3} + 24 T^{2} - 38 T + 361 \) Copy content Toggle raw display
$37$ \( T^{4} - 20 T^{3} + 240 T^{2} + \cdots + 6400 \) Copy content Toggle raw display
$41$ \( T^{4} - 14 T^{3} + 136 T^{2} + \cdots + 1936 \) Copy content Toggle raw display
$43$ \( (T^{2} + 14 T + 44)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 4 T^{3} + 16 T^{2} + 64 T + 256 \) Copy content Toggle raw display
$53$ \( T^{4} + 5 T^{3} + 10 T^{2} + 25 \) Copy content Toggle raw display
$59$ \( T^{4} + 20 T^{3} + 190 T^{2} + \cdots + 3025 \) Copy content Toggle raw display
$61$ \( T^{4} + 18 T^{3} + 144 T^{2} + \cdots + 1296 \) Copy content Toggle raw display
$67$ \( (T^{2} + 8 T - 64)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 6 T^{3} + 36 T^{2} + \cdots + 1296 \) Copy content Toggle raw display
$73$ \( T^{4} + 27 T^{3} + 324 T^{2} + \cdots + 6561 \) Copy content Toggle raw display
$79$ \( T^{4} + 4 T^{3} + 46 T^{2} - 11 T + 1 \) Copy content Toggle raw display
$83$ \( T^{4} - 2 T^{3} + 4 T^{2} - 3 T + 1 \) Copy content Toggle raw display
$89$ \( (T^{2} - 18 T + 76)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 6 T^{3} + 76 T^{2} + \cdots + 5041 \) Copy content Toggle raw display
show more
show less